Abstract

This webpage will show the results of a bat survey study done in the Plumas National Forest in North California. The objective of this study is to determine the distribution of the different species of bats within the park. In order to do that we have performed occupancy models for the species present in the park. The results of this models will be shown as maps showing the probability of occurence of bats in each point, that is, if you see a value of 1, there is a 100% chance of finding a bat in that point, if there is a value of 0 there is 0% chance of finding that specie in that point, if there is a value of 0.5 there is a 50% chance of finding that specie in that point.

Another result

Data collection

There are three different types of data collected in this study:

Vegetation plot

This data was collected by the Feather River College interns Jamie Buchanan, Emma Deal and Hillary Wall. All of the sampling was centered in the place were the bat detector was going to be placed. Then using a metric tape, 50 meters were measured to the North, East, West and South and several measurments were taken at each of this points.

they measured the canopy cover, land cover area, basal area and recorded the temperature and humidity for each site.

Canopy cover

The canopy cover is the percentage of overhead sky covered with canopy this is measured with a grided concave mirror. These measurements were taken at each of the four cardinal points, and at the center of the plot.

Land cover area

For each meter in the 50 meters from the center to each cardinal point, the cover was classified as woody growth, herbaceous growth, Grass, Naked Soil, Rocky Scree, Down wood or leaf Litter and the percerntage of land cover area for each cover type was calculated.

Basal area

Basal area is the square meters per hectare covered by the trunk of a tree within the plot, this was measured using a diametrical tape and a wedge prism.

Results collected in the field

Results colleted with GIS layers

Maps showing the sampled Points

Results of species prescence

In this area 0 means absence, and 1 means prescence. This table has for each site (ID), every specie and day, so for example if Mylu1=0, that means that for Myotis lucifugus (common name Little Brown bat, was detected on day one for that particular site).

Here is a key for bat species

  • Myotis yumanensis (Myyu)
  • Myotis californicus (Myca)
  • Myotis ciliolabrum (Myci)
  • Myotis volans (Myvo)
  • Myotis lucifugus (Mylu)
  • Parastrellus hesperus (Pahe)
  • Lasiurus blossevillii (Labo)
  • Myotis evotis (Myev)
  • Antrozous pallidus (Anpa)
  • Eptesicus fuscus (Epfu)
  • Lasionycteris noctivagans (Lano)
  • Myotis thysanodes (Myth)
  • Tadarida brasiliensis (Tabr)
  • Lasiurus cinereus (Laci)
  • Corynorhinus townsendii (Coto)
  • Euderma maculatum (Euma)
  • Eumops perotis (Eupe)

Maps predicting the distribution of bats

Yuma myotis (Myotis yumanensis)

Statistical models
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9
psi(Int) -1.61 -1.64 -1.59 -1.22 -1.20 -1.46 -1.40 -1.13 -1.40
(1.05) (1.12) (1.08) (1.01) (0.95) (0.98) (1.00) (1.09) (0.92)
psi(Burn.intensity.Canopy) 210.29 300.25 141.28
(211.01) (268.36) (196.69)
p(Int) -3.84** -5.57** -4.56*** -3.48** -2.61* -2.88* -2.89* -5.52** -0.58
(1.19) (2.04) (1.33) (1.13) (1.08) (1.29) (1.30) (2.05) (0.87)
p(Meantemp) 0.14 0.16* 0.18* 0.12 0.16* 0.15 0.16*
(0.07) (0.08) (0.08) (0.07) (0.08) (0.08) (0.08)
p(Meanhum) 0.02 0.02 0.02
(0.02) (0.01) (0.02)
psi(Burn.intensity.soil) 178.84 114.52 160.49
(203.84) (115.85) (243.06)
psi(Burn.intensity.basal) 105.76 -66.07 137.55 81.20 -92.34
(197.21) (67.11) (197.26) (196.02) (139.25)
p(sdtemp) -0.37 -0.34 -0.31
(0.31) (0.30) (0.26)
Log Likelihood -31.93 -30.66 -32.27 -32.50 -31.29 -31.48 -31.50 -31.50 -31.63
AICc 72.91 73.04 73.59 74.05 74.29 74.59 74.63 74.72 74.88
Delta 0.00 0.12 0.68 1.14 1.38 1.67 1.72 1.80 1.97
Weight 0.06 0.06 0.04 0.03 0.03 0.03 0.03 0.02 0.02
Num. obs. 41 41 41 41 41 41 41 41 41
p < 0.001, p < 0.01, p < 0.05

