TRM 2000-2024 -Analisis Financiero- Labortatio 1

Datos_TRM = read.table("C:/Users/Felipe/OneDrive - INSTITUTO TECNOLOGICO METROPOLITANO - ITM/Derivados Financieros/TRM/basetrm.txt", header = TRUE)

# Guardar el archivo como un archivo HTML
library(knitr)
## Warning: package 'knitr' was built under R version 4.3.2
# Convertir la tabla a HTML
html_TRM <- kable(Datos_TRM, format = "html")

# Guardar el código HTML en un archivo
write(html_TRM, "tabla_trm.html")

head(Datos_TRM)
##       Fecha     TRM
## 1 1/01/2000 1873.77
## 2 2/01/2000 1873.77
## 3 3/01/2000 1873.77
## 4 4/01/2000 1874.35
## 5 5/01/2000 1895.97
## 6 6/01/2000 1912.69
# Transformacion al formato de fecha adecuado
Datos_TRM[,"Fecha"]<-as.Date(Datos_TRM[,"Fecha"],format = "%d/%m/%Y")
class(Datos_TRM[,"Fecha"])
## [1] "Date"

Graficacion de datos del precio de la TRM 2000-2024

plot(Datos_TRM[,"Fecha"],Datos_TRM[,"TRM"], type = "l", col="skyblue", main = "Serie Historica TRM 2000 - 2024")

Acorde al grafico, se puede inferir que la serie de tiempo analizada de los precios históricos de la TRM desde los 2000 a la fecha del año 2024, presentan un comportamiento de variación irregular, es decir, son cambios en la serie de corto plazo que por su aleatoriedad son difíciles modelarlos para proyecciones futuras. Esto por ejemplo se observa que entre los 10 primeros años la serie presentaba una tendencia con con precios aleatorios decrecientes, pero a partir del 2010 al 2024 los precios de la TRM presentan históricamente un tendencia irregular creciente.

plot(Datos_TRM[-1,"Fecha"], diff(log(Datos_TRM[,"TRM"])), type = "l", col="pink", 
     main = "Serie Historica Rendimientos diarios de la TRM")

Se puede observar del grafico anterior que en la mayor parte de este se mantiene una volatilidad constante desde aproximadamente el año 2000 al 2009 lo que se concluye que tuvo una estabilidad en el mercado, en los años siguientes se observa que tiene cambios positivos lo que nos puede indicar que la moneda se esta fortaleciendo y creciendo en su valor. Un caso de este es en el 2020 ya que se presento una pandemia lo que ocasiono que todo el mercado creciera y así incrementaran los valores de los productos.

Distribución de frecuencias

hist(Datos_TRM[,"TRM"], breaks = 30, col="yellow", main = "Histograma de los Precios de la TRM", freq = FALSE)

La grafica nos muestra unas fluctuaciones en sus precios entre los valores de 1500 y 5000, en este rango de precios se mantuvo la TRM en los periodos 2000-2024,se puede observar que ha tenido un crecimiento de precios constante debido a cambios en la política y un aumento en la tasa de inflación, se puede diferenciar que entre el rango de precios de 1500 y 3000 en estos periodos fue el mayor constacia

Rtos_TRM<-diff(log(Datos_TRM[, "TRM"]))
hist(Rtos_TRM, breaks = 50, col = "brown", main = "Histograma de Rendimientos TRM", 
     freq = FALSE, xlim = c(-0.02,0.02))

Con el grafico anterior se puede inferir que los rendimientos de la TRM estuvieron entre un aproximado de -0,02 y 0.02 teniendo mayor constancia en los rendimientos cercanos a 0, evidenciando un alza en un rendimiento cercano a cero pero en una tendencia negativa esto en consecuencia a las volatilidades que presento la TRM en los diferentes años

Datos estadísticos de la TRM entre el periodo 2000 - 2024

max(Datos_TRM[,"TRM"])
## [1] 5061.21
min(Datos_TRM[,"TRM"])
## [1] 1652.41
print("Media de la TRM entre 2000 - 2024")
## [1] "Media de la TRM entre 2000 - 2024"
mean((Datos_TRM[,"TRM"]))
## [1] 2660.824
print("Desviacion Estandar de la TRM")
## [1] "Desviacion Estandar de la TRM"
sd((Datos_TRM[,"TRM"]))
## [1] 762.3418

En términos estadísticos se evidencia que el máximo valor alcanzado de este periodo de la TRM es de 5061,21 y por su parte el menor valor alcanzada es de 1652,41, evidenciando las volatilidades que se tuvieron. Por otra parte, el valor mas constante en estos periodos de la TRM fue de 2660,824 y una dispersión de los precios de la TRM de 762,34

# Es necesario el paquete de "moments" para identificar el sesgo y la curtosis
library(moments)
print("Sesgo")
## [1] "Sesgo"
skewness(Datos_TRM[,"TRM"])
## [1] 0.896888
print("Curtosis")
## [1] "Curtosis"
kurtosis(Datos_TRM[,"TRM"])
## [1] 3.041658

Dado el valor del sesgo con su cercanía a uno se puede inferir que es un sistema de datos sesgado es decir que implica una desviación sistemática de la objetividad o imparcialidad. Adicionalmente, su valor de curtosis al ser un valor positivo de 3,041658 se infiere que tiene una concentración mayor alrededor de la media recalcando sus valores atípicos.

