This is a preregistered nationally representative study.
In this project, we examine the role of a broken social contract in people’s trust in institutions and anti-establishment sentiment. Specifically, we identify, through various methods, gaps between what people believe they are promised by the government on paper and what they are being provided by the government in practice. We then examine the explanatory role this gap plays in various socio-political behavioral and attitudinal outcomes.
The study will consist of two major parts:
1. Social contract: Participants will see eight overarching values that
guide the US on paper, derived from a previous study. They will be asked
to indicate their perception of priorities of the US on paper as they
relate to these values. Then, they will indicate the extent to which
they believe the US lives up to each of these values. Then, they will
give their own preferred prioritization of these values, if they were to
design a brand new country and be randomly born into it.
2. Attitudes and individual differences: Participants will complete
measures of anti-establishment sentiment, trust in institutions, SDO,
TIPI, support for radical change, and political
identification/behavior.
The following linear models will be conducted for each of these
outcome variables: (1) support for radical change; (2)
anti-establishment sentiment; (3) trust in democratic institutions; (4)
trust in mainstream societal institutions.
1. Correlation matrix: Broken promise score, support for radical change,
anti-establishment sentiment, trust in democratic institutions, trust in
mainstream societal institutions, conservatism, SDO, TIPI extraversion,
TIPI agreeableness, TIPI Conscientiousness, TIPI neuroticism, TIPI
openness.
2. Linear Model 1: Broken promise score as predictor; conservatism as
control.
3. Linear Model 2: Broken promise score as predictor; conservatism, SDO,
TIPI agreeableness, gender, race, ethnicity, income, education, age,
county mediation income, county GINI coefficient, and county density as
controls.
But first, let’s exclude participants who failed attention checks: one simple attention check embedded in the anti-establishment scale.
eligible_N <- df_bsc %>%
group_by(check_1) %>%
summarise(N = n()) %>%
ungroup() %>%
filter(check_1 == 0) %>%
select(N) %>%
unname() %>%
unlist()
df_bsc %>%
group_by(check_1) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
check_1 | N | Perc |
---|---|---|
0 | 994 | 98.51 |
1 | 15 | 1.49 |
Great. That leaves us with 994 eligible participants.
df_bsc_elg %>%
group_by(race,hispanic) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
## `summarise()` has grouped output by 'race'. You can override using the
## `.groups` argument.
race | hispanic | N | Perc |
---|---|---|---|
American Indian or Alaska Native | 0 | 1 | 0.10 |
Asian | 0 | 49 | 4.93 |
Black or African American | 0 | 152 | 15.29 |
Black or African American | 1 | 6 | 0.60 |
Middle Eastern or North African | 0 | 1 | 0.10 |
Native Hawaiian or Other Pacific Islander | 0 | 1 | 0.10 |
Other (please specify) | 0 | 4 | 0.40 |
White | 0 | 588 | 59.15 |
White | 1 | 54 | 5.43 |
multiracial | 0 | 43 | 4.33 |
multiracial | 1 | 4 | 0.40 |
NA | 1 | 91 | 9.15 |
df_bsc_elg %>%
mutate(gender = ifelse(is.na(gender) | gender == "","other",gender)) %>%
group_by(gender) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
gender | N | Perc |
---|---|---|
man | 457 | 45.98 |
other | 7 | 0.70 |
woman | 530 | 53.32 |
df_bsc_elg %>%
summarise(age_mean = round(mean(age,na.rm = T),2),
age_sd = round(sd(age,na.rm = T),2)) %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
age_mean | age_sd |
---|---|
40.47 | 14.31 |
df_bsc_elg %>%
group_by(edu) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
edu | N | Perc |
---|---|---|
noHS | 3 | 0.30 |
GED | 343 | 34.51 |
2yearColl | 145 | 14.59 |
4yearColl | 354 | 35.61 |
MA | 107 | 10.76 |
PHD | 34 | 3.42 |
NA | 8 | 0.80 |
df_bsc_elg %>%
ggplot(aes(x = income)) +
geom_bar() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_blank(),
axis.title.y = element_blank()) +
coord_flip()
Participants were asked about the extent to which they subscribe to the following ideologies on a scale of 1-7 (select NA if unfamiliar): Conservatism, Liberalism, Democratic Socialism, Libertarianism, Progressivism.
means <- df_bsc_elg %>%
dplyr::select(PID,ideo_con:ideo_prog) %>%
pivot_longer(-PID,
names_to = "ideo",
values_to = "score") %>%
filter(!is.na(score)) %>%
group_by(ideo) %>%
summarise(score = mean(score)) %>%
ungroup()
df_bsc_elg %>%
dplyr::select(PID,ideo_con:ideo_prog) %>%
pivot_longer(-PID,
names_to = "ideo",
values_to = "score") %>%
filter(!is.na(score)) %>%
ggplot() +
geom_density(aes(x = score), fill = "lightblue") +
scale_x_continuous(limits = c(1,7),
breaks = seq(1,7,1)) +
geom_vline(data = means,mapping = aes(xintercept = score),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold")) +
facet_wrap(~ideo,nrow = 2)
df_bsc_elg %>%
group_by(party_id) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
party_id | N | Perc |
---|---|---|
Democrat | 355 | 35.71 |
Independent | 333 | 33.50 |
Republican | 306 | 30.78 |
df_bsc_elg %>%
group_by(vote_2020) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
arrange(desc(N)) %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
vote_2020 | N | Perc |
---|---|---|
Joe Biden | 438 | 44.06 |
Donald Trump | 322 | 32.39 |
I did not vote | 187 | 18.81 |
Third-party candidate | 47 | 4.73 |
df_bsc_elg %>%
group_by(vote_2024) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
arrange(desc(N)) %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
vote_2024 | N | Perc |
---|---|---|
Joe Biden | 425 | 42.76 |
Donald Trump | 369 | 37.12 |
Robert F. Kennedy Jr. | 88 | 8.85 |
Other | 74 | 7.44 |
Jill Stein | 23 | 2.31 |
Cornel West | 13 | 1.31 |
2 | 0.20 |
Since its independence and onwards, the formation of the United
States as a sovereign country was based on a number of values, all of
which were inscribed in the constitution. This document, importantly,
has evolved since it was first written.
On paper (in the constitution), what are the values that the U.S. stands
for? We want you to indicate the United State’s priorities on
paper.
To that end, you have a sum of 100 points. Please allocate those points
to the following values based on how important you think they are to the
U.S. on paper.
The values, presented in alphabetical order, are: Democracy, Equality,
Freedom, Individualism, Justice, Pursuit of Happiness, Right to Bear
Arms, Tolerance.
So, If you think a certain value is more important to the U.S. on paper
than another value, then the first value would get more points than the
second. If you think a certain value is not important at all to the U.S.
on paper, it would get zero points. The total must add up to 100
points.
df_bsc_long_elg %>%
filter(type == "paper") %>%
group_by(value) %>%
summarise(priority_us = round(mean(weight),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
value | priority_us |
---|---|
arms | 10.37 |
democracy | 19.40 |
equality | 13.36 |
freedom | 20.94 |
happiness | 10.01 |
individualism | 8.20 |
justice | 11.88 |
tolerance | 5.85 |
Now, please indicate the extent to which the U.S. government,
regardless of party, is living up to each of these values, in
practice.
In the scale below, 0 means that the U.S. is not living up to what this
value stands for at all (it cannot get any worse) and 100 means that the
U.S. is living up to what this value stands for to a great extent (it
cannot get any better).
df_bsc_long_elg %>%
filter(type == "paper") %>%
group_by(value) %>%
summarise(score = round(mean(score,na.rm = T),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
value | score |
---|---|
arms | 57.88 |
democracy | 47.83 |
equality | 41.32 |
freedom | 50.59 |
happiness | 41.78 |
individualism | 49.74 |
justice | 39.11 |
tolerance | 39.32 |
And now, we want you to imagine your ideal country.
Importantly, imagine this ideal country as if you are randomly born into
its population. You can end up in any level of its citizenry. So, if you
could design a country completely from scratch and write its
constitution, what would be its guiding values?
Again, you have a sum of 100 points. Please allocate those points to the
following values based on how important they are to you.
The values, presented in alphabetical order, are: Democracy, Equality,
Freedom, Individualism, Justice, Pursuit of Happiness, Right to Bear
Arms, Tolerance.
So, If a certain value is more important to you than another value, then
the first value would get more points than the second. If a certain
value is not important at all to you, it would get zero points. Must
total 100 points.
df_bsc_long_elg %>%
filter(type == "ideal") %>%
group_by(value) %>%
summarise(priority_ideal = round(mean(weight),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
value | priority_ideal |
---|---|
arms | 6.14 |
democracy | 17.34 |
equality | 15.93 |
freedom | 19.56 |
happiness | 11.22 |
individualism | 8.03 |
justice | 14.13 |
tolerance | 7.64 |
The score was computed from two questions: US priorities on paper and
US delivering on its promise.
For every value, we multiplied the weight (priorities of the US on
paper) by the score (US delivering on its promise) to created weighted
scores - one per value. Then, we summed all the weighted mean scores.
Then, we substracted that sum score from 100 to create the broken social
contract score.
df_bsc_elg %>%
ggplot(aes(x = brokenpromise)) +
geom_histogram(fill = "lightblue",
binwidth = 1) +
geom_vline(xintercept = mean(df_bsc_elg$brokenpromise,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
scale_x_continuous(limits = c(-1,101),
breaks = seq(0,100,20)) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"))
The score was computed from two questions: personal priorities and US
delivering on its promise.
Same way as the broken promise score.
df_bsc_elg %>%
ggplot(aes(x = personaldisappoint)) +
geom_histogram(fill = "lightblue",
binwidth = 1) +
geom_vline(xintercept = mean(df_bsc_elg$personaldisappoint,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
scale_x_continuous(limits = c(-1,101),
breaks = seq(0,100,20)) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"))
df_bsc_elg %>%
ggplot(aes(x = antiest)) +
geom_density(fill = "lightblue",
color = "black") +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_bsc_elg$antiest,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
Please indicate how much you trust or distrust the following
institutions (1 = Strongly Distrust to 7 = Strongly
Trust)
1. The US Congress / Legislative Branch
2. The US Government / Executive Branch
3. The US Courts / Judicial Branch
alpha = 0.86
df_bsc_elg %>%
ggplot(aes(x = trust_deminst)) +
geom_density(fill = "lightblue",
color = "black") +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_bsc_elg$trust_deminst,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
Please indicate how much you trust or distrust the following
institutions (1 = Strongly Distrust to 7 = Strongly
Trust)
1. Mainstream media in the US (e.g., CNN, FOX News, MSNBC, New York
Times, Wall-Street Journal, USA Today)
2. The education system in the US
3. Law enforcement / police in the US
4. The US Military
5. Financial institutions in the US (e.g., Wall Street, The Fed, The Big
Banks)
6. The medical system in the US
alpha = 0.83
df_bsc_elg %>%
ggplot(aes(x = trust_natinst)) +
geom_density(fill = "lightblue",
color = "black") +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_bsc_elg$trust_natinst,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
To what extent do you agree with the following statement?
