##Pola Kebalikan Eksponensial
a <- 5
b <- 8
x <- rnorm(100, 50, 1.5)
error <- rnorm(100, 5, 5)
Persamaan Kebalikan Eksponensial
knitr::include_graphics("C:/Users/Hafly Akeyla Pari/Downloads/WhatsApp Image 2024-06-05 at 20.37.08_e19cec65.jpg")
y <- a*(exp(b/x))+error
plot(x,y)
Transformasikan kedua ruas di ln kan Y* = lnY x* = 1/x
## Warning in log(y): NaNs produced
## y_tr x_tr
## 1 1.5913852 0.01970099
## 2 -0.1196263 0.01948082
## 3 2.4327246 0.02005677
## 4 2.8924515 0.01981574
## 5 1.7465069 0.01974808
## 6 2.3951484 0.02130081
model_tr <- lm(y_tr~x_tr,dataframe)
summary(model_tr)
##
## Call:
## lm(formula = y_tr ~ x_tr, data = dataframe)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8749 -0.1714 0.2190 0.3990 0.9075
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.943 3.010 0.978 0.331
## x_tr -36.167 149.844 -0.241 0.810
##
## Residual standard error: 0.8748 on 96 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.0006065, Adjusted R-squared: -0.009804
## F-statistic: 0.05826 on 1 and 96 DF, p-value: 0.8098
Implikasi dari Transformasi kedua ruas, maka _0=ln() dan _1=
b0 <- model_tr$coefficients[[1]]
b1 <- model_tr$coefficients[[2]]
b0;b1
## [1] 2.942784
## [1] -36.16676
Mengecek apakah nilai hasil transformasi balik sudah sesuai dengan nilai yang asli sebab _0=ln(), maka =e^_0
a_duga <- exp(b0)
a_duga
## [1] 18.96858