##chargement des packages----
library(questionr)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.1     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tableone)
library(labelled)
library(gtsummary)
## #BlackLivesMatter
library(GGally)
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
library(readxl)
library(effects)
## Le chargement a nécessité le package : carData
## lattice theme set by effectsTheme()
## See ?effectsTheme for details.
library(survival)
library(survminer)
## Le chargement a nécessité le package : ggpubr
## 
## Attachement du package : 'survminer'
## 
## L'objet suivant est masqué depuis 'package:survival':
## 
##     myeloma
library(ggplot2)
library(dplyr)
library(knitr)
library(cowplot)
## 
## Attachement du package : 'cowplot'
## 
## L'objet suivant est masqué depuis 'package:ggpubr':
## 
##     get_legend
## 
## L'objet suivant est masqué depuis 'package:lubridate':
## 
##     stamp
##chargement des données 
stab_rheo <- read_excel("Y:/fp/Eq 14 CRCT/Thèse Pauline Claraz/rehologie/stab_rheo.xlsx")

##sous-series
gelta<-filter(stab_rheo, c(type== "gelta"))
gelf<-filter(stab_rheo, c(type== "gelf"))
gelita<-filter(stab_rheo, c(type== "gelita"))
gelif<-filter(stab_rheo, c(type== "gelif"))
xanta<-filter(stab_rheo, c(type== "xanta"))
xanf<-filter(stab_rheo, c(type== "xanf"))
xanita<-filter(stab_rheo, c(type== "xanita"))
xanif<-filter(stab_rheo, c(type== "xanif"))
inta<-filter(stab_rheo, c(type== "inta"))
inf<-filter(stab_rheo, c(type== "inf"))
inita<-filter(stab_rheo, c(type== "inita"))
inif<-filter(stab_rheo, c(type== "inif"))
obta<-filter(stab_rheo, c(type== "obta"))
obf<-filter(stab_rheo, c(type== "obf"))
obita<-filter(stab_rheo, c(type== "obita"))
obif<-filter(stab_rheo, c(type== "obif"))

##données à J0
visco_j0<-filter(stab_rheo, c(jour==0))
viscotaj0<-filter(visco_j0, c(temperature=="rt"))
##donnees par vecteur à J0
gellane<-filter(viscotaj0, c(vecteur=="gellane"))
xanthane<-filter(viscotaj0, c(vecteur=="xanthane"))
inorpha<-filter(viscotaj0, c(vecteur=="inorpha"))
orablend<-filter(viscotaj0, c(vecteur=="orablend"))

##Données à J30
viscoj30<-filter(stab_rheo, c(jour==30))
###données à J30 selon vecteur
gellanej30<-filter(viscoj30, c(vecteur=="gellane"))
xanthanej30<-filter(viscoj30, c(vecteur=="xanthane"))
inorphaj30<-filter(viscoj30, c(vecteur=="inorpha"))
orablendj30<-filter(viscoj30, c(vecteur=="orablend"))