The way this country works needs to be radically changed
df_bsc_elg %>%
ggplot(aes(x = change)) +
geom_density(fill = "lightblue",
color = "black") +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_bsc_elg$change,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
df_bsc_elg %>%
ggplot(aes(x = SDO)) +
geom_density(fill = "lightblue",
color = "black") +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_bsc_elg$SDO,na.rm = T),
color = "grey15",
size = 1,
linetype = "dashed") +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
I see myself as… (1 = Strongly Disagree to 7 = Strongly Agree)
means <- df_bsc_elg %>%
dplyr::select(PID,TIPI_extra:TIPI_open) %>%
pivot_longer(-PID,
names_to = "trait",
values_to = "score") %>%
filter(!is.na(score)) %>%
group_by(trait) %>%
summarise(score = mean(score)) %>%
ungroup()
df_bsc_elg %>%
dplyr::select(PID,TIPI_extra:TIPI_open) %>%
pivot_longer(-PID,
names_to = "trait",
values_to = "score") %>%
filter(!is.na(score)) %>%
ggplot() +
geom_density(aes(x = score), fill = "lightblue") +
scale_x_continuous(limits = c(1,7),
breaks = seq(1,7,1)) +
geom_vline(data = means,mapping = aes(xintercept = score),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold")) +
facet_wrap(~trait,nrow = 2)
What is the likelihood that you will vote in the 2024 Presidential Elections?
df_bsc_elg %>%
ggplot(aes(x = vote_likely)) +
geom_histogram(fill = "lightblue",
color = "black",
binwidth = 1) +
scale_x_continuous(breaks = seq(1,5,1),
limits = c(0,6)) +
ylab("density") +
geom_vline(xintercept = mean(df_bsc_elg$vote_likely,na.rm = T),
color = "grey15",
size = 1,
linetype = "dashed") +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
Broken promise score, personal disappointment score, support for radical change, anti-establishment sentiment, trust in democratic institutions, trust in mainstream societal institutions, conservatism, SDO, TIPI extraversion, TIPI agreeableness, TIPI Conscientiousness, TIPI neuroticism, TIPI openness.
df_bsc_elg %>%
dplyr::select(brokenpromise:personaldisappoint,change,antiest:trust_natinst,ideo_con,SDO,TIPI_extra:TIPI_open) %>%
corPlot(upper = TRUE,stars = TRUE,xsrt = 270)
Broken promise score as predictor; conservatism as control.
m1 <- lm(change_z ~ brokenpromise_z + ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.01 | [-0.07, 0.05] | -0.31 | 930 | .757 |
Brokenpromise z | 0.28 | [0.21, 0.34] | 8.76 | 930 | < .001 |
Ideo con z | -0.16 | [-0.22, -0.10] | -5.05 | 930 | < .001 |
Broken promise score as predictor; conservatism, SDO, TIPI agreeableness, gender, race, ethnicity, income, education, age, county mediation income, county GINI coefficient, and county density as controls.
m1 <- lm(change_z ~ brokenpromise_z + ideo_con_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.94 | [-2.80, 0.91] | -1.00 | 780 | .318 |
Brokenpromise z | 0.31 | [0.24, 0.38] | 8.78 | 780 | < .001 |
Ideo con z | -0.03 | [-0.11, 0.05] | -0.80 | 780 | .425 |
SDO z | -0.16 | [-0.24, -0.08] | -3.86 | 780 | < .001 |
TIPI agree z | -0.03 | [-0.10, 0.04] | -0.84 | 780 | .403 |
Genderwoman | 0.19 | [0.05, 0.32] | 2.71 | 780 | .007 |
RaceAsian | 0.86 | [-1.02, 2.74] | 0.90 | 780 | .369 |
RaceBlack or African American | 0.99 | [-0.87, 2.85] | 1.04 | 780 | .297 |
RaceMiddle Eastern or North African | 0.42 | [-2.18, 3.03] | 0.32 | 780 | .749 |
Racemultiracial | 1.05 | [-0.82, 2.92] | 1.10 | 780 | .271 |
RaceOther please specify | 1.93 | [-0.33, 4.20] | 1.68 | 780 | .094 |
RaceWhite | 0.74 | [-1.11, 2.59] | 0.79 | 780 | .433 |
Hispanic | 0.07 | [-0.18, 0.32] | 0.53 | 780 | .593 |
Income num z | -0.03 | [-0.10, 0.05] | -0.71 | 780 | .476 |
Edu num z | -0.04 | [-0.12, 0.03] | -1.17 | 780 | .242 |
Age z | -0.17 | [-0.24, -0.10] | -4.74 | 780 | < .001 |
County medianincome z | 0.01 | [-0.06, 0.08] | 0.27 | 780 | .785 |
County gini z | -0.03 | [-0.12, 0.05] | -0.75 | 780 | .456 |
County density z | 0.01 | [-0.07, 0.09] | 0.30 | 780 | .766 |
Broken promise score as predictor; conservatism as control.
m1 <- lm(antiest_z ~ brokenpromise_z + ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.01 | [-0.07, 0.05] | -0.35 | 930 | .727 |
Brokenpromise z | 0.33 | [0.27, 0.39] | 10.65 | 930 | < .001 |
Ideo con z | -0.10 | [-0.16, -0.03] | -3.07 | 930 | .002 |
Broken promise score as predictor; conservatism, SDO, TIPI agreeableness, gender, race, ethnicity, income, education, age, county mediation income, county GINI coefficient, and county density as controls.
m1 <- lm(antiest_z ~ brokenpromise_z + ideo_con_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.08 | [-1.70, 1.86] | 0.09 | 780 | .928 |
Brokenpromise z | 0.34 | [0.27, 0.41] | 10.15 | 780 | < .001 |
Ideo con z | -0.05 | [-0.12, 0.03] | -1.23 | 780 | .220 |
SDO z | -0.08 | [-0.16, 0.00] | -2.06 | 780 | .040 |
TIPI agree z | -0.07 | [-0.14, 0.00] | -2.08 | 780 | .038 |
Genderwoman | 0.08 | [-0.05, 0.21] | 1.20 | 780 | .231 |
RaceAsian | 0.08 | [-1.72, 1.88] | 0.09 | 780 | .931 |
RaceBlack or African American | -0.30 | [-2.08, 1.49] | -0.33 | 780 | .745 |
RaceMiddle Eastern or North African | -1.98 | [-4.48, 0.52] | -1.55 | 780 | .121 |
Racemultiracial | -0.13 | [-1.93, 1.66] | -0.14 | 780 | .886 |
RaceOther please specify | 0.10 | [-2.07, 2.27] | 0.09 | 780 | .931 |
RaceWhite | -0.15 | [-1.92, 1.63] | -0.16 | 780 | .872 |
Hispanic | 0.17 | [-0.07, 0.41] | 1.36 | 780 | .175 |
Income num z | -0.06 | [-0.13, 0.00] | -1.84 | 780 | .066 |
Edu num z | -0.15 | [-0.22, -0.08] | -4.23 | 780 | < .001 |
Age z | -0.02 | [-0.09, 0.05] | -0.55 | 780 | .580 |
County medianincome z | -0.04 | [-0.10, 0.03] | -1.06 | 780 | .292 |
County gini z | -0.13 | [-0.21, -0.05] | -3.12 | 780 | .002 |
County density z | 0.04 | [-0.04, 0.12] | 1.03 | 780 | .302 |
Broken promise score as predictor; conservatism as control.
m1 <- lm(trust_deminst_z ~ brokenpromise_z + ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.01 | [-0.06, 0.05] | -0.18 | 930 | .859 |
Brokenpromise z | -0.41 | [-0.47, -0.35] | -13.54 | 930 | < .001 |
Ideo con z | 0.05 | [0.00, 0.11] | 1.83 | 930 | .067 |
Broken promise score as predictor; conservatism, SDO, TIPI agreeableness, gender, race, ethnicity, income, education, age, county mediation income, county GINI coefficient, and county density as controls.
m1 <- lm(trust_deminst_z ~ brokenpromise_z + ideo_con_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.97 | [-0.76, 2.70] | 1.10 | 780 | .271 |
Brokenpromise z | -0.38 | [-0.44, -0.31] | -11.52 | 780 | < .001 |
Ideo con z | 0.07 | [-0.01, 0.14] | 1.77 | 780 | .077 |
SDO z | -0.01 | [-0.09, 0.06] | -0.32 | 780 | .745 |
TIPI agree z | 0.13 | [0.06, 0.19] | 3.78 | 780 | < .001 |
Genderwoman | -0.08 | [-0.21, 0.04] | -1.28 | 780 | .202 |
RaceAsian | -0.93 | [-2.68, 0.82] | -1.05 | 780 | .296 |
RaceBlack or African American | -0.72 | [-2.45, 1.01] | -0.81 | 780 | .416 |
RaceMiddle Eastern or North African | 0.19 | [-2.24, 2.63] | 0.15 | 780 | .877 |
Racemultiracial | -1.16 | [-2.91, 0.58] | -1.31 | 780 | .192 |
RaceOther please specify | -1.05 | [-3.16, 1.07] | -0.97 | 780 | .331 |
RaceWhite | -0.94 | [-2.67, 0.79] | -1.07 | 780 | .285 |
Hispanic | -0.10 | [-0.33, 0.14] | -0.83 | 780 | .407 |
Income num z | 0.01 | [-0.05, 0.08] | 0.37 | 780 | .713 |
Edu num z | 0.12 | [0.06, 0.19] | 3.59 | 780 | < .001 |
Age z | 0.00 | [-0.07, 0.06] | -0.14 | 780 | .890 |
County medianincome z | 0.03 | [-0.04, 0.09] | 0.87 | 780 | .387 |
County gini z | 0.07 | [-0.01, 0.15] | 1.67 | 780 | .096 |
County density z | 0.03 | [-0.05, 0.10] | 0.74 | 780 | .457 |
Broken promise score as predictor; conservatism as control.
m1 <- lm(trust_natinst_z ~ brokenpromise_z + ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.01 | [-0.07, 0.05] | -0.38 | 930 | .704 |
Brokenpromise z | -0.38 | [-0.44, -0.32] | -12.50 | 930 | < .001 |
Ideo con z | 0.12 | [0.06, 0.18] | 3.94 | 930 | < .001 |
Broken promise score as predictor; conservatism, SDO, TIPI agreeableness, gender, race, ethnicity, income, education, age, county mediation income, county GINI coefficient, and county density as controls.
m1 <- lm(trust_natinst_z ~ brokenpromise_z + ideo_con_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.44 | [-2.13, 1.26] | -0.51 | 780 | .612 |
Brokenpromise z | -0.36 | [-0.42, -0.30] | -11.31 | 780 | < .001 |
Ideo con z | 0.10 | [0.03, 0.18] | 2.86 | 780 | .004 |
SDO z | 0.00 | [-0.07, 0.07] | -0.02 | 780 | .988 |
TIPI agree z | 0.17 | [0.11, 0.23] | 5.15 | 780 | < .001 |
Genderwoman | 0.03 | [-0.10, 0.15] | 0.43 | 780 | .667 |
RaceAsian | 0.31 | [-1.41, 2.02] | 0.35 | 780 | .726 |
RaceBlack or African American | 0.65 | [-1.05, 2.34] | 0.75 | 780 | .453 |
RaceMiddle Eastern or North African | 1.55 | [-0.83, 3.93] | 1.28 | 780 | .202 |
Racemultiracial | 0.12 | [-1.59, 1.82] | 0.13 | 780 | .895 |
RaceOther please specify | 0.06 | [-2.01, 2.13] | 0.06 | 780 | .954 |
RaceWhite | 0.45 | [-1.24, 2.14] | 0.52 | 780 | .604 |
Hispanic | -0.24 | [-0.47, -0.01] | -2.04 | 780 | .042 |
Income num z | 0.08 | [0.02, 0.15] | 2.47 | 780 | .014 |
Edu num z | 0.12 | [0.06, 0.19] | 3.59 | 780 | < .001 |
Age z | 0.10 | [0.03, 0.16] | 3.02 | 780 | .003 |
County medianincome z | 0.03 | [-0.03, 0.10] | 1.02 | 780 | .307 |
County gini z | 0.06 | [-0.02, 0.14] | 1.49 | 780 | .136 |
County density z | 0.07 | [0.00, 0.14] | 1.85 | 780 | .064 |
Each of the values delivered scores, independently, will be inserted
into a model as a predictor. This will be done for each of the four
primary outcome variables separately.