# Percentiles de los valores de la TRM (2000-2024)
quantile(Datos_TRM[,"TRM"],c(0.01,0.05,0.1,0.5,0.75,0.90,0.95,0.99))
##       1%       5%      10%      50%      75%      90%      95%      99% 
## 1762.380 1791.625 1838.275 2389.750 3054.020 3856.000 4093.180 4802.480

Datos estadísticos de los rendimientos de la TRM

max(Rtos_TRM)
## [1] 0.05930667
min(Rtos_TRM)
## [1] -0.05621935
print("Media Rendimientos de la TRM")
## [1] "Media Rendimientos de la TRM"
mean(Rtos_TRM)
## [1] 8.36742e-05
print("Desviacion estandar de los Rendimientos de la TRM")
## [1] "Desviacion estandar de los Rendimientos de la TRM"
sd(Rtos_TRM)
## [1] 0.005923667
skewness(Rtos_TRM)
## [1] 0.2697665
print("Curtosis")
## [1] "Curtosis"
kurtosis(Rtos_TRM)
## [1] 12.81127
quantile(Rtos_TRM,c(0.01,0.05,0.1,0.5,0.75,0.90,0.95,0.99))
##           1%           5%          10%          50%          75%          90% 
## -0.016723469 -0.008985171 -0.005719345  0.000000000  0.001295553  0.005983632 
##          95%          99% 
##  0.009561866  0.019031630
# Estimación de un intervalo de predicción del 90% para los rendimientos de la TRM
quantile(Rtos_TRM, c(0.05,0.95))
##           5%          95% 
## -0.008985171  0.009561866
# ¿Qué probabilidad hay de tener una perdida mayor al 1% en un día?

breaks<-c(min(Rtos_TRM)-0.0000001,-0.01)
corte<-cut(Rtos_TRM,breaks)
tabla<-table(corte)
print(tabla)
## corte
## (-0.0562,-0.01] 
##             359
probabilidad<-tabla/length(Rtos_TRM)
print(probabilidad)
## corte
## (-0.0562,-0.01] 
##      0.04072604

Supuesto de normalidad

# En este caso, se utilizara el promedio aritmetico de los rendimientos de la TRM
hist(Rtos_TRM, breaks = 50, col = "cornsilk", main = "Histograma
     de los rendiemientos", freq = FALSE, xlim = c(-0.02,0.02))
curve(dnorm(x,mean = mean(Rtos_TRM), sd = sd(Rtos_TRM)),-0.02,0.02, add = T,
      col="cadetblue")

En la siguiente grafica podemos observar como los rendimientos han variado a lo largo del tiempo, tienen tendencia creciente debido a que estos han sido la mayoría positivos debido a cambios estacionales o situaciones sociales.

# Comparacion de cuantiles
qqnorm((Rtos_TRM),col="aquamarine")
qqline(Rtos_TRM)

# Comparación de percentiles empiricos con los normales teoricos
cuantiles<-c(0.01,0.025,0.05,0.1,0.25,0.40,0.45,0.5,0.75,0.9,0.95,0.975,0.99)
qnorm(cuantiles,mean = mean(Rtos_TRM),sd=sd(Rtos_TRM))
##  [1] -0.0136968356 -0.0115264995 -0.0096598907 -0.0075078103 -0.0039117784
##  [6] -0.0014170696 -0.0006607018  0.0000836742  0.0040791268  0.0076751587
## [11]  0.0098272391  0.0116938478  0.0138641839
quantile(Rtos_TRM, cuantiles)
##           1%         2.5%           5%          10%          25%          40% 
## -0.016723469 -0.012630315 -0.008985171 -0.005719345 -0.001425601  0.000000000 
##          45%          50%          75%          90%          95%        97.5% 
##  0.000000000  0.000000000  0.001295553  0.005983632  0.009561866  0.013183574 
##          99% 
##  0.019031630

Aplicación de asignación de probabilidad bajo el supuesto de que los rendimientos de la TRM siguen una distribución normal

