Los datos corresponden a mediciones que se han hecho en árboles de producción de aguacate en el Cauca. Cada árbol tiene un identificador, adicionalmente estan Georeferenciados con la variable latitud y longitud.
La base de datos esta compuesta por Variables climaticas como:
Humedad relativa
Vientos
Temperatura
Altura
Para el caso de estudio nos cetraremos en el analisis de la variable Temperatura y se tendra como fecha de referencia 01-10-2020.
Data$fecha <- as.Date(Data$FORMATTED_DATE_TIME, format = "%d/%m/%Y")
Data_20 <- filter(Data, fecha == "2020-10-01")
tabla <- (head(Data_20,5))
tabla %>%
kbl() %>%
kable_paper("hover",
full_width = F)
| id_arbol | Latitude | Longitude | FORMATTED_DATE_TIME | Psychro_Wet_Bulb_Temperature | Station_Pressure | Relative_Humidity | Crosswind | Temperature | Barometric_Pressure | Headwind | Direction_True | Direction_Mag | Wind_Speed | Heat_Stress_Index | Altitude | Dew_Point | Density_Altitude | Wind_Chill | Estado_Fenologico_Predominante | Frutos_Afectados | fecha |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2.393549 | -76.71124 | 01/10/2020 10:11:12 a, m, | 22.0 | 825.1 | 85.2 | 0.0 | 23.9 | 825.2 | 0.0 | 313 | 312 | 0.0 | 25.3 | 1696 | 21.3 | 2.504 | 23.9 | 717 | 0 | 2020-10-01 |
| 2 | 2.393573 | -76.71120 | 01/10/2020 10:11:12 a, m, | 21.4 | 825.3 | 84.0 | 0.0 | 23.5 | 825.2 | 0.0 | 317 | 317 | 0.0 | 24.8 | 1696 | 20.7 | 2.485 | 23.5 | 717 | 0 | 2020-10-01 |
| 3 | 2.393541 | -76.71113 | 01/10/2020 10:11:12 a, m, | 21.8 | 825.5 | 79.6 | 0.2 | 24.5 | 825.5 | 0.4 | 338 | 337 | 0.5 | 25.7 | 1694 | 20.8 | 2.518 | 24.5 | 717 | 0 | 2020-10-01 |
| 4 | 2.393503 | -76.71119 | 01/10/2020 10:11:12 a, m, | 22.8 | 825.4 | 77.6 | 0.4 | 25.9 | 825.4 | 0.2 | 299 | 299 | 0.5 | 28.1 | 1694 | 21.7 | 2.572 | 25.9 | 717 | 0 | 2020-10-01 |
| 5 | 2.393486 | -76.71121 | 01/10/2020 10:11:12 a, m, | 22.6 | 825.2 | 76.5 | 0.0 | 26.0 | 825.2 | 0.0 | 265 | 264 | 0.0 | 28.0 | 1696 | 21.5 | 2.575 | 25.9 | 717 | 0 | 2020-10-01 |
leaflet() %>%
addTiles() %>%
addCircleMarkers(lng = Data_20$Longitude, lat = Data_20$Latitude, radius = 0.2, color = "#7FFF00") %>%
addControl(html = "<h1>Arboles de Aguacates</h1>", position = "topright")
Temp=as.geodata(Data_20,coords.col = 3:2,data.col = 9)
plot(Temp)
# Convertir los datos a un objeto sf
Data_20_sf <- st_as_sf(Data_20, coords = c("Longitude", "Latitude"), crs = 4326, remove = FALSE)
ggplot(Data_20_sf) +
geom_point(aes(x = Longitude, y = Latitude, color = Temperature), size = 2) +
scale_color_viridis_c() +
labs(title = "Temperatura del cutivo de Aguacate",
x = "Longitud",
y = "Latitud",
color = "Temperatura") +
theme_minimal()
La temperatura de los arboles se encuentra al rededor de 23 a 30 grados centigrados
dist_summary_df <- summary(dist(Data_20[,3:2]))
tabla1<- as.data.frame(as.matrix(dist_summary_df))
tabla1 %>%
kbl(caption = "Distancias entre Coordenadas") %>%
kable_paper("hover", full_width = F)
| V1 | |
|---|---|
| Min. | 0.0000171 |
| 1st Qu. | 0.0004051 |
| Median | 0.0006408 |
| Mean | 0.0006827 |
| 3rd Qu. | 0.0009178 |
| Max. | 0.0019591 |
s_variograma = variog(Temp, option = "bin", uvec = seq(0.0004051, 0.0009178, length.out = 20))
## variog: computing omnidirectional variogram
variograma_temp <- variog.mc.env(Temp, obj.variog = s_variograma, nsim = 99)
## variog.env: generating 99 simulations by permutating data values
## variog.env: computing the empirical variogram for the 99 simulations
## variog.env: computing the envelops
plot(s_variograma, main = "Semivariograma con Entorno de Monte Carlo")
lines(variograma_temp, col = "#EE6AA7", lty = 3)
# Crear una matriz de valores iniciales para el ajuste
ini.vals <- expand.grid(seq(1, 15, length = 10), seq(6e-04, 8e-05, length = 10))
#modelo exponencial al semivariograma
model_exp <- variofit(s_variograma, ini = ini.vals, cov.model = "exponential", wei = "npair", min = "optim")
## variofit: covariance model used is exponential
## variofit: weights used: npairs
## variofit: minimisation function used: optim
## variofit: searching for best initial value ... selected values:
## sigmasq phi tausq kappa
## initial.value "4.11" "0" "0" "0.5"
## status "est" "est" "est" "fix"
## loss value: 3048.82004527524
# Ajustar el modelo gaussiano al semivariograma
model_gaus <- variofit(s_variograma, ini = ini.vals, cov.model = "gaussian", wei = "npair", min = "optim")
## variofit: covariance model used is gaussian
## variofit: weights used: npairs
## variofit: minimisation function used: optim
## variofit: searching for best initial value ... selected values:
## sigmasq phi tausq kappa
## initial.value "4.11" "0" "0" "0.5"
## status "est" "est" "est" "fix"
## loss value: 19656.4857281378
model_sph <- variofit(s_variograma, ini = ini.vals, cov.model = "spherical", fix.nug = TRUE, wei = "npair", min = "optim")
## variofit: covariance model used is spherical
## variofit: weights used: npairs
## variofit: minimisation function used: optim
## variofit: searching for best initial value ... selected values:
## sigmasq phi tausq kappa
## initial.value "2.56" "0" "0" "0.5"
## status "est" "est" "fix" "fix"
## loss value: 30516.1655726669
plot(s_variograma, main = "Semivariograma con Modelos Ajustados")
lines(model_exp, col = "#EEA9B8")
lines(model_gaus, col = "#836FFF")
lines(model_sph, col = "#54FF9F")