For each one of these exploratory models, we will include political
ideology as a moderator.
The personal disappointment score will be added to all models from the
analysis plan as a control variable.
m1 <- lm(change_z ~ brokenpromise_z + personaldisappoint_z + ideo_con_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.97 | [-2.79, 0.85] | -1.04 | 779 | .297 |
Brokenpromise z | -0.09 | [-0.25, 0.07] | -1.13 | 779 | .260 |
Personaldisappoint z | 0.45 | [0.29, 0.61] | 5.53 | 779 | < .001 |
Ideo con z | 0.00 | [-0.08, 0.08] | -0.02 | 779 | .988 |
SDO z | -0.15 | [-0.23, -0.07] | -3.66 | 779 | < .001 |
TIPI agree z | -0.02 | [-0.09, 0.05] | -0.49 | 779 | .627 |
Genderwoman | 0.17 | [0.03, 0.30] | 2.47 | 779 | .014 |
RaceAsian | 0.90 | [-0.94, 2.74] | 0.96 | 779 | .337 |
RaceBlack or African American | 1.00 | [-0.82, 2.82] | 1.08 | 779 | .282 |
RaceMiddle Eastern or North African | 0.51 | [-2.05, 3.07] | 0.39 | 779 | .695 |
Racemultiracial | 1.03 | [-0.81, 2.87] | 1.10 | 779 | .272 |
RaceOther please specify | 2.36 | [0.13, 4.59] | 2.08 | 779 | .038 |
RaceWhite | 0.79 | [-1.02, 2.61] | 0.86 | 779 | .391 |
Hispanic | -0.05 | [-0.30, 0.20] | -0.36 | 779 | .718 |
Income num z | -0.01 | [-0.08, 0.06] | -0.37 | 779 | .712 |
Edu num z | -0.03 | [-0.10, 0.04] | -0.78 | 779 | .436 |
Age z | -0.17 | [-0.23, -0.10] | -4.75 | 779 | < .001 |
County medianincome z | 0.00 | [-0.07, 0.07] | -0.04 | 779 | .966 |
County gini z | -0.04 | [-0.12, 0.04] | -0.92 | 779 | .360 |
County density z | 0.03 | [-0.05, 0.11] | 0.65 | 779 | .513 |
m1 <- lm(antiest_z ~ brokenpromise_z + personaldisappoint_z + ideo_con_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.05 | [-1.67, 1.77] | 0.06 | 779 | .952 |
Brokenpromise z | -0.16 | [-0.31, -0.02] | -2.16 | 779 | .031 |
Personaldisappoint z | 0.57 | [0.42, 0.73] | 7.42 | 779 | < .001 |
Ideo con z | -0.01 | [-0.08, 0.07] | -0.20 | 779 | .843 |
SDO z | -0.07 | [-0.14, 0.01] | -1.77 | 779 | .077 |
TIPI agree z | -0.06 | [-0.12, 0.01] | -1.66 | 779 | .098 |
Genderwoman | 0.06 | [-0.07, 0.18] | 0.85 | 779 | .394 |
RaceAsian | 0.13 | [-1.61, 1.87] | 0.15 | 779 | .881 |
RaceBlack or African American | -0.28 | [-2.00, 1.44] | -0.32 | 779 | .750 |
RaceMiddle Eastern or North African | -1.87 | [-4.29, 0.55] | -1.52 | 779 | .130 |
Racemultiracial | -0.16 | [-1.89, 1.58] | -0.18 | 779 | .860 |
RaceOther please specify | 0.63 | [-1.47, 2.74] | 0.59 | 779 | .555 |
RaceWhite | -0.08 | [-1.79, 1.64] | -0.09 | 779 | .929 |
Hispanic | 0.02 | [-0.21, 0.26] | 0.18 | 779 | .857 |
Income num z | -0.05 | [-0.12, 0.02] | -1.42 | 779 | .156 |
Edu num z | -0.13 | [-0.20, -0.06] | -3.81 | 779 | < .001 |
Age z | -0.02 | [-0.08, 0.05] | -0.46 | 779 | .646 |
County medianincome z | -0.05 | [-0.12, 0.01] | -1.52 | 779 | .129 |
County gini z | -0.14 | [-0.22, -0.06] | -3.44 | 779 | < .001 |
County density z | 0.06 | [-0.02, 0.13] | 1.54 | 779 | .124 |
m1 <- lm(trust_deminst_z ~ brokenpromise_z + personaldisappoint_z + ideo_con_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 1.01 | [-0.65, 2.66] | 1.19 | 779 | .233 |
Brokenpromise z | 0.19 | [0.05, 0.33] | 2.63 | 779 | .009 |
Personaldisappoint z | -0.65 | [-0.79, -0.50] | -8.69 | 779 | < .001 |
Ideo con z | 0.02 | [-0.05, 0.09] | 0.59 | 779 | .553 |
SDO z | -0.03 | [-0.10, 0.04] | -0.75 | 779 | .452 |
TIPI agree z | 0.11 | [0.05, 0.17] | 3.37 | 779 | < .001 |
Genderwoman | -0.05 | [-0.18, 0.07] | -0.89 | 779 | .376 |
RaceAsian | -0.99 | [-2.67, 0.68] | -1.17 | 779 | .244 |
RaceBlack or African American | -0.74 | [-2.39, 0.92] | -0.87 | 779 | .382 |
RaceMiddle Eastern or North African | 0.07 | [-2.26, 2.39] | 0.06 | 779 | .955 |
Racemultiracial | -1.13 | [-2.80, 0.53] | -1.34 | 779 | .182 |
RaceOther please specify | -1.65 | [-3.68, 0.37] | -1.60 | 779 | .109 |
RaceWhite | -1.02 | [-2.67, 0.63] | -1.21 | 779 | .227 |
Hispanic | 0.06 | [-0.16, 0.29] | 0.55 | 779 | .580 |
Income num z | -0.01 | [-0.07, 0.06] | -0.18 | 779 | .860 |
Edu num z | 0.10 | [0.04, 0.17] | 3.11 | 779 | .002 |
Age z | -0.01 | [-0.07, 0.05] | -0.28 | 779 | .781 |
County medianincome z | 0.05 | [-0.02, 0.11] | 1.41 | 779 | .159 |
County gini z | 0.08 | [0.00, 0.15] | 1.99 | 779 | .047 |
County density z | 0.01 | [-0.06, 0.08] | 0.22 | 779 | .823 |
m1 <- lm(trust_natinst_z ~ brokenpromise_z + personaldisappoint_z + ideo_con_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.41 | [-2.04, 1.22] | -0.49 | 779 | .624 |
Brokenpromise z | 0.14 | [0.00, 0.28] | 2.00 | 779 | .045 |
Personaldisappoint z | -0.58 | [-0.72, -0.43] | -7.84 | 779 | < .001 |
Ideo con z | 0.06 | [-0.01, 0.13] | 1.82 | 779 | .069 |
SDO z | -0.01 | [-0.09, 0.06] | -0.39 | 779 | .698 |
TIPI agree z | 0.15 | [0.09, 0.22] | 4.81 | 779 | < .001 |
Genderwoman | 0.05 | [-0.07, 0.17] | 0.85 | 779 | .394 |
RaceAsian | 0.25 | [-1.40, 1.90] | 0.30 | 779 | .764 |
RaceBlack or African American | 0.63 | [-1.00, 2.27] | 0.76 | 779 | .448 |
RaceMiddle Eastern or North African | 1.44 | [-0.85, 3.73] | 1.23 | 779 | .218 |
Racemultiracial | 0.14 | [-1.51, 1.79] | 0.17 | 779 | .867 |
RaceOther please specify | -0.48 | [-2.47, 1.52] | -0.47 | 779 | .639 |
RaceWhite | 0.38 | [-1.25, 2.01] | 0.46 | 779 | .648 |
Hispanic | -0.09 | [-0.32, 0.13] | -0.81 | 779 | .417 |
Income num z | 0.07 | [0.00, 0.13] | 2.05 | 779 | .041 |
Edu num z | 0.10 | [0.04, 0.17] | 3.14 | 779 | .002 |
Age z | 0.09 | [0.03, 0.16] | 3.01 | 779 | .003 |
County medianincome z | 0.05 | [-0.01, 0.11] | 1.51 | 779 | .130 |
County gini z | 0.07 | [-0.01, 0.14] | 1.77 | 779 | .078 |
County density z | 0.05 | [-0.02, 0.12] | 1.42 | 779 | .156 |
df_bsc_elg %>%
dplyr::select(antiest,change,trust_deminst,trust_natinst,democracy:tolerance) %>%
corPlot(upper = TRUE,stars = TRUE,xsrt = 270)
m1 <- lm(change_z ~ democracy_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | 0.00 | 992 | > .999 |
Democracy z | -0.18 | [-0.24, -0.12] | -5.83 | 992 | < .001 |
m1 <- lm(change_z ~ democracy_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.81 | [-2.72, 1.10] | -0.83 | 829 | .406 |
Democracy z | -0.18 | [-0.25, -0.11] | -5.27 | 829 | < .001 |
SDO z | -0.20 | [-0.27, -0.13] | -5.75 | 829 | < .001 |
TIPI agree z | -0.06 | [-0.13, 0.01] | -1.75 | 829 | .081 |
Genderwoman | 0.24 | [0.10, 0.37] | 3.41 | 829 | < .001 |
RaceAsian | 0.77 | [-1.16, 2.70] | 0.78 | 829 | .434 |
RaceBlack or African American | 0.84 | [-1.07, 2.75] | 0.86 | 829 | .389 |
RaceMiddle Eastern or North African | 0.51 | [-2.17, 3.19] | 0.37 | 829 | .710 |
Racemultiracial | 0.92 | [-1.01, 2.85] | 0.94 | 829 | .349 |
RaceOther please specify | 1.72 | [-0.61, 4.05] | 1.45 | 829 | .149 |
RaceWhite | 0.59 | [-1.32, 2.49] | 0.60 | 829 | .546 |
Hispanic | 0.07 | [-0.18, 0.32] | 0.54 | 829 | .592 |
Income num z | -0.03 | [-0.10, 0.04] | -0.79 | 829 | .429 |
Edu num z | -0.04 | [-0.11, 0.03] | -1.10 | 829 | .273 |
Age z | -0.15 | [-0.22, -0.08] | -4.31 | 829 | < .001 |
County medianincome z | 0.00 | [-0.07, 0.07] | 0.08 | 829 | .940 |
County gini z | -0.03 | [-0.12, 0.05] | -0.77 | 829 | .441 |
County density z | 0.00 | [-0.08, 0.08] | 0.01 | 829 | .996 |
m1 <- lm(change_z ~ democracy_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.01 | [-0.07, 0.05] | -0.28 | 932 | .777 |
Democracy z | -0.22 | [-0.29, -0.16] | -6.77 | 932 | < .001 |
Ideo con z | -0.21 | [-0.27, -0.14] | -6.46 | 932 | < .001 |
Democracy z \(\times\) Ideo con z | 0.02 | [-0.04, 0.09] | 0.67 | 932 | .502 |
m1 <- lm(change_z ~ equality_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | 0.00 | 992 | > .999 |
Equality z | -0.11 | [-0.17, -0.05] | -3.52 | 992 | < .001 |
m1 <- lm(change_z ~ equality_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -1.09 | [-3.02, 0.84] | -1.11 | 829 | .267 |
Equality z | -0.10 | [-0.17, -0.03] | -2.87 | 829 | .004 |