# Estimación de un intervalo de predicción del 90% para los rendimientos de la TRM
qnorm(c(0.05,0.95),mean = mean(Rtos_TRM),sd=sd(Rtos_TRM))
## [1] -0.009659891  0.009827239
# ¿Qué probabilidad hay de tener una perdida mayor al 1% en un dia?
pnorm(-0.01,mean =mean(Rtos_TRM),sd=sd(Rtos_TRM))
## [1] 0.04435248

Simulación de montecarlo

Numero_iteraciones=10000
TRM_SIMULADA=matrix(,3,Numero_iteraciones)
TRM_Inicial=Datos_TRM[length(Datos_TRM[,"TRM"]), "TRM"]

TRM_SIMULADA[1,]=TRM_Inicial

for(j in 1:Numero_iteraciones){
  for(i in  2:3){
    TRM_SIMULADA[i,j]=TRM_Inicial*exp(rnorm(1,mean = mean(Rtos_TRM),sd=sd(Rtos_TRM)))
  }
}
matplot(TRM_SIMULADA, type ="l", col = "lightpink", main="TRM Simulada")

hist(TRM_SIMULADA[3,],15, main = "Histograma Simulacion TRM 21 de Febrero de 2024", col="aquamarine")

Transfromacion de datos para reconocer la tendencia de posiciones del mercado

TRM_SimuTrp<- t(TRM_SIMULADA)
St<-subset(TRM_SimuTrp, select = 3)
k<-subset(TRM_SimuTrp, select = 1)
largo<- ifelse(St > k, St-k,0)
corto<- ifelse(St < k, k-St,0)
largo_cant<-sum(largo != 0)
corto_cant<-sum(corto != 0)

Posiciones porcentuales en compra de la TRM

Porcentaje_largo<-(largo_cant/10000)*100
print(Porcentaje_largo)
## [1] 50.22

Posiciones procentuales en venta de la TRM

Porcentaje_corto<-(corto_cant/10000)*100
print(Porcentaje_corto)
## [1] 49.78

Representación grafica

Comparacion <- data.frame(Posiciones = c("Posicion en largo/Compra","Posicion en corto/Venta" ),
                          Resultado = c(Porcentaje_largo,Porcentaje_corto))
total<-rep(100, nrow(Comparacion))
barplot(t(as.matrix(Comparacion[,-1])),col = c("gold","cadetblue"),legend.text = TRUE,args.legend = list(x="topright"),
        names.arg = Comparacion$Posiciones,main = "Comparacion entre las Posiciones del Mercado de la TRM",
        xlab = "Posiciones",ylab = "Porcentaje",ylim = c(0,50),beside = TRUE,width = 0.5)
abline(h=50, col="black", lty=2)
legend("topright", legend = c(Porcentaje_largo,Porcentaje_corto),col = c("gold","cadetblue"),lty = 1)

Tiempo = 1:10000
plot(Tiempo, largo,type = "l",col="blue", xlab = "Simulaciones", ylab = "Posiciones", main = "Largo vs Corto")
lines(Tiempo, corto, col="aquamarine")
legend("topright", legend = c("Largo", "Corto"),col = c("blue","aquamarine"),lty = 1)

¿Es necesario acortar la información teniendo en cuenta que la TRM ha variado tanto en 20 años? Sustente su respuesta con fundamentos financieros o económicos.

Teniendo en cuenta que la TRM presento altas volatilidades en este tiempo consideramos no necesario acortar la información de datos, ya que en estos veinticuatro años transcurridos evidenciamos la tendencia que presento la TRM presentando una secuencia en los últimos años positiva en ganancia, es decir, con la información dada las posiciones de compra/larga fue la mas conveniente para la inversión ante la TRM.

Condiciones a evaluar

¿Cual es la probabilidad de obtener una perdida de hasta un 3% en un dia?

Probabilidad_perdida<-pnorm(-0.03,mean =mean(Rtos_TRM),sd=sd(Rtos_TRM))
print(Probabilidad_perdida)
## [1] 1.901571e-07

¿Cual es la probabilidad de ganar hasta un 5% en un dia?

Probabilidad_ganacia<- 1 - pnorm(0.05,mean =mean(Rtos_TRM),sd=sd(Rtos_TRM))
print(Probabilidad_ganacia)
## [1] 0

La probabilidad de perder en un dia hasta el 3% es muy baja y por otro lado, la probabilidad de ganar en un dia hasta el 5% es nula, la TRM debido a sus volatilidades no indica rendimientos en un porcentaje tan elevado en un dia.

¿Si usted invierte 10.000.000 COP cual es la probabilidad de obtener perdidas entre -500.000 Y 500.000 COP en un día?

