Functional Data Representation
fdata class objects
- Basic operations:
- Group Math: abs, sqrt, floor, ceiling, trunc, round, signif, exp, log, cos, sin, tan.
- Group Summary: all, any, sum, prod, min, max, range.
- Other operations: [], is.fdata, c, dim, ncol, nrow.
- Some utilities
- The new class fdata only uses the evaluations at the discretization points and converts object of class: fd, fds, fts, sfts, vector, matrix, data.frame to an object of class fdata.
- The fdata2fd converts fdata object to fd object (using the basis representation).
- Derivatives: fdata.deriv
- Plot: plot.fdata
Resume by smoothing: min.basis, min.np
- Create smooth fixed basis: create.fdata.basis
- Create smooth Data-driven basis: create.pc.basis, create.pls.basis
Create Smooth Matrix: S.NW, S.KNN, S.basis
Validation Criteria: Cross Validation: CV.S and Generalzed Cross Validation: GCV.S
Computing distances
- Distance between functional elements:
- Measures the proximity between curves approximating Lp-metric: metric.lp
- based on the Principal Components semimetric.pca
- based on the Partial Least Squares: semimetric.mplsr
- based on B-spline representation: semimetric.deriv
- measure the horizontal shift effect: semimetric.hshift
- based on ther Fourier representation: semimetric.fourier
- based on fixed basis representation: semimetric.basis
- Kullback-Leibler distance: metrip.kl
- Hausdorff distances between two curves: metric.hausdorff
- Norm: norm.fdata
- Inner product: inprod.fdata
Depth measures
- Depth for univariate or multivariate data
- Mahalanobis Depth (Mean) mdepth.MhD
- Halfspace Depth, also known as Tukey Depth (Median) mdepth.HS
- Simplicial Depth mdepth.SD
- Likelihood Depth (Mode) mdepth.LD
- Depth for univariate functional data
- Fraiman-Muniz Depth depth.FM
- Random Projections depth.RP
- Modal depth depth.mode
- Depth for multivariate functional data
- Fraiman-Muniz Depth depth.FMp
- Random Projections depth.RPp
- Modal depth depth.modep
Outlier Detection
Detecting outliers one based on trimming: outliers.depth.trim
Detecting outliers one based on weighting: outliers.depth.pond
Back to Top