SDO z | -0.18 | [-0.25, -0.11] | -5.21 | 829 | < .001 |
TIPI agree z | -0.07 | [-0.14, 0.00] | -2.01 | 829 | .044 |
Genderwoman | 0.24 | [0.10, 0.38] | 3.43 | 829 | < .001 |
RaceAsian | 1.02 | [-0.93, 2.97] | 1.03 | 829 | .305 |
RaceBlack or African American | 1.11 | [-0.82, 3.04] | 1.13 | 829 | .258 |
RaceMiddle Eastern or North African | 0.77 | [-1.94, 3.48] | 0.56 | 829 | .575 |
Racemultiracial | 1.23 | [-0.72, 3.17] | 1.24 | 829 | .216 |
RaceOther please specify | 2.14 | [-0.21, 4.50] | 1.79 | 829 | .074 |
RaceWhite | 0.87 | [-1.06, 2.79] | 0.88 | 829 | .378 |
Hispanic | 0.07 | [-0.19, 0.32] | 0.50 | 829 | .617 |
Income num z | -0.03 | [-0.10, 0.04] | -0.78 | 829 | .436 |
Edu num z | -0.06 | [-0.14, 0.01] | -1.67 | 829 | .096 |
Age z | -0.16 | [-0.23, -0.09] | -4.50 | 829 | < .001 |
County medianincome z | 0.01 | [-0.07, 0.08] | 0.17 | 829 | .865 |
County gini z | -0.03 | [-0.12, 0.05] | -0.80 | 829 | .421 |
County density z | -0.01 | [-0.09, 0.08] | -0.13 | 829 | .897 |
m1 <- lm(change_z ~ equality_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.02 | [-0.09, 0.04] | -0.72 | 932 | .472 |
Equality z | -0.10 | [-0.16, -0.03] | -2.97 | 932 | .003 |
Ideo con z | -0.17 | [-0.24, -0.11] | -5.28 | 932 | < .001 |
Equality z \(\times\) Ideo con z | 0.10 | [0.03, 0.16] | 2.96 | 932 | .003 |
interact_plot(m1,
pred = "equality_z",
modx = "ideo_con_z")
m1 <- lm(change_z ~ freedom_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | -0.04 | 991 | .967 |
Freedom z | -0.24 | [-0.30, -0.18] | -7.91 | 991 | < .001 |
m1 <- lm(change_z ~ freedom_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.76 | [-2.64, 1.12] | -0.79 | 828 | .428 |
Freedom z | -0.24 | [-0.31, -0.18] | -7.30 | 828 | < .001 |
SDO z | -0.17 | [-0.24, -0.10] | -4.85 | 828 | < .001 |
TIPI agree z | -0.05 | [-0.12, 0.02] | -1.52 | 828 | .130 |
Genderwoman | 0.24 | [0.10, 0.37] | 3.50 | 828 | < .001 |
RaceAsian | 0.70 | [-1.20, 2.60] | 0.72 | 828 | .469 |
RaceBlack or African American | 0.75 | [-1.13, 2.63] | 0.78 | 828 | .434 |
RaceMiddle Eastern or North African | 0.42 | [-2.22, 3.06] | 0.31 | 828 | .755 |
Racemultiracial | 0.89 | [-1.01, 2.78] | 0.92 | 828 | .358 |
RaceOther please specify | 2.13 | [-0.16, 4.42] | 1.82 | 828 | .068 |
RaceWhite | 0.54 | [-1.34, 2.42] | 0.57 | 828 | .572 |
Hispanic | 0.06 | [-0.19, 0.31] | 0.50 | 828 | .618 |
Income num z | -0.02 | [-0.09, 0.06] | -0.46 | 828 | .642 |
Edu num z | -0.08 | [-0.15, -0.01] | -2.30 | 828 | .022 |
Age z | -0.16 | [-0.23, -0.10] | -4.72 | 828 | < .001 |
County medianincome z | 0.01 | [-0.06, 0.08] | 0.16 | 828 | .875 |
County gini z | -0.04 | [-0.12, 0.04] | -0.91 | 828 | .362 |
County density z | 0.00 | [-0.08, 0.08] | 0.09 | 828 | .931 |
m1 <- lm(change_z ~ freedom_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.01 | [-0.08, 0.05] | -0.44 | 932 | .658 |
Freedom z | -0.22 | [-0.29, -0.16] | -6.89 | 932 | < .001 |
Ideo con z | -0.15 | [-0.22, -0.09] | -4.78 | 932 | < .001 |
Freedom z \(\times\) Ideo con z | 0.02 | [-0.04, 0.08] | 0.75 | 932 | .451 |
m1 <- lm(change_z ~ individualism_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | -0.04 | 991 | .968 |
Individualism z | 0.00 | [-0.07, 0.06] | -0.10 | 991 | .921 |
m1 <- lm(change_z ~ individualism_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -1.14 | [-3.07, 0.80] | -1.15 | 828 | .249 |
Individualism z | -0.02 | [-0.09, 0.05] | -0.56 | 828 | .575 |
SDO z | -0.19 | [-0.26, -0.12] | -5.24 | 828 | < .001 |
TIPI agree z | -0.08 | [-0.15, -0.01] | -2.34 | 828 | .020 |
Genderwoman | 0.25 | [0.11, 0.39] | 3.51 | 828 | < .001 |
RaceAsian | 1.07 | [-0.89, 3.02] | 1.07 | 828 | .284 |
RaceBlack or African American | 1.16 | [-0.78, 3.09] | 1.17 | 828 | .242 |
RaceMiddle Eastern or North African | 0.90 | [-1.82, 3.62] | 0.65 | 828 | .518 |
Racemultiracial | 1.27 | [-0.68, 3.23] | 1.28 | 828 | .201 |
RaceOther please specify | 2.09 | [-0.28, 4.45] | 1.73 | 828 | .083 |
RaceWhite | 0.90 | [-1.03, 2.83] | 0.92 | 828 | .360 |
Hispanic | 0.10 | [-0.15, 0.36] | 0.80 | 828 | .426 |
Income num z | -0.03 | [-0.10, 0.04] | -0.78 | 828 | .436 |
Edu num z | -0.07 | [-0.14, 0.00] | -1.87 | 828 | .062 |
Age z | -0.16 | [-0.23, -0.08] | -4.32 | 828 | < .001 |
County medianincome z | 0.01 | [-0.06, 0.08] | 0.23 | 828 | .816 |
County gini z | -0.03 | [-0.12, 0.05] | -0.78 | 828 | .435 |
County density z | -0.01 | [-0.10, 0.07] | -0.27 | 828 | .790 |
m1 <- lm(change_z ~ individualism_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.01 | [-0.08, 0.05] | -0.36 | 932 | .718 |
Individualism z | 0.00 | [-0.07, 0.06] | -0.14 | 932 | .888 |
Ideo con z | -0.19 | [-0.25, -0.12] | -5.78 | 932 | < .001 |
Individualism z \(\times\) Ideo con z | -0.01 | [-0.06, 0.04] | -0.39 | 932 | .693 |
m1 <- lm(change_z ~ justice_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | -0.06 | 990 | .950 |
Justice z | -0.29 | [-0.35, -0.24] | -9.71 | 990 | < .001 |
m1 <- lm(change_z ~ justice_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -1.36 | [-3.23, 0.51] | -1.43 | 827 | .153 |
Justice z | -0.27 | [-0.33, -0.20] | -7.92 | 827 | < .001 |
SDO z | -0.16 | [-0.23, -0.10] | -4.78 | 827 | < .001 |
TIPI agree z | -0.03 | [-0.10, 0.04] | -0.87 | 827 | .384 |
Genderwoman | 0.17 | [0.04, 0.31] | 2.50 | 827 | .013 |
RaceAsian | 1.28 | [-0.61, 3.17] | 1.33 | 827 | .184 |
RaceBlack or African American | 1.44 | [-0.43, 3.31] | 1.51 | 827 | .132 |
RaceMiddle Eastern or North African | 1.29 | [-1.34, 3.92] | 0.96 | 827 | .336 |
Racemultiracial | 1.45 | [-0.43, 3.33] | 1.51 | 827 | .131 |
RaceOther please specify | 2.12 | [-0.16, 4.40] | 1.82 | 827 | .069 |
RaceWhite | 1.18 | [-0.68, 3.05] | 1.24 | 827 | .214 |
Hispanic | 0.03 | [-0.22, 0.28] | 0.23 | 827 | .822 |
Income num z | -0.02 | [-0.09, 0.05] | -0.60 | 827 | .551 |
Edu num z | -0.05 | [-0.12, 0.02] | -1.45 | 827 | .148 |
Age z | -0.15 | [-0.22, -0.08] | -4.41 | 827 | < .001 |
County medianincome z | 0.01 | [-0.06, 0.08] | 0.38 | 827 | .707 |
County gini z | -0.03 | [-0.11, 0.06] | -0.61 | 827 | .541 |
County density z | 0.00 | [-0.09, 0.08] | -0.12 | 827 | .908 |
m1 <- lm(change_z ~ justice_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.02 | [-0.08, 0.04] | -0.65 | 931 | .515 |
Justice z | -0.28 | [-0.35, -0.22] | -8.82 | 931 | < .001 |
Ideo con z | -0.15 | [-0.21, -0.08] | -4.62 | 931 | < .001 |
Justice z \(\times\) Ideo con z | 0.05 | [-0.02, 0.11] | 1.46 | 931 | .144 |
m1 <- lm(change_z ~ happiness_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | -0.06 | 990 | .951 |
Happiness z | -0.22 | [-0.28, -0.16] | -6.96 | 990 | < .001 |
m1 <- lm(change_z ~ happiness_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -1.23 | [-3.12, 0.67] | -1.27 | 828 | .205 |
Happiness z | -0.20 | [-0.26, -0.13] | -5.69 | 828 | < .001 |
SDO z | -0.16 | [-0.23, -0.09] | -4.61 | 828 | < .001 |
TIPI agree z | -0.07 | [-0.14, 0.00] | -1.85 | 828 | .065 |
Genderwoman | 0.21 | [0.07, 0.34] | 3.00 | 828 | .003 |
RaceAsian | 1.18 | [-0.73, 3.10] | 1.21 | 828 | .226 |
RaceBlack or African American | 1.26 | [-0.64, 3.16] | 1.30 | 828 | .194 |
RaceMiddle Eastern or North African | 0.94 | [-1.73, 3.61] | 0.69 | 828 | .491 |
Racemultiracial | 1.37 | [-0.55, 3.28] | 1.40 | 828 | .162 |
RaceOther please specify | 2.07 | [-0.25, 4.39] | 1.76 | 828 | .080 |
RaceWhite | 1.02 | [-0.88, 2.92] | 1.06 | 828 | .291 |
Hispanic | 0.05 | [-0.21, 0.30] | 0.36 | 828 | .717 |
Income num z | -0.02 | [-0.09, 0.05] | -0.51 | 828 | .607 |
Edu num z | -0.08 | [-0.15, 0.00] | -2.05 | 828 | .041 |
Age z | -0.15 | [-0.22, -0.08] | -4.33 | 828 | < .001 |
County medianincome z | 0.00 | [-0.07, 0.07] | 0.06 | 828 | .951 |
County gini z | -0.03 | [-0.12, 0.05] | -0.74 | 828 | .461 |
County density z | -0.01 | [-0.09, 0.08] | -0.13 | 828 | .899 |