#Probabilidad:
Inversion = 10000000
Ganancia = 500000
Perdida = -500000

Proporcion_ganancia = Ganancia/Inversion
print(Proporcion_ganancia)
## [1] 0.05

La probabilidad dado los datos indicados de obtener perdidas es del 50%

Simulación Montecarlo del derivado de la TRM entre 5/9/2023 - 23/2/2024

Datos estadisticos del derivado de la TRM

# Derivado de la TRM entre 5/9/2023 - 23/2/2024
TRM_futuros = read.table("C:/Users/Felipe/OneDrive - INSTITUTO TECNOLOGICO METROPOLITANO - ITM/Derivados Financieros/TRM/furutostrm.txt", header = TRUE)

# Guardar el archivo como un archivo HTML
library(knitr)

# Convertir la tabla a HTML
html_TRM_futuros <- kable(TRM_futuros, format = "html")

# Guardar el código HTML en un archivo
write(html_TRM_futuros, "tabla_trm.html")

head(TRM_futuros)
##       Fecha Pcierre
## 1  5/9/2023 4269.00
## 2  6/9/2023 4269.95
## 3  7/9/2023 4228.60
## 4  8/9/2023 4205.56
## 5 11/9/2023 4170.10
## 6 12/9/2023 4156.60
# Rendimientos del derivado
Rtos_futurosTRM<-diff(log(TRM_futuros[,"Pcierre"]))
# Valor promedio de los rendimientos
Media_futuro<- mean(Rtos_futurosTRM)
Media_futuro
## [1] -0.0007339315
# Desviacion de los rendimientos
desvi_futuro<- sd(Rtos_futurosTRM)
desvi_futuro
## [1] 0.01170066
Numero_iteraciones=10000
TRM_futuros_Simu=matrix(,90,Numero_iteraciones)
TRM_futuros_Inicial=TRM_futuros[length(TRM_futuros[,"Pcierre"]), "Pcierre"]
TRM_futuros_Simu[1,]=TRM_futuros_Inicial

for(j in 1:Numero_iteraciones){
  for(i in 2:90){
    TRM_futuros_Simu[i,j]=TRM_futuros_Inicial*exp(rnorm(1,mean = Media_futuro,sd=desvi_futuro)) 
  }
}

FuturoTRM_SIMULADA_TRANS<-t(TRM_futuros_Simu)

matplot(TRM_futuros_Simu,type = "l", col = "aquamarine", main="Futuros TRM  SIMULADA")

Variables

Numero_contratos = 10
Nominal_contrato = 50000    
Precio_inicial = 4198
Exposicion_Total = Numero_contratos*Nominal_contrato*Precio_inicial
Exposicion_Contrato = Exposicion_Total/Numero_contratos
Garantia_Inicial = 0.35
Valor_garantia_inicial = Exposicion_Total*Garantia_Inicial  
Valor_garantia_minima   = Valor_garantia_inicial*0.18

Liquidación del derivado (Futuros de la TRM)

Liq_futuros<-TRM_futuros
Diferencia<-diff((TRM_futuros[,"Pcierre"]))
Diferencia <- append(0, Diferencia)
Liq_futuros<-cbind(Liq_futuros,(Diferencia*Numero_contratos*Nominal_contrato))
colnames(Liq_futuros)<-c("Fecha","Pcierre","Liq_Diaria")

margen<-matrix()
ColumnaA<-matrix()
length(ColumnaA)
## [1] 1
Llamado_margen<-matrix()

for (i in 1:(nrow(Liq_futuros))) {
  ColumnaA[1]=Valor_garantia_inicial
  ColumnaA[i+1] <- ColumnaA[i] + Liq_futuros$Liq_Diaria[i+1]
  Llamado_margen[i] <- if(ColumnaA[i]<Valor_garantia_minima){Valor_garantia_inicial-ColumnaA[i]}
  else{0}
  margen[i]<-ColumnaA[i]+Llamado_margen[i]
}
ColumnaA
##  [1] 734650000 735125000 714450000 702930000 685200000 678450000 663025000
##  [8] 649800000 629650000 638150000 635350000 655950000 654325000 711150000
## [15] 707250000 737900000 724650000 714100000 757850000 789150000 816950000
## [22] 894150000 806750000 777830000 806375000 808500000 797150000 781600000
## [29] 774950000 789525000 745900000 707850000 719200000 684150000 642650000
## [36] 662150000 692650000 670650000 666650000 637450000 631450000 696400000
## [43] 700650000 663700000 687150000 699355000 669650000 621100000 633850000
## [50] 663950000 619300000 646325000 655050000 632025000 634900000 640300000
## [57] 611450000 600100000 590650000 605550000 592225000 555650000 563650000
## [64] 548000000 582000000 584600000 577950000 590950000 601550000 583550000
## [71] 569590000 581550000 588050000 606950000 580100000 565450000 586250000
## [78] 578375000 571000000 579235000 579650000 558550000 583150000 597650000
## [85] 587550000 595055000 590250000 571700000 569900000 572650000 568725000
## [92] 564150000 564600000 566680000 570825000 571650000 578650000 587975000
## [99]        NA
Llamado_margen
##  [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [77] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
margen<-na.omit(margen)


Liq_futuros<-cbind(Liq_futuros,margen,Llamado_margen,Diferencia)

Un intervalo de predicción del 90% del valor de la cuenta de margen para dentro de un mes.