California bat (Myotis californicus)

Total model

Statistical models
Model 1 Model 2 Model 3 Model 4 Model 5
psi(Int) 0.97** 0.65 0.98** 0.72 0.75
(0.37) (0.45) (0.37) (0.45) (0.44)
p(Int) 4.76*** 4.78*** 2.72** 4.77*** 4.77***
(1.38) (1.38) (0.83) (1.37) (1.37)
p(Meanhum) -0.04** -0.04** -0.03** -0.04** -0.04**
(0.01) (0.01) (0.01) (0.01) (0.01)
p(sdtemp) -0.43* -0.44* -0.44* -0.44*
(0.22) (0.22) (0.22) (0.22)
psi(Burn.intensity.soil) 0.30
(0.29)
psi(Burn.intensity.Canopy) 0.23
(0.28)
psi(Burn.intensity.basal) 0.15
(0.20)
Log Likelihood -70.68 -70.06 -72.74 -70.26 -70.33
AICc 150.47 151.83 152.13 152.23 152.37
Delta 0.00 1.35 1.66 1.76 1.89
Weight 0.09 0.05 0.04 0.04 0.04
Num. obs. 41 41 41 41 41
p < 0.001, p < 0.01, p < 0.05

Western Small Footed Myotis (Myotis ciliolabrum)

Statistical models
Model 1 Model 2
psi(Int) -2.36* -2.31*
(1.02) (1.01)
psi(Burn.intensity.basal) -67.74 -51.42
(84.92) (133.24)
psi(Burn.intensity.Canopy) 110.81 83.80
(139.24) (219.36)
psi(Burn.intensity.soil) -19.33 -14.16
(25.52) (41.07)
p(Int) 3.96** 5.52*
(1.52) (2.17)
p(Meantemp) -0.33** -0.38**
(0.11) (0.12)
p(sdhum) -0.09
(0.09)
Log Likelihood -27.85 -27.21
AICc 70.04 71.80
Delta 0.00 1.76
Weight 0.08 0.03
Num. obs. 41 41
p < 0.001, p < 0.01, p < 0.05

Hairy-winged bat (Myotis volans)

Statistical models
Model 1 Model 2 Model 3 Model 4 Model 5
psi(Int) -0.33 0.04 0.05 0.33 -0.63
(0.73) (0.97) (0.93) (1.16) (0.65)
p(Int) -0.50 3.73 3.92 5.30 -2.06
(1.11) (4.24) (3.96) (4.17) (1.72)
p(Meanhum) -0.01 -0.01
(0.01) (0.01)
p(Julian) -0.03 -0.03 -0.03
(0.02) (0.02) (0.02)
psi(Burn.intensity.basal) -45.19
(42.17)
psi(Burn.intensity.Canopy) 60.74
(56.54)
p(Meantemp) 0.09
(0.14)
Log Likelihood -39.83 -39.96 -37.51 -38.88 -40.38
AICc 86.31 86.54 86.65 86.88 87.38
Delta 0.00 0.23 0.34 0.57 1.07
Weight 0.09 0.08 0.08 0.07 0.05
Num. obs. 41 41 41 41 41
p < 0.001, p < 0.01, p < 0.05

Little Brown bat (Myotis lucifugus)