m1 <- lm(change_z ~ happiness_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.07, 0.06] | -0.11 | 931 | .912 |
Happiness z | -0.18 | [-0.25, -0.12] | -5.57 | 931 | < .001 |
Ideo con z | -0.15 | [-0.22, -0.09] | -4.73 | 931 | < .001 |
Happiness z \(\times\) Ideo con z | -0.04 | [-0.10, 0.02] | -1.27 | 931 | .205 |
m1 <- lm(change_z ~ arms_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | -0.02 | 991 | .984 |
Arms z | 0.08 | [0.02, 0.14] | 2.51 | 991 | .012 |
m1 <- lm(change_z ~ arms_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -1.11 | [-3.04, 0.83] | -1.12 | 828 | .262 |
Arms z | 0.04 | [-0.02, 0.11] | 1.28 | 828 | .200 |
SDO z | -0.19 | [-0.26, -0.12] | -5.22 | 828 | < .001 |
TIPI agree z | -0.08 | [-0.15, -0.01] | -2.33 | 828 | .020 |
Genderwoman | 0.25 | [0.11, 0.39] | 3.57 | 828 | < .001 |
RaceAsian | 1.04 | [-0.91, 3.00] | 1.05 | 828 | .296 |
RaceBlack or African American | 1.12 | [-0.81, 3.06] | 1.14 | 828 | .256 |
RaceMiddle Eastern or North African | 0.91 | [-1.81, 3.62] | 0.65 | 828 | .513 |
Racemultiracial | 1.23 | [-0.72, 3.18] | 1.24 | 828 | .215 |
RaceOther please specify | 2.08 | [-0.28, 4.45] | 1.73 | 828 | .084 |
RaceWhite | 0.87 | [-1.06, 2.80] | 0.89 | 828 | .376 |
Hispanic | 0.08 | [-0.18, 0.34] | 0.60 | 828 | .551 |
Income num z | -0.03 | [-0.10, 0.05] | -0.71 | 828 | .480 |
Edu num z | -0.07 | [-0.14, 0.01] | -1.82 | 828 | .069 |
Age z | -0.16 | [-0.23, -0.09] | -4.36 | 828 | < .001 |
County medianincome z | 0.01 | [-0.07, 0.08] | 0.18 | 828 | .854 |
County gini z | -0.04 | [-0.13, 0.04] | -0.94 | 828 | .349 |
County density z | -0.01 | [-0.09, 0.08] | -0.15 | 828 | .884 |
m1 <- lm(change_z ~ arms_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.02 | [-0.08, 0.04] | -0.59 | 931 | .556 |
Arms z | 0.02 | [-0.05, 0.09] | 0.56 | 931 | .578 |
Ideo con z | -0.18 | [-0.25, -0.12] | -5.72 | 931 | < .001 |
Arms z \(\times\) Ideo con z | -0.12 | [-0.19, -0.05] | -3.48 | 931 | < .001 |
interact_plot(m1,
pred = "arms_z",
modx = "ideo_con_z")
m1 <- lm(change_z ~ tolerance_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | -0.04 | 991 | .968 |
Tolerance z | -0.10 | [-0.16, -0.03] | -3.05 | 991 | .002 |
m1 <- lm(change_z ~ tolerance_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -1.22 | [-3.13, 0.69] | -1.26 | 828 | .209 |
Tolerance z | -0.20 | [-0.28, -0.11] | -4.64 | 828 | < .001 |
SDO z | -0.18 | [-0.25, -0.11] | -5.18 | 828 | < .001 |
TIPI agree z | -0.08 | [-0.15, -0.01] | -2.15 | 828 | .032 |
Genderwoman | 0.23 | [0.09, 0.37] | 3.32 | 828 | < .001 |
RaceAsian | 1.14 | [-0.80, 3.07] | 1.15 | 828 | .249 |
RaceBlack or African American | 1.25 | [-0.66, 3.16] | 1.28 | 828 | .200 |
RaceMiddle Eastern or North African | 0.99 | [-1.70, 3.67] | 0.72 | 828 | .471 |
Racemultiracial | 1.34 | [-0.58, 3.27] | 1.37 | 828 | .171 |
RaceOther please specify | 2.10 | [-0.23, 4.44] | 1.77 | 828 | .077 |
RaceWhite | 1.00 | [-0.91, 2.91] | 1.02 | 828 | .306 |
Hispanic | 0.07 | [-0.19, 0.32] | 0.51 | 828 | .610 |
Income num z | -0.02 | [-0.10, 0.05] | -0.63 | 828 | .531 |
Edu num z | -0.07 | [-0.14, 0.01] | -1.79 | 828 | .074 |
Age z | -0.16 | [-0.23, -0.09] | -4.60 | 828 | < .001 |
County medianincome z | 0.01 | [-0.06, 0.08] | 0.30 | 828 | .768 |
County gini z | -0.04 | [-0.12, 0.05] | -0.86 | 828 | .389 |
County density z | 0.00 | [-0.08, 0.08] | 0.01 | 828 | .989 |
m1 <- lm(change_z ~ tolerance_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.01 | [-0.07, 0.05] | -0.31 | 932 | .753 |
Tolerance z | -0.11 | [-0.19, -0.03] | -2.69 | 932 | .007 |
Ideo con z | -0.18 | [-0.25, -0.12] | -5.72 | 932 | < .001 |
Tolerance z \(\times\) Ideo con z | -0.03 | [-0.09, 0.04] | -0.84 | 932 | .403 |
m1 <- lm(antiest_z ~ democracy_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | 0.00 | 992 | > .999 |
Democracy z | -0.29 | [-0.35, -0.23] | -9.62 | 992 | < .001 |
m1 <- lm(antiest_z ~ democracy_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.33 | [-1.49, 2.15] | 0.36 | 829 | .722 |
Democracy z | -0.25 | [-0.32, -0.19] | -7.73 | 829 | < .001 |
SDO z | -0.14 | [-0.21, -0.08] | -4.22 | 829 | < .001 |
TIPI agree z | -0.10 | [-0.17, -0.04] | -3.01 | 829 | .003 |
Genderwoman | 0.13 | [0.00, 0.26] | 2.02 | 829 | .044 |
RaceAsian | -0.11 | [-1.95, 1.73] | -0.11 | 829 | .909 |
RaceBlack or African American | -0.56 | [-2.38, 1.27] | -0.60 | 829 | .549 |
RaceMiddle Eastern or North African | -2.04 | [-4.60, 0.52] | -1.56 | 829 | .119 |
Racemultiracial | -0.38 | [-2.22, 1.46] | -0.41 | 829 | .684 |
RaceOther please specify | -0.25 | [-2.47, 1.98] | -0.22 | 829 | .829 |
RaceWhite | -0.42 | [-2.23, 1.40] | -0.45 | 829 | .654 |
Hispanic | 0.15 | [-0.09, 0.39] | 1.23 | 829 | .218 |
Income num z | -0.07 | [-0.14, -0.01] | -2.11 | 829 | .035 |
Edu num z | -0.12 | [-0.19, -0.05] | -3.41 | 829 | < .001 |
Age z | 0.00 | [-0.07, 0.06] | -0.07 | 829 | .943 |
County medianincome z | -0.04 | [-0.11, 0.03] | -1.11 | 829 | .269 |
County gini z | -0.12 | [-0.20, -0.04] | -3.00 | 829 | .003 |
County density z | 0.02 | [-0.05, 0.10] | 0.59 | 829 | .552 |
m1 <- lm(antiest_z ~ democracy_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.01 | [-0.08, 0.05] | -0.48 | 932 | .634 |
Democracy z | -0.34 | [-0.40, -0.27] | -10.57 | 932 | < .001 |
Ideo con z | -0.16 | [-0.22, -0.10] | -5.21 | 932 | < .001 |
Democracy z \(\times\) Ideo con z | -0.04 | [-0.10, 0.02] | -1.31 | 932 | .190 |
m1 <- lm(antiest_z ~ equality_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | 0.00 | 992 | > .999 |
Equality z | -0.23 | [-0.29, -0.17] | -7.54 | 992 | < .001 |
m1 <- lm(antiest_z ~ equality_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.04 | [-1.87, 1.80] | -0.04 | 829 | .969 |
Equality z | -0.22 | [-0.28, -0.15] | -6.57 | 829 | < .001 |
SDO z | -0.11 | [-0.18, -0.05] | -3.40 | 829 | < .001 |
TIPI agree z | -0.11 | [-0.18, -0.04] | -3.14 | 829 | .002 |
Genderwoman | 0.13 | [0.00, 0.26] | 2.00 | 829 | .046 |
RaceAsian | 0.21 | [-1.65, 2.06] | 0.22 | 829 | .826 |
RaceBlack or African American | -0.20 | [-2.04, 1.64] | -0.21 | 829 | .831 |
RaceMiddle Eastern or North African | -1.77 | [-4.35, 0.81] | -1.35 | 829 | .178 |
Racemultiracial | 0.02 | [-1.83, 1.87] | 0.02 | 829 | .984 |
RaceOther please specify | 0.40 | [-1.84, 2.64] | 0.35 | 829 | .728 |
RaceWhite | -0.05 | [-1.88, 1.79] | -0.05 | 829 | .959 |
Hispanic | 0.12 | [-0.12, 0.37] | 0.98 | 829 | .328 |
Income num z | -0.08 | [-0.15, 0.00] | -2.10 | 829 | .036 |
Edu num z | -0.14 | [-0.21, -0.07] | -4.03 | 829 | < .001 |
Age z | -0.02 | [-0.09, 0.05] | -0.64 | 829 | .522 |
County medianincome z | -0.03 | [-0.10, 0.04] | -0.93 | 829 | .351 |
County gini z | -0.12 | [-0.20, -0.04] | -2.97 | 829 | .003 |
County density z | 0.02 | [-0.06, 0.10] | 0.46 | 829 | .646 |
m1 <- lm(antiest_z ~ equality_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.01 | [-0.08, 0.05] | -0.38 | 932 | .702 |
Equality z | -0.21 | [-0.28, -0.15] | -6.46 | 932 | < .001 |
Ideo con z | -0.10 | [-0.17, -0.04] | -3.21 | 932 | .001 |
Equality z \(\times\) Ideo con z | 0.01 | [-0.05, 0.07] | 0.33 | 932 | .745 |
m1 <- lm(antiest_z ~ freedom_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | -0.05 | 991 | .957 |
Freedom z | -0.21 | [-0.27, -0.15] | -6.67 | 991 | < .001 |
m1 <- lm(antiest_z ~ freedom_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.19 | [-1.65, 2.03] | 0.21 | 828 | .836 |
Freedom z | -0.21 | [-0.27, -0.14] | -6.30 | 828 | < .001 |
SDO z | -0.10 | [-0.17, -0.04] | -3.08 | 828 | .002 |
TIPI agree z | -0.11 | [-0.17, -0.04] | -3.10 | 828 | .002 |
Genderwoman | 0.14 | [0.01, 0.27] | 2.12 | 828 | .035 |
RaceAsian | 0.00 | [-1.86, 1.86] | 0.00 | 828 | > .999 |
RaceBlack or African American | -0.46 | [-2.30, 1.38] | -0.49 | 828 | .624 |
RaceMiddle Eastern or North African | -1.89 | [-4.48, 0.70] | -1.43 | 828 | .152 |