#Base un mes (30 dias)
head(Liq_futuros$margen,30)
##  [1] 734650000 735125000 714450000 702930000 685200000 678450000 663025000
##  [8] 649800000 629650000 638150000 635350000 655950000 654325000 711150000
## [15] 707250000 737900000 724650000 714100000 757850000 789150000 816950000
## [22] 894150000 806750000 777830000 806375000 808500000 797150000 781600000
## [29] 774950000 789525000
#Se calcula la probabilidad con un intervalo de prediccion del 90%
qnorm(c(0.10,0.90),mean = mean(head(Liq_futuros$margen,30)),sd=sd(head(Liq_futuros$margen,30)))
## [1] 647285028 817573972

La probabilidad de perder mas de 10.000.000 COP en un mes

Probabilidad_perder_porce <- 10000000/150000000

pnorm(-Probabilidad_perder_porce,mean =mean(Rtos_futurosTRM),sd=sd(Rtos_futurosTRM))
## [1] 8.75492e-09

Si el margen mínimo es de 130.000.000 COP ¿Cuál es la probabilidad de ser llamado al margen?

El margen minimo es de $130.000.000 la probabilidad de ser llamado al margen es de 0% debido a que el valor minimo del margen es de $647.285.028, si queremos ser llamados al margen la garantía minima debe ser menor a este.

TRM Analisis mediante MBG - Laboratorio 2

Datos_TRM = read.table("C:/Users/Felipe/OneDrive - INSTITUTO TECNOLOGICO METROPOLITANO - ITM/Derivados Financieros/TRM MBG/TRM_MBG.txt", header = TRUE)

Se analiza la serie diaria del precio de la TRM desde 2000-01-31 hasta 2022-09-17

Se descargan los paquetes requeridos

options(warn = -1)
suppressPackageStartupMessages({
  library(knitr)
  library(moments)
  library(magrittr)
  library(plotly)
  library(dplyr)
  library(ggplot2)
  library(stats)
})
# Fijar la base de datos
attach(Datos_TRM)
names(Datos_TRM)
## [1] "Fecha" "TRM"
options(scipen = 999)

Reconocemos la tendencia de los datos

plot(Datos_TRM[, "TRM"], type="l", col="blue")

• La tendencia de la TRM ha sido creciente durante el período de tiempo analizado.

Primera parte

media<-mean((Datos_TRM[,"TRM"]))
media_anualizada <- mean((Datos_TRM[,"TRM"])) * 252
desviacion_estandar <- sd((Datos_TRM[,"TRM"]))
cuantiles <- quantile(Datos_TRM[,"TRM"], c(0.01, 0.05, 0.1, 0.5, 0.75))
sesgo <- skewness(Datos_TRM[,"TRM"])
curtosis <- kurtosis(Datos_TRM[,"TRM"])
maximo_valor <- max(Datos_TRM[,"TRM"])
minimo_valor <- min(Datos_TRM[,"TRM"])


estadistica_descriptiva <- data.frame(
  "Descripción" = c("Media", "Media anualizada", "Desviación estándar", "Cuantiles (1%, 5%, 10%, 50%, 75%)",
                    "Sesgo", "Curtosis", "Máximo valor", "Mínimo valor"),
  "Valor" = c(media, media_anualizada, desviacion_estandar, paste(cuantiles, collapse = ", "),
              sesgo, curtosis, maximo_valor, minimo_valor)
)
  
print(estadistica_descriptiva)
##                         Descripción
## 1                             Media
## 2                  Media anualizada
## 3               Desviación estándar
## 4 Cuantiles (1%, 5%, 10%, 50%, 75%)
## 5                             Sesgo
## 6                          Curtosis
## 7                      Máximo valor
## 8                      Mínimo valor
##                                            Valor
## 1                               2553.40167430087
## 2                               643457.221923819
## 3                               643.276997400928
## 4 1761.485, 1789.54, 1830.77, 2345.47, 2954.1575
## 5                              0.747889447812386
## 6                               2.68518407398657
## 7                                        4627.46
## 8                                        1652.41

1- Análisis Descriptivo

- Media: La TRM promedio durante el período 2000-2022 fue de $2.553,40 COP por USD.

- Media anualizada: La TRM anualizada durante el período 2000-2022 fue de $643.457,22 COP por USD.