Statistical models
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8
psi(Int) -1.36** -1.31** -1.34** -1.26* -1.31* -1.32** -1.36** -1.27*
(0.52) (0.51) (0.52) (0.52) (0.51) (0.50) (0.52) (0.52)
psi(Burn.intensity.Canopy) 0.56 0.61* 0.40 0.55 1.39
(0.29) (0.29) (0.24) (0.29) (1.09)
p(Int) -1.81 -1.92 3.76 -1.73 3.85 3.10** -4.47* -1.83
(2.41) (2.38) (5.57) (2.55) (5.55) (1.11) (1.79) (2.33)
p(Meanhum) -0.02 -0.02 -0.02 -0.02 -0.02 -0.04* -0.02
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
p(Meantemp) 0.27* 0.27* 0.27* 0.26* 0.28* 0.34** 0.27*
(0.13) (0.13) (0.13) (0.13) (0.13) (0.12) (0.12)
psi(Burn.intensity.basal) 0.42 0.47*
(0.23) (0.23)
p(Julian) -0.03 -0.03
(0.03) (0.03)
psi(Burn.intensity.soil) 0.47 -0.89
(0.28) (1.10)
p(sdhum) 0.02
(0.07)
Log Likelihood -39.32 -39.45 -38.65 -40.10 -38.74 -41.52 -40.26 -38.90
AICc 90.35 90.61 91.77 91.91 91.95 92.15 92.24 92.26
Delta 0.00 0.26 1.42 1.56 1.60 1.80 1.89 1.91
Weight 0.06 0.05 0.03 0.03 0.03 0.02 0.02 0.02
Num. obs. 41 41 41 41 41 41 41 41
p < 0.001, p < 0.01, p < 0.05

Western Red Bat (Lasiurus blossevillii)

Statistical models
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 Model 14 Model 15
psi(Int) 0.12 0.01 0.17 -0.04 0.02 -0.00 0.09 0.05 0.30 1.17 0.30 2.77 -0.07 -0.06 -0.32
(1.04) (1.05) (1.02) (0.95) (1.19) (1.12) (1.09) (1.05) (1.92) (3.00) (1.46) (0.99) (1.00) (0.94)
psi(Burn.intensity.basal) 24.58 33.01 32.52 25.98 30.57 20.13
(30.63) (46.84) (42.34) (36.91) (42.08) (23.76)
psi(Burn.intensity.soil) -35.11 -46.92 -15.73 -19.75 -39.44 -46.62 -35.58 -35.31 -61.73 -43.99 -28.23 -31.42 -59.32
(44.80) (66.55) (12.52) (17.77) (109.00) (60.12) (40.63) (49.92) (279.49) (59.66) (34.54) (32.79) (77.12)
p(Int) 10.87 7.59 7.91 7.53 -1.20 -1.24 6.10 7.11 -2.02 7.66 -2.00 7.45 6.20 6.05 -3.13
(5.86) (5.13) (5.44) (5.13) (0.89) (0.78) (5.75) (5.80) (1.48) (5.38) (1.34) (4.50) (5.60) (5.40) (1.85)
p(Julian) -0.07* -0.05 -0.06 -0.05 -0.06 -0.07* -0.06 -0.06* -0.05 -0.05
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
p(Meanhum) 0.01 0.01 0.02 0.02 0.00 0.01 0.00
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
p(sdhum) -0.02 -0.02 -0.05 -0.05 0.02 -0.01 -0.01 -0.04
(0.06) (0.07) (0.07) (0.06) (0.06) (0.08) (0.08) (0.07)
psi(Burn.intensity.Canopy) 13.91 17.03 33.79 31.33 52.15 27.64 53.01
(10.98) (14.89) (88.87) (36.61) (231.33) (29.32) (69.51)
p(Meantemp) 0.15 0.15 0.14 0.14 0.13
(0.12) (0.13) (0.13) (0.13) (0.11)
Log Likelihood -26.32 -26.37 -26.66 -26.73 -28.11 -28.12 -25.39 -25.42 -28.31 -29.71 -28.45 -29.79 -25.78 -25.78 -27.28
AICc 67.12 67.21 67.78 67.93 67.94 67.96 68.18 68.24 68.33 68.53 68.61 68.69 68.96 68.96 69.04
Delta 0.00 0.09 0.67 0.82 0.83 0.84 1.07 1.12 1.22 1.42 1.49 1.57 1.85 1.85 1.92
Weight 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Num. obs. 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
p < 0.001, p < 0.01, p < 0.05

Long-eared Bat (Myotis evotis)