##anova visco au cours du temps
mod1<-lm(visco~jour, data=gelta)
summary(mod1)
## 
## Call:
## lm(formula = visco ~ jour, data = gelta)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9270 -1.4608 -0.7607  0.6740  4.9703 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  81.1343     1.0046  80.766 2.07e-15 ***
## jour         -0.1162     0.0179  -6.495 6.94e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.08 on 10 degrees of freedom
## Multiple R-squared:  0.8084, Adjusted R-squared:  0.7892 
## F-statistic: 42.18 on 1 and 10 DF,  p-value: 6.943e-05
mod2<-lm(visco~jour, data=gelf)
summary(mod2)
## 
## Call:
## lm(formula = visco ~ jour, data = gelf)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -14.194  -5.563  -0.628   5.912  16.678 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 87.13967    4.22348  20.632 1.58e-09 ***
## jour         0.10804    0.07525   1.436    0.182    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.743 on 10 degrees of freedom
## Multiple R-squared:  0.1709, Adjusted R-squared:  0.088 
## F-statistic: 2.061 on 1 and 10 DF,  p-value: 0.1816
mod3<-lm(visco~jour, data=gelita)
summary(mod3)
## 
## Call:
## lm(formula = visco ~ jour, data = gelita)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.0700  -1.3567  -0.2467   2.0050   7.4767 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  83.9600     2.2616  37.125 4.79e-12 ***
## jour         -0.1328     0.0403  -3.295  0.00808 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.682 on 10 degrees of freedom
## Multiple R-squared:  0.5206, Adjusted R-squared:  0.4726 
## F-statistic: 10.86 on 1 and 10 DF,  p-value: 0.00808
mod4<-lm(visco~jour, data=gelif)
summary(mod4)
## 
## Call:
## lm(formula = visco ~ jour, data = gelif)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.111  -4.258  -0.426   4.216   9.538 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 87.65267    3.03235  28.906 5.72e-11 ***
## jour         0.18698    0.05403   3.461  0.00612 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.278 on 10 degrees of freedom
## Multiple R-squared:  0.545,  Adjusted R-squared:  0.4995 
## F-statistic: 11.98 on 1 and 10 DF,  p-value: 0.006115
mod5<-lm(visco~jour, data=xanta)
summary(mod5)
## 
## Call:
## lm(formula = visco ~ jour, data = xanta)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.2117  -2.4167   0.6333   5.2296   8.1683 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  77.1717     2.9521  26.142 1.54e-10 ***
## jour         -0.1277     0.0526  -2.427   0.0356 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.111 on 10 degrees of freedom
## Multiple R-squared:  0.3707, Adjusted R-squared:  0.3078 
## F-statistic: 5.891 on 1 and 10 DF,  p-value: 0.03562
mod6<-lm(visco~jour, data=xanf)
summary(mod6)
## 
## Call:
## lm(formula = visco ~ jour, data = xanf)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.2947 -0.2380  0.1210  0.4464  2.1490 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 74.61400    0.57814 129.059   <2e-16 ***
## jour         0.02902    0.01030   2.817   0.0182 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.197 on 10 degrees of freedom
## Multiple R-squared:  0.4425, Adjusted R-squared:  0.3868 
## F-statistic: 7.938 on 1 and 10 DF,  p-value: 0.01824
mod7<-lm(visco~jour, data=xanita)
summary(mod7)
## 
## Call:
## lm(formula = visco ~ jour, data = xanita)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.0025 -0.9462  0.5150  1.9275  2.8325 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 81.27000    1.35458  59.996 4.02e-14 ***
## jour        -0.04092    0.02414  -1.695    0.121    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.804 on 10 degrees of freedom
## Multiple R-squared:  0.2232, Adjusted R-squared:  0.1456 
## F-statistic: 2.874 on 1 and 10 DF,  p-value: 0.1209
mod8<-lm(visco~jour, data=xanif)
summary(mod8)
## 
## Call:
## lm(formula = visco ~ jour, data = xanif)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.8502 -2.1394  0.7595  3.2177  4.5072 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 82.46317    2.07585   39.73 2.44e-12 ***
## jour        -0.08176    0.03699   -2.21   0.0515 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.297 on 10 degrees of freedom
## Multiple R-squared:  0.3282, Adjusted R-squared:  0.2611 
## F-statistic: 4.886 on 1 and 10 DF,  p-value: 0.05152
mod9<-lm(visco~jour, data=inta)
summary(mod9)
## 
## Call:
## lm(formula = visco ~ jour, data = inta)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7750 -0.2233 -0.0300  0.3767  0.4317 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 12.523333   0.207867   60.25 3.86e-14 ***
## jour        -0.016111   0.003704   -4.35  0.00144 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4303 on 10 degrees of freedom
## Multiple R-squared:  0.6543, Adjusted R-squared:  0.6197 
## F-statistic: 18.92 on 1 and 10 DF,  p-value: 0.001443
mod10<-lm(visco~jour, data=inf)
summary(mod10)
## 
## Call:
## lm(formula = visco ~ jour, data = inf)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.6382 -0.7442 -0.5978  0.8098  1.9968 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 12.09017    0.60041  20.137 2.01e-09 ***
## jour         0.01276    0.01070   1.192    0.261    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.243 on 10 degrees of freedom
## Multiple R-squared:  0.1245, Adjusted R-squared:  0.03692 
## F-statistic: 1.422 on 1 and 10 DF,  p-value: 0.2606
mod11<-lm(visco~jour, data=inita)
summary(mod11)
## 
## Call:
## lm(formula = visco ~ jour, data = inita)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.45433 -0.39783 -0.06833  0.17742  1.13467 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.861333   0.244936  56.592  7.2e-14 ***
## jour         0.001100   0.004364   0.252    0.806    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5071 on 10 degrees of freedom
## Multiple R-squared:  0.006313,   Adjusted R-squared:  -0.09306 
## F-statistic: 0.06353 on 1 and 10 DF,  p-value: 0.8061
mod12<-lm(visco~jour, data=inif)
summary(mod12)
## 
## Call:
## lm(formula = visco ~ jour, data = inif)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.3655 -0.7910 -0.6845  1.3015  2.8545 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 14.757000   0.837613  17.618 7.39e-09 ***
## jour        -0.004128   0.014924  -0.277    0.788    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.734 on 10 degrees of freedom
## Multiple R-squared:  0.007592,   Adjusted R-squared:  -0.09165 
## F-statistic: 0.0765 on 1 and 10 DF,  p-value: 0.7877
mod13<-lm(visco~jour, data=obta)
summary(mod13)
## 
## Call:
## lm(formula = visco ~ jour, data = obta)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -11.293  -0.899   1.171   2.139   4.822 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 74.02150    2.10898  35.098 8.36e-12 ***
## jour        -0.09337    0.03758  -2.485   0.0323 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.366 on 10 degrees of freedom
## Multiple R-squared:  0.3817, Adjusted R-squared:  0.3199 
## F-statistic: 6.174 on 1 and 10 DF,  p-value: 0.03228
mod14<-lm(visco~jour, data=obf)
summary(mod14)
## 
## Call:
## lm(formula = visco ~ jour, data = obf)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.1780 -0.5527  0.2916  1.0625  3.6720 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 72.894500   1.403494  51.938 1.69e-13 ***
## jour        -0.002572   0.025007  -0.103     0.92    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.906 on 10 degrees of freedom
## Multiple R-squared:  0.001057,   Adjusted R-squared:  -0.09884 
## F-statistic: 0.01058 on 1 and 10 DF,  p-value: 0.9201
mod15<-lm(visco~jour, data=obita)
summary(mod15)
## 
## Call:
## lm(formula = visco ~ jour, data = obita)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9983 -0.4833 -0.2533  0.6192  1.1317 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 72.663333   0.343111 211.778  < 2e-16 ***
## jour         0.026833   0.006113   4.389  0.00136 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7103 on 10 degrees of freedom
## Multiple R-squared:  0.6583, Adjusted R-squared:  0.6241 
## F-statistic: 19.27 on 1 and 10 DF,  p-value: 0.001358
mod16<-lm(visco~jour, data=obif)
summary(mod16)
## 
## Call:
## lm(formula = visco ~ jour, data = obif)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2993 -1.2573  0.8627  1.4594  2.5947 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 73.72733    1.12724  65.405  1.7e-14 ***
## jour        -0.02587    0.02008  -1.288    0.227    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.334 on 10 degrees of freedom
## Multiple R-squared:  0.1423, Adjusted R-squared:  0.0565 
## F-statistic: 1.659 on 1 and 10 DF,  p-value: 0.2268
##différence visco selon presence irbesartan


