# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2017-12-31
#choose stocks
symbols <- c("NFLX", "GOOG", "TSLA")
prices <- tq_get(x = symbols,
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "GOOG" "NFLX" "TSLA"
# weights
weights <- c(0.25, 0.45, 0.30)
weights
## [1] 0.25 0.45 0.30
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 GOOG 0.25
## 2 NFLX 0.45
## 3 TSLA 0.3
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "quarters")
portfolio_returns_tbl
## # A tibble: 20 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-03-28 0.384
## 2 2013-06-28 0.387
## 3 2013-09-30 0.347
## 4 2013-12-31 0.0648
## 5 2014-03-31 0.0764
## 6 2014-06-30 0.151
## 7 2014-09-30 0.0148
## 8 2014-12-31 -0.174
## 9 2015-03-31 0.0503
## 10 2015-06-30 0.298
## 11 2015-09-30 0.0589
## 12 2015-12-31 0.0910
## 13 2016-03-31 -0.0682
## 14 2016-06-30 -0.0921
## 15 2016-09-30 0.0506
## 16 2016-12-30 0.115
## 17 2017-03-31 0.177
## 18 2017-06-30 0.106
## 19 2017-09-29 0.0832
## 20 2017-12-29 0.0200
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "cornflowerblue", binwidth = .01) +
geom_density() +
# formatting
scale_x_continuous(labels = scales::percent_format()) +
labs(x = "returns",
y = "distribution",
title = "Portfolio Histogram & Density")
The returns, during this period of time, are relatively flat. Therefore it is difficult to pinpoint what a return from this portfolio should be during a typical quarter. However, there is a peak between 5% and 11% returns.