Total model

Statistical models
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
psi(Int) 0.63 0.65 0.64 0.69 0.60 1.26**
(0.50) (0.50) (0.54) (0.54) (0.49) (0.47)
psi(Burn.intensity.soil) 0.89 0.76
(0.81) (0.61)
p(Int) 1.49* 1.49* 2.48 1.38* -1.24 1.42*
(0.65) (0.65) (1.29) (0.63) (2.90) (0.67)
p(Meanhum) -0.02* -0.02* -0.02* -0.02* -0.02* -0.02
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
psi(Burn.intensity.Canopy) 0.77 49.35
(0.63) (100.47)
psi(Burn.intensity.basal) -31.21 5.56
(61.72)
p(Meantemp) -0.05
(0.05)
p(Julian) 0.01
(0.02)
Log Likelihood -75.99 -76.06 -73.95 -76.72 -75.44 -78.06
AICc 161.09 161.23 162.38 162.55 162.60 162.76
Delta 0.00 0.14 1.28 1.45 1.51 1.66
Weight 0.15 0.14 0.08 0.07 0.07 0.07
Num. obs. 41 41 41 41 41 41
p < 0.001, p < 0.01, p < 0.05

Pallid Bat (Antrozous pallidus)

Statistical models
Model 1 Model 2 Model 3
psi(Int) -1.63* -1.48 -1.46
(0.82) (0.85) (0.81)
psi(Burn.intensity.Canopy) 26.71 34.71
(31.98) (56.88)
psi(Burn.intensity.soil) -31.00 -40.71 -18.74
(38.41) (68.28) (16.45)
p(Int) 18.34* 23.28 15.90*
(9.06) (12.34) (8.07)
p(Julian) -0.12* -0.13* -0.11*
(0.06) (0.07) (0.05)
p(Meanhum) 0.05 0.04 0.04
(0.03) (0.03) (0.02)
p(Meantemp) -0.17
(0.15)
psi(Burn.intensity.basal) 13.47
(11.40)
Log Likelihood -21.00 -20.13 -21.81
AICc 56.47 57.66 58.10
Delta 0.00 1.19 1.63
Weight 0.22 0.12 0.10
Num. obs. 41 41 41
p < 0.001, p < 0.01, p < 0.05

Fringed Bat (Myotis thysanoides)

Statistical models
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9
psi(Int) -0.06 -0.20 -1.06 -0.99 -1.11 -1.00 -1.06 -0.98 -1.11
(1.19) (1.03) (1.23) (1.21) (1.38) (1.28) (1.22) (1.21) (1.41)
p(Int) -23.71 -26.24* -21.36 -21.25 -19.06 -22.68 -26.89* -26.00* -24.70*
(13.80) (11.08) (11.47) (11.31) (10.38) (11.67) (11.40) (11.16) (11.01)
p(Julian) 0.11 0.12* 0.10 0.10 0.09 0.11* 0.13* 0.12* 0.11*
(0.06) (0.05) (0.05) (0.05) (0.05) (0.06) (0.06) (0.06) (0.05)
p(Meanhum) -0.01 -0.02 -0.02 -0.02 -0.02
(0.03) (0.02) (0.02) (0.02) (0.02)
p(sdhum) -0.01 -0.02 -0.02 -0.01
(0.09) (0.08) (0.07) (0.07)
psi(Burn.intensity.Canopy) 1.11 21.87 0.97
(1.21) (33.22) (1.16)
psi(Burn.intensity.basal) 0.89 0.80
(1.03) (1.14)
psi(Burn.intensity.soil) 2.49 -11.66 2.35
(2.79) (19.12) (2.64)
Log Likelihood -20.21 -20.24 -19.24 -19.27 -19.30 -18.06 -19.49 -19.57 -19.62
AICc 49.53 49.60 50.19 50.25 50.31 50.59 50.69 50.85 50.95
Delta 0.00 0.07 0.66 0.72 0.78 1.06 1.16 1.32 1.42
Weight 0.06 0.06 0.05 0.04 0.04 0.04 0.04 0.03 0.03
Num. obs. 41 41 41 41 41 41 41 41 41
p < 0.001, p < 0.01, p < 0.05

Townsend’s Long-eared Bat (Corynorhinus townsendii)