###gellane
tbl_summary(
  gellane, include = c("visco"),
  type = c(visco) ~ "continuous2",
  by="poudre",
  statistic = all_continuous() ~ "{mean} [{sd}]",
  )%>%
  add_p
Characteristic irbesartan, N = 3 seul, N = 3 p-value1
visco 0.2
    Mean [SD] 82.51 [1.51] 80.97 [1.72]
1 Wilcoxon rank sum exact test
###xanthane
tbl_summary(
  xanthane, include = c("visco"),
  type = c(visco) ~ "continuous2",
  by="poudre",
  statistic = all_continuous() ~ "{mean} [{sd}]",
)%>%
  add_p
Characteristic irbesartan, N = 3 seul, N = 3 p-value1
visco 0.10
    Mean [SD] 80.01 [0.41] 74.77 [0.07]
1 Wilcoxon rank sum exact test
###inorpha
tbl_summary(
  inorpha, include = c("visco"),
  type = c(visco) ~ "continuous2",
  by="poudre",
  statistic = all_continuous() ~ "{mean} [{sd}]",
)%>%
  add_p
Characteristic irbesartan, N = 3 seul, N = 3 p-value1
visco 0.10
    Mean [SD] 14.04 [0.08] 12.79 [0.21]
1 Wilcoxon rank sum exact test
###orablend
tbl_summary(
  orablend, include = c("visco"),
  type = c(visco) ~ "continuous2",
  by="poudre",
  statistic = all_continuous() ~ "{mean} [{sd}]",
)%>%
  add_p
Characteristic irbesartan, N = 3 seul, N = 3 p-value1
visco 0.7
    Mean [SD] 72.15 [0.45] 72.33 [1.29]
1 Wilcoxon rank sum exact test
##Difference selon température à J30

tbl_summary(
  gellanej30, include=c("visco"), 
  by="temperature", 
  statistic = all_continuous() ~"{mean} [{sd}]",
)%>%
  add_p
Characteristic fridge, N = 61 rt, N = 61 p-value2
visco 99 [3] 79 [2] 0.002
1 Mean [SD]
2 Wilcoxon rank sum exact test
tbl_summary(
  xanthanej30, include=c("visco"), 
  by="temperature", 
  statistic = all_continuous() ~"{mean} [{sd}]",
)%>%
  add_p
Characteristic fridge, N = 61 rt, N = 61 p-value2
visco 78.48 [3.95] 77.57 [3.70] 0.8
1 Mean [SD]
2 Wilcoxon rank sum exact test
tbl_summary(
 inorphaj30, include=c("visco"), 
  by="temperature", 
  statistic = all_continuous() ~"{mean} [{sd}]",
)%>%
  add_p
Characteristic fridge, N = 61 rt, N = 61 p-value2
visco 13.73 [2.34] 12.67 [1.14] 0.5
1 Mean [SD]
2 Wilcoxon rank sum exact test
tbl_summary(
  orablendj30, include=c("visco"), 
  by="temperature", 
  statistic = all_continuous() ~"{mean} [{sd}]",
)%>%
  add_p
Characteristic fridge, N = 61 rt, N = 61 p-value2
visco 73.95 [0.70] 73.42 [0.71] 0.2
1 Mean [SD]
2 Wilcoxon rank sum exact test