Racemultiracial | -0.21 | [-2.07, 1.64] | -0.23 | 828 | .822 |
RaceOther please specify | 0.31 | [-1.94, 2.55] | 0.27 | 828 | .789 |
RaceWhite | -0.28 | [-2.12, 1.55] | -0.30 | 828 | .762 |
Hispanic | 0.16 | [-0.08, 0.41] | 1.31 | 828 | .191 |
Income num z | -0.06 | [-0.13, 0.01] | -1.78 | 828 | .076 |
Edu num z | -0.17 | [-0.24, -0.10] | -4.90 | 828 | < .001 |
Age z | -0.01 | [-0.08, 0.05] | -0.38 | 828 | .702 |
County medianincome z | -0.03 | [-0.10, 0.03] | -0.98 | 828 | .327 |
County gini z | -0.13 | [-0.21, -0.05] | -3.15 | 828 | .002 |
County density z | 0.02 | [-0.06, 0.10] | 0.53 | 828 | .598 |
m1 <- lm(antiest_z ~ freedom_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.02 | [-0.08, 0.04] | -0.61 | 932 | .543 |
Freedom z | -0.19 | [-0.26, -0.13] | -5.93 | 932 | < .001 |
Ideo con z | -0.10 | [-0.17, -0.04] | -3.13 | 932 | .002 |
Freedom z \(\times\) Ideo con z | 0.05 | [-0.01, 0.11] | 1.71 | 932 | .087 |
m1 <- lm(antiest_z ~ individualism_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | -0.05 | 991 | .958 |
Individualism z | -0.01 | [-0.07, 0.06] | -0.17 | 991 | .863 |
m1 <- lm(antiest_z ~ individualism_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.12 | [-2.00, 1.76] | -0.13 | 828 | .898 |
Individualism z | 0.00 | [-0.07, 0.06] | -0.11 | 828 | .916 |
SDO z | -0.12 | [-0.19, -0.05] | -3.45 | 828 | < .001 |
TIPI agree z | -0.13 | [-0.20, -0.06] | -3.78 | 828 | < .001 |
Genderwoman | 0.15 | [0.02, 0.29] | 2.20 | 828 | .028 |
RaceAsian | 0.31 | [-1.59, 2.21] | 0.32 | 828 | .750 |
RaceBlack or African American | -0.12 | [-2.01, 1.76] | -0.13 | 828 | .900 |
RaceMiddle Eastern or North African | -1.48 | [-4.13, 1.16] | -1.10 | 828 | .272 |
Racemultiracial | 0.11 | [-1.79, 2.01] | 0.11 | 828 | .909 |
RaceOther please specify | 0.27 | [-2.03, 2.57] | 0.23 | 828 | .819 |
RaceWhite | 0.02 | [-1.86, 1.90] | 0.02 | 828 | .987 |
Hispanic | 0.19 | [-0.06, 0.45] | 1.52 | 828 | .130 |
Income num z | -0.07 | [-0.15, 0.00] | -2.00 | 828 | .046 |
Edu num z | -0.16 | [-0.23, -0.09] | -4.50 | 828 | < .001 |
Age z | 0.00 | [-0.07, 0.06] | -0.13 | 828 | .895 |
County medianincome z | -0.03 | [-0.10, 0.04] | -0.91 | 828 | .361 |
County gini z | -0.13 | [-0.21, -0.04] | -3.00 | 828 | .003 |
County density z | 0.01 | [-0.07, 0.09] | 0.22 | 828 | .827 |
m1 <- lm(antiest_z ~ individualism_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.01 | [-0.08, 0.05] | -0.39 | 932 | .696 |
Individualism z | 0.00 | [-0.07, 0.06] | -0.12 | 932 | .902 |
Ideo con z | -0.13 | [-0.20, -0.07] | -4.01 | 932 | < .001 |
Individualism z \(\times\) Ideo con z | -0.02 | [-0.07, 0.03] | -0.73 | 932 | .466 |
m1 <- lm(antiest_z ~ justice_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.05] | -0.10 | 990 | .916 |
Justice z | -0.36 | [-0.42, -0.30] | -12.22 | 990 | < .001 |
m1 <- lm(antiest_z ~ justice_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.40 | [-2.18, 1.39] | -0.44 | 827 | .663 |
Justice z | -0.31 | [-0.38, -0.25] | -9.76 | 827 | < .001 |
SDO z | -0.09 | [-0.16, -0.03] | -2.88 | 827 | .004 |
TIPI agree z | -0.07 | [-0.14, 0.00] | -2.03 | 827 | .042 |
Genderwoman | 0.05 | [-0.07, 0.18] | 0.84 | 827 | .404 |
RaceAsian | 0.56 | [-1.24, 2.36] | 0.61 | 827 | .540 |
RaceBlack or African American | 0.21 | [-1.57, 2.00] | 0.23 | 827 | .815 |
RaceMiddle Eastern or North African | -1.02 | [-3.53, 1.48] | -0.80 | 827 | .424 |
Racemultiracial | 0.32 | [-1.47, 2.12] | 0.35 | 827 | .723 |
RaceOther please specify | 0.32 | [-1.86, 2.49] | 0.29 | 827 | .775 |
RaceWhite | 0.36 | [-1.42, 2.14] | 0.40 | 827 | .693 |
Hispanic | 0.11 | [-0.13, 0.35] | 0.93 | 827 | .354 |
Income num z | -0.06 | [-0.13, 0.01] | -1.82 | 827 | .070 |
Edu num z | -0.14 | [-0.21, -0.08] | -4.17 | 827 | < .001 |
Age z | 0.00 | [-0.07, 0.06] | -0.05 | 827 | .962 |
County medianincome z | -0.03 | [-0.09, 0.04] | -0.75 | 827 | .453 |
County gini z | -0.11 | [-0.19, -0.04] | -2.85 | 827 | .005 |
County density z | 0.02 | [-0.06, 0.09] | 0.41 | 827 | .684 |
m1 <- lm(antiest_z ~ justice_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.02 | [-0.08, 0.04] | -0.67 | 931 | .502 |
Justice z | -0.36 | [-0.43, -0.30] | -11.49 | 931 | < .001 |
Ideo con z | -0.08 | [-0.14, -0.02] | -2.53 | 931 | .012 |
Justice z \(\times\) Ideo con z | 0.03 | [-0.03, 0.09] | 1.02 | 931 | .310 |
m1 <- lm(antiest_z ~ happiness_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | -0.07 | 990 | .943 |
Happiness z | -0.19 | [-0.25, -0.12] | -5.95 | 990 | < .001 |
m1 <- lm(antiest_z ~ happiness_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.21 | [-2.06, 1.63] | -0.23 | 828 | .820 |
Happiness z | -0.19 | [-0.26, -0.13] | -5.75 | 828 | < .001 |
SDO z | -0.10 | [-0.16, -0.03] | -2.82 | 828 | .005 |
TIPI agree z | -0.11 | [-0.18, -0.05] | -3.33 | 828 | < .001 |
Genderwoman | 0.11 | [-0.02, 0.24] | 1.63 | 828 | .103 |
RaceAsian | 0.42 | [-1.44, 2.29] | 0.45 | 828 | .655 |
RaceBlack or African American | -0.02 | [-1.86, 1.83] | -0.02 | 828 | .987 |
RaceMiddle Eastern or North African | -1.45 | [-4.04, 1.15] | -1.10 | 828 | .273 |
Racemultiracial | 0.20 | [-1.66, 2.07] | 0.22 | 828 | .830 |
RaceOther please specify | 0.26 | [-2.00, 2.51] | 0.22 | 828 | .822 |
RaceWhite | 0.14 | [-1.71, 1.98] | 0.15 | 828 | .883 |
Hispanic | 0.14 | [-0.10, 0.39] | 1.13 | 828 | .258 |
Income num z | -0.06 | [-0.14, 0.01] | -1.78 | 828 | .075 |
Edu num z | -0.17 | [-0.24, -0.10] | -4.71 | 828 | < .001 |
Age z | 0.00 | [-0.07, 0.06] | -0.09 | 828 | .928 |
County medianincome z | -0.04 | [-0.11, 0.03] | -1.08 | 828 | .282 |
County gini z | -0.12 | [-0.21, -0.04] | -2.98 | 828 | .003 |
County density z | 0.01 | [-0.07, 0.09] | 0.36 | 828 | .719 |
m1 <- lm(antiest_z ~ happiness_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.01 | [-0.07, 0.06] | -0.27 | 931 | .785 |
Happiness z | -0.16 | [-0.22, -0.09] | -4.66 | 931 | < .001 |
Ideo con z | -0.10 | [-0.17, -0.04] | -3.11 | 931 | .002 |
Happiness z \(\times\) Ideo con z | -0.01 | [-0.08, 0.05] | -0.47 | 931 | .641 |
m1 <- lm(antiest_z ~ arms_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | -0.02 | 991 | .980 |
Arms z | 0.12 | [0.06, 0.19] | 3.91 | 991 | < .001 |
m1 <- lm(antiest_z ~ arms_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.08 | [-1.95, 1.80] | -0.08 | 828 | .936 |
Arms z | 0.08 | [0.02, 0.15] | 2.53 | 828 | .012 |
SDO z | -0.12 | [-0.19, -0.05] | -3.45 | 828 | < .001 |
TIPI agree z | -0.13 | [-0.20, -0.06] | -3.77 | 828 | < .001 |
Genderwoman | 0.15 | [0.02, 0.28] | 2.21 | 828 | .027 |
RaceAsian | 0.27 | [-1.63, 2.16] | 0.28 | 828 | .782 |
RaceBlack or African American | -0.17 | [-2.05, 1.71] | -0.18 | 828 | .858 |
RaceMiddle Eastern or North African | -1.48 | [-4.12, 1.15] | -1.10 | 828 | .270 |
Racemultiracial | 0.04 | [-1.85, 1.93] | 0.04 | 828 | .965 |
RaceOther please specify | 0.28 | [-2.01, 2.57] | 0.24 | 828 | .812 |
RaceWhite | -0.02 | [-1.90, 1.85] | -0.02 | 828 | .981 |
Hispanic | 0.16 | [-0.10, 0.41] | 1.21 | 828 | .226 |
Income num z | -0.07 | [-0.14, 0.00] | -1.93 | 828 | .054 |
Edu num z | -0.16 | [-0.23, -0.09] | -4.31 | 828 | < .001 |
Age z | -0.01 | [-0.08, 0.06] | -0.22 | 828 | .828 |
County medianincome z | -0.03 | [-0.10, 0.04] | -0.91 | 828 | .364 |
County gini z | -0.13 | [-0.22, -0.05] | -3.13 | 828 | .002 |
County density z | 0.01 | [-0.07, 0.10] | 0.35 | 828 | .724 |
m1 <- lm(antiest_z ~ arms_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.01 | [-0.08, 0.05] | -0.46 | 931 | .649 |
Arms z | 0.11 | [0.04, 0.18] | 3.11 | 931 | .002 |
Ideo con z | -0.12 | [-0.19, -0.06] | -3.84 | 931 | < .001 |
Arms z \(\times\) Ideo con z | -0.02 | [-0.09, 0.05] | -0.48 | 931 | .634 |
m1 <- lm(antiest_z ~ tolerance_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | -0.05 | 991 | .958 |