Statistical models
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9
psi(Int) -1.46 0.79 -1.56 -1.53 -1.30 1.53 -1.40 -0.54 1.61
(1.34) (3.14) (1.25) (1.32) (1.39) (5.36) (1.21) (1.51) (4.44)
psi(Burn.intensity.basal) -19.01 -20.18 -22.13 -33.77
(17.38) (20.92) (26.13) (39.73)
psi(Burn.intensity.soil) 32.38 34.50 37.67 39.06 15.74
(29.02) (34.95) (43.39) (39.82) (16.41)
p(Int) -4.78** -5.36* 4.25 -8.32* -4.73** -9.30* 6.45 -5.43** 0.78
(1.77) (2.23) (6.78) (3.52) (1.76) (3.62) (7.52) (1.97) (5.86)
p(Meanhum) 0.04 0.04 0.04 0.06* 0.04 0.06* 0.06* 0.04 0.04
(0.02) (0.02) (0.02) (0.03) (0.02) (0.03) (0.03) (0.02) (0.02)
p(Julian) -0.05 -0.08* -0.03
(0.04) (0.04) (0.03)
p(Meantemp) 0.14 0.15 0.18
(0.12) (0.11) (0.12)
psi(Burn.intensity.Canopy) -31.48 46.63
(32.30) (54.79)
Log Likelihood -18.71 -21.67 -17.79 -17.85 -19.24 -20.62 -17.97 -19.40 -20.87
AICc 49.14 49.98 50.05 50.18 50.18 50.35 50.40 50.52 50.85
Delta 0.00 0.84 0.91 1.04 1.04 1.21 1.26 1.37 1.71
Weight 0.08 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04
Num. obs. 41 41 41 41 41 41 41 41 41
p < 0.001, p < 0.01, p < 0.05

The western pipistrelle (Parastrellus hesperus)

big brown bat (Eptesicus fuscus)

Statistical models
Model 1 Model 2 Model 3 Model 4
psi(Int) -0.65 -0.65 -0.69 -0.72
(0.70) (0.59) (0.70) (0.61)
psi(Burn.intensity.basal) -44.80 -60.62
(51.07) (73.35)
psi(Burn.intensity.Canopy) 65.47 0.53 88.81
(76.22) (0.31) (109.03)
p(Int) 6.07** 6.66** 5.39** 6.53**
(2.03) (2.34) (2.07) (2.34)
p(Meanhum) -0.04** -0.05** -0.04** -0.05**
(0.02) (0.02) (0.02) (0.02)
p(Meantemp) -0.30** -0.28* -0.28** -0.27*
(0.09) (0.11) (0.09) (0.11)
p(sdhum) 0.05
(0.05)
psi(Burn.intensity.soil) 0.54
(0.29)
Log Likelihood -44.92 -47.20 -44.41 -47.27
AICc 104.31 106.12 106.20 106.25
Delta 0.00 1.81 1.89 1.94
Weight 0.16 0.06 0.06 0.06
Num. obs. 41 41 41 41
p < 0.001, p < 0.01, p < 0.05

silver-haired bat (Lasionycteris noctivagans)

Statistical models
Model 1 Model 2
psi(Int) -0.06 -0.17
(0.63) (0.64)
psi(Burn.intensity.basal) -83.93 -614.20
(139.70)
psi(Burn.intensity.Canopy) 117.73 847.03
(195.54)
p(Int) 1.01 1.09
(1.10) (1.10)
p(Meantemp) -0.19** -0.19**
(0.07) (0.07)
p(sdhum) -0.09 -0.08
(0.06) (0.06)
p(sdtemp) 0.73** 0.71*
(0.28) (0.27)
psi(Burn.intensity.soil) 16.34
Log Likelihood -56.62 -56.06
AICc 130.63 132.62
Delta 0.00 2.00
Weight 0.11 0.04
Num. obs. 41 41
p < 0.001, p < 0.01, p < 0.05

Brazilian free-tailed bat (Tadarida brasiliensis)

