Import data

# excel file
data <- read_excel("../00_data/myData.xlsx")
data
## # A tibble: 1,430 × 4
##    country   food_category            consumption co2_emmission
##    <chr>     <chr>                          <dbl>         <dbl>
##  1 Argentina Pork                           10.5          37.2 
##  2 Argentina Poultry                        38.7          41.5 
##  3 Argentina Beef                           55.5        1712   
##  4 Argentina Lamb & Goat                     1.56         54.6 
##  5 Argentina Fish                            4.36          6.96
##  6 Argentina Eggs                           11.4          10.5 
##  7 Argentina Milk - inc. cheese            195.          278.  
##  8 Argentina Wheat and Wheat Products      103.           19.7 
##  9 Argentina Rice                            8.77         11.2 
## 10 Argentina Soybeans                        0             0   
## # ℹ 1,420 more rows

Apply the following dplyr verbs to your data

Filter rows

filter(data, country == "Japan")
## # A tibble: 11 × 4
##    country food_category            consumption co2_emmission
##    <chr>   <chr>                          <dbl>         <dbl>
##  1 Japan   Pork                           20.6          73.0 
##  2 Japan   Poultry                        19.4          20.9 
##  3 Japan   Beef                            9.15        282.  
##  4 Japan   Lamb & Goat                     0.14          4.9 
##  5 Japan   Fish                           31.1          49.7 
##  6 Japan   Eggs                           19.2          17.6 
##  7 Japan   Milk - inc. cheese             72.1         103.  
##  8 Japan   Wheat and Wheat Products       45.0           8.59
##  9 Japan   Rice                           59.8          76.6 
## 10 Japan   Soybeans                        7.34          3.3 
## 11 Japan   Nuts inc. Peanut Butter         2.59          4.58

Arrange rows

arrange(data, consumption)
## # A tibble: 1,430 × 4
##    country              food_category consumption co2_emmission
##    <chr>                <chr>               <dbl>         <dbl>
##  1 Argentina            Soybeans                0             0
##  2 Albania              Soybeans                0             0
##  3 Kuwait               Pork                    0             0
##  4 Armenia              Soybeans                0             0
##  5 Venezuela            Soybeans                0             0
##  6 Croatia              Soybeans                0             0
##  7 Paraguay             Soybeans                0             0
##  8 Ecuador              Soybeans                0             0
##  9 Serbia               Soybeans                0             0
## 10 United Arab Emirates Pork                    0             0
## # ℹ 1,420 more rows

Select columns

select(data, country, co2_emmission)
## # A tibble: 1,430 × 2
##    country   co2_emmission
##    <chr>             <dbl>
##  1 Argentina         37.2 
##  2 Argentina         41.5 
##  3 Argentina       1712   
##  4 Argentina         54.6 
##  5 Argentina          6.96
##  6 Argentina         10.5 
##  7 Argentina        278.  
##  8 Argentina         19.7 
##  9 Argentina         11.2 
## 10 Argentina          0   
## # ℹ 1,420 more rows

Add columns

# Approximate amount of kg of CO2 emitted per kg of food consumed
mutate(data,
       kg = co2_emmission / consumption)
## # A tibble: 1,430 × 5
##    country   food_category            consumption co2_emmission      kg
##    <chr>     <chr>                          <dbl>         <dbl>   <dbl>
##  1 Argentina Pork                           10.5          37.2    3.54 
##  2 Argentina Poultry                        38.7          41.5    1.07 
##  3 Argentina Beef                           55.5        1712     30.9  
##  4 Argentina Lamb & Goat                     1.56         54.6   35.0  
##  5 Argentina Fish                            4.36          6.96   1.60 
##  6 Argentina Eggs                           11.4          10.5    0.918
##  7 Argentina Milk - inc. cheese            195.          278.     1.42 
##  8 Argentina Wheat and Wheat Products      103.           19.7    0.191
##  9 Argentina Rice                            8.77         11.2    1.28 
## 10 Argentina Soybeans                        0             0    NaN    
## # ℹ 1,420 more rows

Summarize by groups

data %>%
    
    #group by food_category
    group_by(food_category) %>%

#Calculate average consumption
summarise(avg_consumption = mean(consumption, na.rm = TRUE)) %>%
    ungroup()
## # A tibble: 11 × 2
##    food_category            avg_consumption
##    <chr>                              <dbl>
##  1 Beef                              12.1  
##  2 Eggs                               8.16 
##  3 Fish                              17.3  
##  4 Lamb & Goat                        2.60 
##  5 Milk - inc. cheese               126.   
##  6 Nuts inc. Peanut Butter            4.14 
##  7 Pork                              16.1  
##  8 Poultry                           21.2  
##  9 Rice                              29.4  
## 10 Soybeans                           0.861
## 11 Wheat and Wheat Products          71.5