Tolerance z | -0.14 | [-0.20, -0.08] | -4.42 | 991 | < .001 |
m1 <- lm(antiest_z ~ tolerance_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.23 | [-2.08, 1.61] | -0.25 | 828 | .804 |
Tolerance z | -0.24 | [-0.32, -0.16] | -5.92 | 828 | < .001 |
SDO z | -0.12 | [-0.18, -0.05] | -3.40 | 828 | < .001 |
TIPI agree z | -0.12 | [-0.19, -0.06] | -3.61 | 828 | < .001 |
Genderwoman | 0.13 | [0.00, 0.26] | 1.90 | 828 | .058 |
RaceAsian | 0.39 | [-1.47, 2.26] | 0.42 | 828 | .678 |
RaceBlack or African American | 0.00 | [-1.85, 1.85] | 0.00 | 828 | .999 |
RaceMiddle Eastern or North African | -1.38 | [-3.97, 1.21] | -1.04 | 828 | .296 |
Racemultiracial | 0.20 | [-1.66, 2.06] | 0.21 | 828 | .832 |
RaceOther please specify | 0.29 | [-1.96, 2.54] | 0.25 | 828 | .800 |
RaceWhite | 0.14 | [-1.70, 1.98] | 0.15 | 828 | .881 |
Hispanic | 0.15 | [-0.09, 0.40] | 1.22 | 828 | .222 |
Income num z | -0.07 | [-0.14, 0.00] | -1.87 | 828 | .062 |
Edu num z | -0.16 | [-0.23, -0.09] | -4.43 | 828 | < .001 |
Age z | -0.02 | [-0.08, 0.05] | -0.46 | 828 | .646 |
County medianincome z | -0.03 | [-0.10, 0.04] | -0.81 | 828 | .417 |
County gini z | -0.13 | [-0.21, -0.05] | -3.12 | 828 | .002 |
County density z | 0.02 | [-0.06, 0.10] | 0.57 | 828 | .567 |
m1 <- lm(antiest_z ~ tolerance_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.01 | [-0.07, 0.05] | -0.25 | 932 | .799 |
Tolerance z | -0.23 | [-0.31, -0.15] | -5.61 | 932 | < .001 |
Ideo con z | -0.12 | [-0.19, -0.06] | -3.86 | 932 | < .001 |
Tolerance z \(\times\) Ideo con z | -0.13 | [-0.19, -0.06] | -3.79 | 932 | < .001 |
interact_plot(m1,
pred = "tolerance_z",
modx = "ideo_con_z")
m1 <- lm(trust_deminst_z ~ democracy_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | 0.00 | 992 | > .999 |
Democracy z | 0.33 | [0.27, 0.39] | 11.06 | 992 | < .001 |
m1 <- lm(trust_deminst_z ~ democracy_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.73 | [-1.09, 2.55] | 0.79 | 829 | .431 |
Democracy z | 0.26 | [0.20, 0.33] | 8.13 | 829 | < .001 |
SDO z | 0.06 | [-0.01, 0.12] | 1.70 | 829 | .089 |
TIPI agree z | 0.16 | [0.10, 0.23] | 4.77 | 829 | < .001 |
Genderwoman | -0.15 | [-0.28, -0.02] | -2.26 | 829 | .024 |
RaceAsian | -0.76 | [-2.60, 1.08] | -0.81 | 829 | .418 |
RaceBlack or African American | -0.44 | [-2.26, 1.38] | -0.47 | 829 | .637 |
RaceMiddle Eastern or North African | 0.23 | [-2.33, 2.78] | 0.17 | 829 | .862 |
Racemultiracial | -0.91 | [-2.74, 0.93] | -0.97 | 829 | .331 |
RaceOther please specify | -0.71 | [-2.93, 1.51] | -0.63 | 829 | .531 |
RaceWhite | -0.66 | [-2.47, 1.16] | -0.71 | 829 | .476 |
Hispanic | -0.09 | [-0.33, 0.15] | -0.75 | 829 | .454 |
Income num z | 0.02 | [-0.05, 0.09] | 0.61 | 829 | .544 |
Edu num z | 0.09 | [0.02, 0.16] | 2.65 | 829 | .008 |
Age z | -0.01 | [-0.08, 0.05] | -0.33 | 829 | .744 |
County medianincome z | 0.04 | [-0.03, 0.10] | 1.04 | 829 | .296 |
County gini z | 0.06 | [-0.02, 0.15] | 1.59 | 829 | .113 |
County density z | 0.04 | [-0.04, 0.12] | 1.07 | 829 | .285 |
m1 <- lm(trust_deminst_z ~ democracy_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | 0.09 | 932 | .927 |
Democracy z | 0.40 | [0.34, 0.46] | 12.88 | 932 | < .001 |
Ideo con z | 0.13 | [0.08, 0.19] | 4.48 | 932 | < .001 |
Democracy z \(\times\) Ideo con z | 0.07 | [0.01, 0.13] | 2.41 | 932 | .016 |
interact_plot(m1,
pred = "democracy_z",
modx = "ideo_con_z")
m1 <- lm(trust_deminst_z ~ equality_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | 0.00 | 992 | > .999 |
Equality z | 0.31 | [0.25, 0.37] | 10.20 | 992 | < .001 |
m1 <- lm(trust_deminst_z ~ equality_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 1.09 | [-0.71, 2.90] | 1.19 | 829 | .235 |
Equality z | 0.28 | [0.22, 0.35] | 8.79 | 829 | < .001 |
SDO z | 0.03 | [-0.04, 0.09] | 0.83 | 829 | .408 |
TIPI agree z | 0.16 | [0.10, 0.23] | 4.78 | 829 | < .001 |
Genderwoman | -0.14 | [-0.27, -0.02] | -2.21 | 829 | .027 |
RaceAsian | -1.06 | [-2.89, 0.76] | -1.14 | 829 | .253 |
RaceBlack or African American | -0.79 | [-2.60, 1.01] | -0.86 | 829 | .389 |
RaceMiddle Eastern or North African | 0.03 | [-2.51, 2.56] | 0.02 | 829 | .984 |
Racemultiracial | -1.31 | [-3.13, 0.51] | -1.41 | 829 | .159 |
RaceOther please specify | -1.42 | [-3.62, 0.78] | -1.26 | 829 | .207 |
RaceWhite | -1.03 | [-2.83, 0.77] | -1.12 | 829 | .263 |
Hispanic | -0.04 | [-0.28, 0.20] | -0.34 | 829 | .732 |
Income num z | 0.02 | [-0.05, 0.09] | 0.63 | 829 | .526 |
Edu num z | 0.11 | [0.04, 0.18] | 3.20 | 829 | .001 |
Age z | 0.01 | [-0.05, 0.08] | 0.43 | 829 | .667 |
County medianincome z | 0.03 | [-0.04, 0.10] | 0.86 | 829 | .389 |
County gini z | 0.06 | [-0.02, 0.14] | 1.54 | 829 | .125 |
County density z | 0.05 | [-0.03, 0.12] | 1.16 | 829 | .245 |
m1 <- lm(trust_deminst_z ~ equality_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | -0.03 | 932 | .978 |
Equality z | 0.30 | [0.24, 0.36] | 9.42 | 932 | < .001 |
Ideo con z | 0.06 | [0.00, 0.12] | 1.86 | 932 | .063 |
Equality z \(\times\) Ideo con z | -0.03 | [-0.09, 0.04] | -0.81 | 932 | .417 |
m1 <- lm(trust_deminst_z ~ freedom_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | 0.03 | 991 | .975 |
Freedom z | 0.26 | [0.20, 0.32] | 8.49 | 991 | < .001 |
m1 <- lm(trust_deminst_z ~ freedom_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.80 | [-1.01, 2.62] | 0.87 | 828 | .386 |
Freedom z | 0.26 | [0.20, 0.32] | 8.01 | 828 | < .001 |
SDO z | 0.02 | [-0.05, 0.08] | 0.47 | 828 | .639 |
TIPI agree z | 0.16 | [0.09, 0.23] | 4.75 | 828 | < .001 |
Genderwoman | -0.15 | [-0.28, -0.02] | -2.32 | 828 | .021 |
RaceAsian | -0.81 | [-2.64, 1.03] | -0.86 | 828 | .390 |
RaceBlack or African American | -0.47 | [-2.29, 1.35] | -0.50 | 828 | .614 |
RaceMiddle Eastern or North African | 0.16 | [-2.40, 2.71] | 0.12 | 828 | .905 |
Racemultiracial | -1.02 | [-2.85, 0.82] | -1.09 | 828 | .277 |
RaceOther please specify | -1.30 | [-3.51, 0.92] | -1.15 | 828 | .252 |
RaceWhite | -0.73 | [-2.55, 1.08] | -0.79 | 828 | .428 |
Hispanic | -0.10 | [-0.34, 0.14] | -0.79 | 828 | .430 |
Income num z | 0.01 | [-0.06, 0.08] | 0.23 | 828 | .817 |
Edu num z | 0.15 | [0.08, 0.22] | 4.34 | 828 | < .001 |
Age z | 0.00 | [-0.06, 0.07] | 0.04 | 828 | .968 |
County medianincome z | 0.03 | [-0.03, 0.10] | 0.95 | 828 | .341 |
County gini z | 0.07 | [-0.01, 0.16] | 1.83 | 828 | .068 |
County density z | 0.04 | [-0.04, 0.12] | 1.05 | 828 | .296 |
m1 <- lm(trust_deminst_z ~ freedom_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.01 | [-0.05, 0.08] | 0.47 | 932 | .637 |
Freedom z | 0.26 | [0.20, 0.32] | 8.08 | 932 | < .001 |
Ideo con z | 0.06 | [0.00, 0.12] | 1.86 | 932 | .063 |
Freedom z \(\times\) Ideo con z | -0.12 | [-0.18, -0.06] | -3.90 | 932 | < .001 |
interact_plot(m1,
pred = "freedom_z",
modx = "ideo_con_z")
m1 <- lm(trust_deminst_z ~ individualism_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | 0.03 | 991 | .976 |
Individualism z | 0.04 | [-0.03, 0.10] | 1.17 | 991 | .244 |
m1 <- lm(trust_deminst_z ~ individualism_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 1.21 | [-0.68, 3.09] | 1.26 | 828 | .209 |
Individualism z | 0.02 | [-0.05, 0.09] | 0.62 | 828 | .533 |
SDO z | 0.04 | [-0.03, 0.10] | 1.03 | 828 | .303 |
TIPI agree z | 0.19 | [0.13, 0.26] | 5.54 | 828 | < .001 |
Genderwoman | -0.16 | [-0.30, -0.03] | -2.36 | 828 | .018 |
RaceAsian | -1.20 | [-3.10, 0.71] | -1.23 | 828 | .218 |
RaceBlack or African American | -0.90 | [-2.79, 0.99] | -0.93 | 828 | .350 |
RaceMiddle Eastern or North African | -0.35 | [-3.00, 2.30] | -0.26 | 828 | .794 |
Racemultiracial | -1.43 | [-3.33, 0.48] | -1.47 | 828 | .142 |
RaceOther please specify | -1.25 | [-3.55, 1.05] | -1.07 | 828 | .287 |
RaceWhite | -1.12 | [-3.00, 0.77] | -1.16 | 828 | .245 |
Hispanic | -0.14 | [-0.39, 0.11] | -1.10 | 828 | .271 |