Statistical models
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 Model 13
psi(Int) 1.04 0.88 0.92 0.83 0.95 0.94 0.75 0.74 0.71 1.09 2.07 0.99 1.47*
(0.65) (0.54) (0.63) (0.53) (0.64) (0.60) (0.59) (0.59) (0.58) (0.70) (1.07) (0.61) (0.57)
psi(Burn.intensity.basal) 11.99 10.80 0.85 24.21 24.23 28.05 12.05
(9.79) (8.74) (0.93) (20.85) (20.93) (65.91) (9.84)
psi(Burn.intensity.Canopy) -13.75 -12.47 -32.24 1.12 -31.51 26.12 -13.81
(10.98) (9.86) (27.21) (1.24) (27.04) (58.26) (11.04)
p(Int) 1.92 3.41 2.29 3.73 2.28 1.66 0.22 0.25 0.19 2.06 2.19 4.84 0.31
(1.43) (2.86) (1.32) (2.86) (1.31) (1.40) (0.62) (0.62) (0.62) (1.24) (1.30) (3.20) (0.68)
p(Meanhum) -0.01 -0.00 -0.01 -0.01 -0.01 -0.01 -0.00 -0.00 -0.00 -0.01 -0.01 -0.01 -0.00
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
p(Meantemp) -0.07 -0.10 -0.10 -0.06 -0.10 -0.11 -0.08
(0.07) (0.06) (0.06) (0.07) (0.05) (0.06) (0.07)
p(Julian) -0.02 -0.02 -0.02
(0.01) (0.01) (0.01)
psi(Burn.intensity.soil) 4.09 3.45 25.12 2.38
(4.12) (3.83) (109.79)
Log Likelihood -75.81 -75.85 -77.29 -74.52 -77.46 -74.73 -78.95 -78.95 -78.96 -77.87 -79.25 -75.21 -80.70
AICc 166.09 166.17 166.29 166.44 166.63 166.85 167.00 167.01 167.03 167.46 167.60 167.82 168.05
Delta 0.00 0.08 0.20 0.35 0.54 0.76 0.91 0.92 0.94 1.37 1.52 1.73 1.96
Weight 0.08 0.08 0.07 0.07 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.03 0.03
Num. obs. 41 41 41 41 41 41 41 41 41 41 41 41 41
p < 0.001, p < 0.01, p < 0.05

hoary bat (Lasiurus cinereus)

Statistical models
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
psi(Int) 0.90 0.61 0.66 0.43 0.56 0.40
(0.57) (0.47) (0.49) (0.40) (0.45) (0.39)
p(Int) 2.98 4.50 -2.36 -0.45 5.52 0.07
(3.17) (3.26) (1.32) (0.77) (3.31) (0.49)
p(Julian) -0.03 -0.03 -0.03
(0.02) (0.02) (0.02)
p(Meanhum) 0.02 0.01 0.02 0.01
(0.01) (0.01) (0.01) (0.01)
p(sdtemp) 0.43 0.37
(0.23) (0.23)
p(sdhum) 0.04 0.01
(0.05) (0.05)
Log Likelihood -66.27 -67.98 -68.08 -69.33 -68.15 -69.64
AICc 144.25 145.08 145.27 145.32 145.41 145.94
Delta 0.00 0.83 1.02 1.07 1.17 1.69
Weight 0.07 0.05 0.04 0.04 0.04 0.03
Num. obs. 41 41 41 41 41 41
p < 0.001, p < 0.01, p < 0.05

Spotted bat (Euderma maculatum)

Statistical models
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
psi(Int) 8.20 8.02 -0.51 -0.42 -0.08 5.90
(85.57) (67.46) (2.26) (2.32) (1.17) (21.85)
p(Int) 1.29 -0.25 1.52 1.52 4.74 5.58
(2.16) (2.62) (2.16) (2.17) (4.57) (6.46)
p(Meanhum) -0.11 -0.13 -0.10 -0.10 -0.26 -0.11
(0.06) (0.08) (0.06) (0.06) (0.19) (0.06)
p(sdtemp) 0.62
(0.50)
psi(Burn.intensity.basal) 0.68
(0.87)
psi(Burn.intensity.Canopy) 0.87
(1.20)
p(sdhum) 0.35
(0.28)
p(Julian) -0.02
(0.03)
Log Likelihood -10.75 -9.88 -10.47 -10.49 -10.50 -10.51
AICc 28.14 28.87 30.05 30.10 30.11 30.13
Delta 0.00 0.73 1.91 1.96 1.97 1.99
Weight 0.09 0.06 0.03 0.03 0.03 0.03
Num. obs. 41 41 41 41 41 41
p < 0.001, p < 0.01, p < 0.05

western mastiff bat (Eumops perotis)