- Desviación estándar: La desviación estándar de la TRM fue de $643.2769 COP por USD, lo que significa que en promedio el precio de la TRM puede subir o bajar $643.2769 en un día.

- Máximo: El valor máximo de la TRM fue de $4627.46 COP por USD.

- Mínimo: El valor mínimo de la TRM fue de $1652.41 COP por USD.

Análisis de Autocorrelación:

La TRM tiene una autocorrelación positiva, lo que significa que los valores actuales de la TRM están correlacionados con los valores pasados.

- Sesgo: El sesgo de la TRM es de 0.7478894, lo que indica una asimetría hacia la derecha.

- Curtosis:La curtosis de la TRM es de 2.685184, indica una distribución más aplanada que la normal.

Análisis de Tendencias: Durante el período analizado, la Tasa Representativa del Mercado (TRM) ha mostrado una tendencia creciente.

Esta tendencia al alza de la TRM ha sido influenciada por una serie de factores tanto internos como externos

Factores Externos - Crecimiento de la moneda cambiaria (USD), impulsada por el crecimiento economico de Estados Unidos. - Los conflictos geopolíticos en las regiones productoras. - Eventos económicos globales, como la guerra en Ucrania o la crisis financiera de 2008 en los Estados Unidos. - La pandemia de COVID-19 en 2020

Factores internos -La inflación en Colombia ha superado la de los Estados Unidos en los últimos años. Cuando el Banco de la República emite más pesos para aumentar la oferta monetaria. -Colombia presenta un mayor deficit con respecto a de Estados Unidos

Estadísticas Descriptivas de los Retornos

print("Rendimiento de la TRM")
## [1] "Rendimiento de la TRM"
Rtos_TRM<-diff(log(Datos_TRM[, "TRM"]))
media_Rto <- mean(Rtos_TRM)
desv_Rtos <- sd(Rtos_TRM) * sqrt(252)
sesgo_Rtos <- skewness(Rtos_TRM)
curtosis_Rtos <- kurtosis(Rtos_TRM)
vol_TRM <- sd(Rtos_TRM) * sqrt(252)

# Crear la tabla de datos
Rendimientos <- data.frame(
  "Descripción" = c("Media de los retornos anualizada", "Desviación estándar anualizada", 
                    "Sesgo", "Curtosis", "Volatilidad de la TRM"),
  "Valor" = c(media_Rto, desv_Rtos, sesgo_Rtos, curtosis_Rtos, vol_TRM)
)
print(Rendimientos)
##                        Descripción         Valor
## 1 Media de los retornos anualizada  0.0001038896
## 2   Desviación estándar anualizada  0.0918160270
## 3                            Sesgo  0.2649411282
## 4                         Curtosis 13.8843844743
## 5            Volatilidad de la TRM  0.0918160270

Grafica de los Retornos de la TRM en el tiempo analizado

plot(Rtos_TRM, type="l", col="red")

Cuantos miden los precios y los retornos

length((Datos_TRM[,"TRM"]))
## [1] 8296
length(Rtos_TRM)
## [1] 8295

2- Calcule de manera teórica un intervalo de confianza al 95% sobre los posibles precios futuros de la TRM

quantile(Rtos_TRM, c(0.05,0.95))
##           5%          95% 
## -0.008534254  0.009327293

3- Realizando una simulación MBG con S=Precio de la TRM del 17 de septiembre de 2022, y t=180, volatilidad = histórica de la serie, mu = histórica de la serie, iteraciones = 10000, de los posibles precios futuros.

t=5/12
delta_t<-1/252
N<-t/delta_t
M<-10000
S<-matrix(ncol = M,nrow = (N+1))
S[1,]<-4435.84

for (i in 1:M){
  for (t in 2:(N+1)){
    S[t,i]=S[(t-1),i]*exp((media_Rto-desv_Rtos^2/2)*delta_t+desv_Rtos*sqrt(delta_t)*rnorm(1))
  }
}

matplot(S, type = "l")

Proyeccion de los posibles precios futuros

length((Datos_TRM[,"TRM"]))
## [1] 8296
N+1
## [1] 106
proyeccion1<-matrix(nrow =(8296+105), ncol=1)
proyeccion1[1:8296]<-Datos_TRM[,"TRM"]
matplot(proyeccion1, type="l",ylim =c(1000,6000))

proyeccion2<-matrix(nrow =(8296+105), ncol=M)
proyeccion2[8296:8401,]<-S
matlines(proyeccion2,type="l")

# Intervalo de confianza
alfa<-0.025
q1<-quantile(S[(N+1),],(alfa/2))
q2<-quantile(S[(N+1),],(1-alfa/2))

# Valores entre q1 y q2
valores_vector <- seq(q1, q2, length=100)

Distribución Empírica de precios futuros

plot(density(S[N+1,]), ylab="", xlab="",
     main="Distribución Empírica", lwd = 3)
abline(h = NULL, v =q1, col = 'cadetblue', lwd = 2)
abline(h = NULL, v =q2, col = 'gold', lwd = 2)