Income num z | 0.02 | [-0.05, 0.09] | 0.58 | 828 | .560 |
Edu num z | 0.14 | [0.07, 0.21] | 3.79 | 828 | < .001 |
Age z | -0.01 | [-0.08, 0.06] | -0.22 | 828 | .826 |
County medianincome z | 0.03 | [-0.04, 0.10] | 0.83 | 828 | .408 |
County gini z | 0.07 | [-0.01, 0.15] | 1.65 | 828 | .100 |
County density z | 0.06 | [-0.02, 0.14] | 1.39 | 828 | .164 |
m1 <- lm(trust_deminst_z ~ individualism_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.07, 0.06] | -0.06 | 932 | .952 |
Individualism z | 0.03 | [-0.03, 0.10] | 1.07 | 932 | .284 |
Ideo con z | 0.10 | [0.03, 0.16] | 3.03 | 932 | .003 |
Individualism z \(\times\) Ideo con z | 0.03 | [-0.02, 0.08] | 1.17 | 932 | .243 |
m1 <- lm(trust_deminst_z ~ justice_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.05, 0.06] | 0.08 | 990 | .940 |
Justice z | 0.44 | [0.39, 0.50] | 15.53 | 990 | < .001 |
m1 <- lm(trust_deminst_z ~ justice_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 1.54 | [-0.19, 3.27] | 1.75 | 827 | .081 |
Justice z | 0.39 | [0.33, 0.45] | 12.50 | 827 | < .001 |
SDO z | 0.00 | [-0.06, 0.07] | 0.13 | 827 | .900 |
TIPI agree z | 0.12 | [0.05, 0.18] | 3.52 | 827 | < .001 |
Genderwoman | -0.05 | [-0.17, 0.08] | -0.73 | 827 | .464 |
RaceAsian | -1.51 | [-3.26, 0.24] | -1.69 | 827 | .091 |
RaceBlack or African American | -1.31 | [-3.04, 0.42] | -1.49 | 827 | .138 |
RaceMiddle Eastern or North African | -0.93 | [-3.36, 1.50] | -0.75 | 827 | .454 |
Racemultiracial | -1.69 | [-3.43, 0.06] | -1.90 | 827 | .058 |
RaceOther please specify | -1.31 | [-3.42, 0.81] | -1.21 | 827 | .226 |
RaceWhite | -1.54 | [-3.26, 0.19] | -1.74 | 827 | .082 |
Hispanic | -0.03 | [-0.26, 0.20] | -0.29 | 827 | .775 |
Income num z | 0.01 | [-0.06, 0.08] | 0.25 | 827 | .802 |
Edu num z | 0.11 | [0.05, 0.18] | 3.40 | 827 | < .001 |
Age z | -0.01 | [-0.08, 0.05] | -0.39 | 827 | .695 |
County medianincome z | 0.02 | [-0.04, 0.09] | 0.67 | 827 | .504 |
County gini z | 0.06 | [-0.02, 0.13] | 1.42 | 827 | .155 |
County density z | 0.05 | [-0.03, 0.12] | 1.28 | 827 | .201 |
m1 <- lm(trust_deminst_z ~ justice_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.01 | [-0.05, 0.07] | 0.27 | 931 | .791 |
Justice z | 0.44 | [0.38, 0.50] | 14.49 | 931 | < .001 |
Ideo con z | 0.03 | [-0.02, 0.09] | 1.15 | 931 | .249 |
Justice z \(\times\) Ideo con z | -0.04 | [-0.10, 0.02] | -1.39 | 931 | .165 |
m1 <- lm(trust_deminst_z ~ happiness_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | 0.05 | 990 | .962 |
Happiness z | 0.23 | [0.17, 0.30] | 7.59 | 990 | < .001 |
m1 <- lm(trust_deminst_z ~ happiness_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 1.31 | [-0.52, 3.15] | 1.41 | 828 | .160 |
Happiness z | 0.23 | [0.17, 0.30] | 7.03 | 828 | < .001 |
SDO z | 0.01 | [-0.06, 0.07] | 0.19 | 828 | .845 |
TIPI agree z | 0.17 | [0.11, 0.24] | 5.04 | 828 | < .001 |
Genderwoman | -0.12 | [-0.25, 0.02] | -1.72 | 828 | .086 |
RaceAsian | -1.34 | [-3.19, 0.52] | -1.41 | 828 | .157 |
RaceBlack or African American | -1.02 | [-2.86, 0.81] | -1.09 | 828 | .274 |
RaceMiddle Eastern or North African | -0.40 | [-2.97, 2.18] | -0.30 | 828 | .761 |
Racemultiracial | -1.54 | [-3.39, 0.31] | -1.63 | 828 | .103 |
RaceOther please specify | -1.23 | [-3.47, 1.00] | -1.08 | 828 | .279 |
RaceWhite | -1.26 | [-3.09, 0.57] | -1.35 | 828 | .177 |
Hispanic | -0.07 | [-0.32, 0.17] | -0.58 | 828 | .559 |
Income num z | 0.01 | [-0.06, 0.08] | 0.26 | 828 | .796 |
Edu num z | 0.14 | [0.07, 0.21] | 4.08 | 828 | < .001 |
Age z | -0.01 | [-0.08, 0.06] | -0.33 | 828 | .744 |
County medianincome z | 0.04 | [-0.03, 0.10] | 1.07 | 828 | .287 |
County gini z | 0.07 | [-0.01, 0.15] | 1.62 | 828 | .106 |
County density z | 0.05 | [-0.03, 0.13] | 1.26 | 828 | .210 |
m1 <- lm(trust_deminst_z ~ happiness_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.01 | [-0.06, 0.07] | 0.25 | 931 | .804 |
Happiness z | 0.24 | [0.17, 0.30] | 7.22 | 931 | < .001 |
Ideo con z | 0.06 | [-0.01, 0.12] | 1.71 | 931 | .087 |
Happiness z \(\times\) Ideo con z | -0.06 | [-0.12, 0.00] | -2.10 | 931 | .036 |
m1 <- lm(trust_deminst_z ~ arms_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | 0.02 | 991 | .987 |
Arms z | -0.16 | [-0.22, -0.10] | -5.10 | 991 | < .001 |
m1 <- lm(trust_deminst_z ~ arms_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 1.13 | [-0.73, 3.00] | 1.19 | 828 | .234 |
Arms z | -0.14 | [-0.20, -0.07] | -4.17 | 828 | < .001 |
SDO z | 0.03 | [-0.03, 0.10] | 0.95 | 828 | .340 |
TIPI agree z | 0.19 | [0.12, 0.26] | 5.52 | 828 | < .001 |
Genderwoman | -0.16 | [-0.30, -0.03] | -2.42 | 828 | .016 |
RaceAsian | -1.13 | [-3.02, 0.76] | -1.18 | 828 | .240 |
RaceBlack or African American | -0.82 | [-2.69, 1.05] | -0.86 | 828 | .391 |
RaceMiddle Eastern or North African | -0.36 | [-2.98, 2.27] | -0.27 | 828 | .790 |
Racemultiracial | -1.32 | [-3.20, 0.56] | -1.37 | 828 | .170 |
RaceOther please specify | -1.27 | [-3.55, 1.01] | -1.09 | 828 | .275 |
RaceWhite | -1.05 | [-2.92, 0.81] | -1.11 | 828 | .268 |
Hispanic | -0.07 | [-0.32, 0.18] | -0.57 | 828 | .567 |
Income num z | 0.02 | [-0.06, 0.09] | 0.43 | 828 | .666 |
Edu num z | 0.13 | [0.05, 0.20] | 3.47 | 828 | < .001 |
Age z | -0.01 | [-0.07, 0.06] | -0.17 | 828 | .868 |
County medianincome z | 0.03 | [-0.04, 0.10] | 0.82 | 828 | .413 |
County gini z | 0.07 | [-0.01, 0.16] | 1.75 | 828 | .080 |
County density z | 0.05 | [-0.03, 0.13] | 1.25 | 828 | .212 |
m1 <- lm(trust_deminst_z ~ arms_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | 0.04 | 931 | .969 |
Arms z | -0.14 | [-0.21, -0.07] | -4.00 | 931 | < .001 |
Ideo con z | 0.09 | [0.03, 0.15] | 2.79 | 931 | .005 |
Arms z \(\times\) Ideo con z | 0.04 | [-0.03, 0.11] | 1.05 | 931 | .295 |
m1 <- lm(trust_deminst_z ~ tolerance_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 0.00 | [-0.06, 0.06] | 0.03 | 991 | .976 |
Tolerance z | 0.10 | [0.03, 0.16] | 3.01 | 991 | .003 |
m1 <- lm(trust_deminst_z ~ tolerance_z + SDO_z + TIPI_agree_z + gender + race + hispanic + income_num_z + edu_num_z + age_z + county_medianincome_z + county_gini_z + county_density_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | 1.27 | [-0.60, 3.14] | 1.33 | 828 | .184 |
Tolerance z | 0.15 | [0.06, 0.23] | 3.51 | 828 | < .001 |
SDO z | 0.03 | [-0.04, 0.10] | 0.93 | 828 | .351 |
TIPI agree z | 0.19 | [0.12, 0.26] | 5.41 | 828 | < .001 |
Genderwoman | -0.15 | [-0.29, -0.02] | -2.22 | 828 | .027 |
RaceAsian | -1.25 | [-3.14, 0.65] | -1.29 | 828 | .197 |
RaceBlack or African American | -0.97 | [-2.84, 0.91] | -1.01 | 828 | .311 |
RaceMiddle Eastern or North African | -0.42 | [-3.05, 2.21] | -0.31 | 828 | .753 |
Racemultiracial | -1.48 | [-3.37, 0.41] | -1.54 | 828 | .125 |
RaceOther please specify | -1.26 | [-3.55, 1.03] | -1.08 | 828 | .280 |
RaceWhite | -1.19 | [-3.06, 0.68] | -1.24 | 828 | .214 |
Hispanic | -0.11 | [-0.36, 0.14] | -0.87 | 828 | .384 |
Income num z | 0.02 | [-0.06, 0.09] | 0.45 | 828 | .651 |
Edu num z | 0.14 | [0.06, 0.21] | 3.75 | 828 | < .001 |
Age z | 0.00 | [-0.07, 0.07] | -0.08 | 828 | .938 |
County medianincome z | 0.03 | [-0.04, 0.10] | 0.81 | 828 | .421 |
County gini z | 0.07 | [-0.01, 0.16] | 1.72 | 828 | .085 |
County density z | 0.05 | [-0.03, 0.13] | 1.18 | 828 | .238 |
m1 <- lm(trust_deminst_z ~ tolerance_z*ideo_con_z,data = df_bsc_elg)
apa_lm <- apa_print(m1)
apa_table(
apa_lm$table,
placement = "H"
)
Predictor | \(b\) | 95% CI | \(t\) | \(\mathit{df}\) | \(p\) |
---|---|---|---|---|---|
Intercept | -0.01 | [-0.07, 0.06] | -0.22 | 932 | .826 |
Tolerance z | 0.21 | [0.13, 0.29] | 5.28 | 932 | < .001 |
Ideo con z | 0.09 | [0.03, 0.15] | 2.82 | 932 | .005 |
Tolerance z \(\times\) Ideo con z | 0.17 | [0.10, 0.23] | 4.99 | 932 | < .001 |
interact_plot(m1,
pred = "tolerance_z",
modx = "ideo_con_z")