fda.usc reference card

Functional Data Representation

fdata class objects

  1. Basic operations:
  1. Some utilities

Resume by smoothing: min.basis, min.np

Computing distances

  1. Distance between functional elements:
  1. Norm: norm.fdata
  2. Inner product: inprod.fdata

Depth measures

  1. Depth for univariate or multivariate data
  1. Depth for univariate functional data
  1. Depth for multivariate functional data

Outlier Detection

  1. Detecting outliers one based on trimming: outliers.depth.trim

  2. Detecting outliers one based on weighting: outliers.depth.pond

Back to Top

Functional Regression Model

  1. Linear (parametric approach):
  1. Non-Linear (nonparametric approach)
  1. Generalized approach
  1. Other procedures

Back to Top

Functional Supervised Classification: Discrimination

  1. k-Nearest Neighbor Classifier: classif.knn
  2. Kernel Classifier: classif.kernel
  3. Logistic Classifier (linear model): classif.glm
  4. Logistic Classifier (additive model): classif.gsam and classif.gkam
  5. Distance Classifier: classif.dist
  6. Maximum Depth Classifier: classif.depth
  7. DD Classifier: classif.DD

Back to Top

Functional Non-Supervised Classification: Clustering

Back to Top

Functional Analysis of variance: FANOVA

  1. One-way anova model for functional data: anova.onefactor
  2. Functional ANOVA with Random Project: anova.RPm
  3. ANOVA for heteroscedastic data: anova.hetero

Back to Top

Documentation

RPubs documents

  1. fda.usc vignette: Installation and Descriptive Statistics

  2. fda.usc vignette:Functional Regression

  3. fda.usc vignette: Functional Classification and ANOVA

  4. fda.usc reference card Rcard

Links:

  1. fda.usc R package

  2. JSS paper

  3. fda.usc R Manual

  4. Manuel Oviedo's website

Back to Top