Estimación de un intervalo de predicción del 95% para los precios futuros de la TRM

precios_futuros <- proyeccion1[complete.cases(proyeccion1), ]

qnorm(c(0.05,1), mean = mean(precios_futuros), sd=sd(precios_futuros))
## [1] 1495.305      Inf

2. Segunda Parte

Una empresa exportadora que realizó crédito para ejercer una inversión empresarial el 17 de septiembre de 2022 con los siguientes criterios de pago por parte de su capitalizadora de inversión:

Monto de inversión: 1’790.000 USD -Tasa de interés:_ 10% AMV Cuotas: 24 Frecuencia de pago: Mensual

Fechas<- c("17/10/2022","17/11/2022","17/12/2022","17/01/2023","17/02/2023")
Pago_USD<- c(91738,90992,90246,89500,88754)

Frecuencia_Pagos <- data.frame(Fechas = Fechas, Pago_USD = Pago_USD)

print(Frecuencia_Pagos)
##       Fechas Pago_USD
## 1 17/10/2022    91738
## 2 17/11/2022    90992
## 3 17/12/2022    90246
## 4 17/01/2023    89500
## 5 17/02/2023    88754

2.1. Simulación

mu_anu<-mean((Datos_TRM[,"TRM"]))*252
sigma<-sd((Datos_TRM[,"TRM"]))*sqrt(252)

T= 5/12 
delta_t=1/252
N=T/delta_t
M= 1000 # Numero de simulaciones
TRM= matrix(ncol=M, nrow = (N+1))
TRM[1,]=4435.84

for(i in 1:M){
  for (T in 2:(N+1)){
    TRM[T,i]=TRM[(T-1),i]*exp((media_Rto-desv_Rtos^2/2)*delta_t+desv_Rtos*sqrt(delta_t)*rnorm(1))
  }
}

matplot(TRM, type = "l",
        main = "Distribución",
        xlab = "Tiempo",
        ylab = "Precio")

Proyeccion1 = matrix(nrow = (8296 + 105), ncol = 1)
Proyeccion1[1: 8296] = Datos_TRM[,"TRM"]
matplot(Proyeccion1, type="l", ylim = c(1500, 7000))
title("Proyección")
lines(Proyeccion1, col = "black", type = "l")


proyeccion2<-matrix(nrow =(8296+105), ncol=M)
proyeccion2[8296:8401,]<-TRM
matlines(proyeccion2,type="l")

2.2 Simulación Montecarlo Flujo de caja total esperado cuota sin cobertura

# Pagos dado en el planteamiento incial
Cuotas_USD = c(91738,90992,90246,89500,88754)
Cuotas_COP=TRM[2,]*Cuotas_USD[1]

for(j in 2:length(Cuotas_USD)){
  Cuotas_COP=rbind(Cuotas_COP,TRM[j+1,]*Cuotas_USD[j])
}

media_cuotas=vector()
volatilidad_cuotas=vector()
percentil_5_cuotas=vector()
percentil_95_cuotas=vector()

for(l in 1:5){
  media_cuotas[l]=mean(TRM[l+1,]*Cuotas_USD[l])
  volatilidad_cuotas[l]=sd(TRM[l+1,]*Cuotas_USD[l])
  percentil_5_cuotas[l]=quantile(TRM[l+1,]*Cuotas_USD[l],0.05)
  percentil_95_cuotas[l]=quantile(TRM[l+1,]*Cuotas_USD[l],0.95)
}

matplot(Cuotas_COP,type = "l", col="cornsilk", main="Estimado Cuotas en COP", ylab = "Valor Cuota", xlab = "Cuota")
lines(percentil_5_cuotas, col = "blue", type = "l")
lines(percentil_95_cuotas, col = "red", type = "l")
lines(media_cuotas, col = "black", type = "l")
legend("topright", legend = c( "Percentil 5", "Percentil 95", "Media"), 
       col = c("blue", "red", "black"), lty = 1)

print("Volatilidad de cada cuota  en millones de COP")
## [1] "Volatilidad de cada cuota  en millones de COP"
print(volatilidad_cuotas/1000000)
## [1] 2.400274 3.326175 4.003740 4.666252 5.052063

2.3 Simulación de Montecarlo de los pagos de cuotas con cobertura (70%)

Cobertura<-0.7
Precio_Entrega= 4500

Utilidad_POR_USD=TRM[-1,]-Precio_Entrega
matplot(Utilidad_POR_USD,type="l", col="bisque", main="Utilidad por USD", ylab = "Utilidad (USD)", xlab = "Fecha")

