# Load package
library(tidyverse)
library(tidyquant)
Introduction
Question2
Variation
Visualising distrobution
diamonds %>%
ggplot(aes(x = cut)) +
geom_bar()

diamonds %>%
ggplot(mapping = aes(x = carat)) +
geom_histogram(binwidth = 0.5)

diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.5)

diamonds %>%
ggplot(aes(x = carat, color = cut)) +
geom_freqpoly()

Trypical values
diamonds %>%
# Filter out bigger diamonds > 3 carat
filter(carat < 3) %>%
# Plot
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.01)

faithful %>%
ggplot(aes(x = eruptions)) +
geom_histogram()

Unusual values
diamonds %>%
ggplot(aes(x = y)) +
geom_histogram()

diamonds %>%
ggplot(aes(x = y)) +
geom_histogram() +
coord_cartesian(ylim = c(0,50))

Missing Values
diamonds %>%
# filter(y < 3 | y > 20) %>%
mutate(y = ifelse(y < 3 | y > 20, NA, y)) %>%
#Plot
ggplot(aes(x = x, y = y)) +
geom_point()

Covariation
A categorical and continuous varible
diamonds %>%
ggplot(aes(x = cut, y = price)) +
geom_boxplot()

Two categorical variables
diamonds %>%
count(color, cut) %>%
ggplot(aes(x = color, y = cut, fill = n)) +
geom_tile()

Two continuous variables
library(hexbin)
diamonds %>%
ggplot(aes(x = carat, y = price)) +
geom_hex()

diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x = carat, y = price)) +
geom_boxplot(aes(group = cut_width(carat, 0.1)))

Patterns and models
library(modelr)
mod <- lm(log(price) ~ log(carat), data = diamonds)
diamonds4 <- diamonds %>%
modelr::add_residuals(mod) %>%
mutate(resid = exp(resid))
diamonds4 %>%
ggplot(aes(carat, resid)) +
geom_point()

diamonds4 %>%
ggplot(aes(cut, resid)) +
geom_boxplot()