Statistical models
Model 1 Model 2 Model 3
psi(Int) -5.48 -5.82 -11.53
(3.85) (4.08) (14.45)
psi(Burn.intensity.basal) -62.33 -70.65 40.98
(41.18) (45.96) (46.92)
psi(Burn.intensity.Canopy) 85.39 96.61
(56.08) (62.57)
p(Int) 0.55 -0.35 -1.00
(1.47) (1.70) (1.17)
p(Meantemp) -0.15 -0.21
(0.10) (0.12)
p(sdtemp) 0.53
(0.42)
psi(Burn.intensity.soil) -47.33
(54.21)
p(Meanhum) -0.01
(0.02)
Log Likelihood -15.23 -14.24 -16.03
AICc 42.08 42.82 43.78
Delta 0.00 0.74 1.70
Weight 0.12 0.08 0.05
Num. obs. 41 41 41
p < 0.001, p < 0.01, p < 0.05

Relationships between different species of Bats

Fire bats

with.fire without.fire with.fire.sd
Yuma.Myotis 1.00 0.18 0.02
Small.Footed.Myotis 0.65 0.09 0.42
Little.Brown.Bat 0.56 0.21 0.19
Western.Red.Bat 0.51 0.53 0.48
Long.eared.Bat 0.93 0.65 0.06
Pallid.Bat 0.39 0.16 0.47
Townsend.s.big.eared.Bat 0.69 0.19 0.43
Big.Brow.Bat 0.89 0.35 0.29
Silver.Haired.Bat 0.79 0.49 0.36
Brazilian.free.tailed.bat 0.84 0.74 0.29
western.mastiff.bat 0.52 0.01 0.49
## 
##  One Sample t-test
## 
## data:  myyu
## t = 5131.5, df = 10347, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0.181889
## 95 percent confidence interval:
##  0.9992385 0.9998632
## sample estimates:
## mean of x 
## 0.9995509
## 
##  One Sample t-test
## 
## data:  myci
## t = 136.73, df = 10347, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0.09200701
## 95 percent confidence interval:
##  0.6444203 0.6604896
## sample estimates:
## mean of x 
##  0.652455
## 
##  One Sample t-test
## 
## data:  mylu
## t = 195.95, df = 10347, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0.2051132
## 95 percent confidence interval:
##  0.5585392 0.5656818
## sample estimates:
## mean of x 
## 0.5621105
## 
##  One Sample t-test
## 
## data:  labl
## t = -3.2746, df = 10347, p-value = 0.001062
## alternative hypothesis: true mean is not equal to 0.5267009
## 95 percent confidence interval:
##  0.5017429 0.5204342
## sample estimates:
## mean of x 
## 0.5110886
## 
##  One Sample t-test
## 
## data:  myev
## t = 466.05, df = 10347, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0.6525984
## 95 percent confidence interval:
##  0.9330793 0.9354487
## sample estimates:
## mean of x 
##  0.934264
## 
##  One Sample t-test
## 
## data:  anpa
## t = 48.79, df = 10347, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0.1632505
## 95 percent confidence interval:
##  0.3780204 0.3960000
## sample estimates:
## mean of x 
## 0.3870102
## 
##  One Sample t-test
## 
## data:  coto
## t = 116.76, df = 10347, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0.1948568
## 95 percent confidence interval:
##  0.6830924 0.6997649
## sample estimates:
## mean of x 
## 0.6914286

library(vioplot)
## Loading required package: sm
## Package 'sm', version 2.2-5.4: type help(sm) for summary information
vioplot(myyu,myci, mylu, labl, myev, anpa, coto, epfu, lano, tabr, eupe, col="grey")

The End