Utilidad_total=Utilidad_POR_USD[1,]*Cuotas_USD[1]*0.7

for(j in 2:length(Cuotas_USD)){
  Utilidad_total=rbind(Utilidad_total,Utilidad_POR_USD[j,]*Cuotas_USD[j]*0.7)
}

matplot(Utilidad_total,type="l", col = "burlywood", main="Utilidad Total", ylab = "Utilidad (USD)", xlab = "Fecha")

Cuotas_COP_CON_C=Cuotas_COP-Utilidad_total

media_cuotas_COP_CON_C=vector()
volatilidad_cuotas_COP_CON_C=vector()
percentil_5_cuotas_COP_CON_C=vector()
percentil_95_cuotas_COP_CON_C=vector()

for(l in 1:5){
  media_cuotas_COP_CON_C[l]=mean(Cuotas_COP_CON_C[l,])
  volatilidad_cuotas_COP_CON_C[l]=sd(Cuotas_COP_CON_C[l,])
  percentil_5_cuotas_COP_CON_C[l]=quantile(Cuotas_COP_CON_C[l,],0.05)
  percentil_95_cuotas_COP_CON_C[l]=quantile(Cuotas_COP_CON_C[l,],0.95)
}

matplot(Cuotas_COP_CON_C,type = "l", col="#FFF8DC", main="Estimado Cuotas en COP", ylab = "Valor Cuota", xlab = "cuota")
lines(percentil_5_cuotas_COP_CON_C, col = "blue", type = "l")
lines(percentil_95_cuotas_COP_CON_C, col = "red", type = "l")
lines(media_cuotas_COP_CON_C, col = "black", type = "l")
legend("topright", legend = c("Percentil 5", "Percentil 95", "Media"), 
       col = c("blue", "red", "black"), lty = 1)

print("Volatilidad de cada cuota con cobertura  en millones de COP")
## [1] "Volatilidad de cada cuota con cobertura  en millones de COP"
print(volatilidad_cuotas_COP_CON_C/1000000)
## [1] 0.7200822 0.9978525 1.2011220 1.3998756 1.5156190

2.4 Beneficios reales de las series

Beneficio real sin cobertura

fecha <- c("17/10/2022", "17/11/2022", "17/12/2022", "17/01/2023", "17/02/2023")
valores_TRM <- c(4636.83, 4922.70, 4802.48, 4693.99, 4966.33)

# Crear un vector vacío para almacenar los valores de TRM_OBSERVADA
TRM_OBSERVADA <- numeric(length(fecha))

# Asignar los valores de TRM_OBSERVADA
for (j in 1:length(fecha)) {
  TRM_OBSERVADA[j] <- valores_TRM[j]
}

Cuota_Real_COP=TRM_OBSERVADA*Cuotas_USD

matplot(Cuotas_COP,type = "l", col="#C1FFC1", main="Estimado Cuotas en COP", ylab = "Valor Cuota", xlab = "Cuota")
lines(percentil_5_cuotas, col = "blue", type = "l")
lines(percentil_95_cuotas, col = "red", type = "l")
lines(media_cuotas, col = "black", type = "l")
lines(Cuota_Real_COP, col = "orange", type = "l", lwd = 2)
legend("topright", legend = c( "Percentil 5", "Percentil 95", "Media"), 
       col = c( "blue", "red", "black"), lty = 1, lwd = c(1, 1, 1, 1))

"Cuota Real COP"
## [1] "Cuota Real COP"
print(Cuota_Real_COP)
## [1] 425373511 447926318 433404610 420112105 440781653
"Beneficio sin cobertura"
## [1] "Beneficio sin cobertura"
Utilidad_POR_USD_Observada=TRM_OBSERVADA-Precio_Entrega
Utilidad_total_observada= Cuotas_USD*Utilidad_POR_USD_Observada

Beneficio real con cobertura

Valor_Observado_Cuotas_con_cobertura=Cuota_Real_COP-Utilidad_total_observada

matplot(Cuotas_COP_CON_C,type = "l", col="#7FFF00", main="Estimado Cuotas en COP", ylab = "Valor Cuota", xlab = "Cuota")
lines(percentil_5_cuotas_COP_CON_C, type = "l")
lines(percentil_95_cuotas_COP_CON_C, type = "l")
lines(media_cuotas_COP_CON_C, type = "l")
lines(Valor_Observado_Cuotas_con_cobertura, type = "l", lwd=2)

2.5. Cuenta de margen con el flujo de caja operado

# Variables y las fórmulas 

Numero_de_contratos <- 1
Nominal_del_contrato <- 1790000*0.7
Precio_inicial <- 4066 # TRM al momento 0

Exposicion_Total = Numero_de_contratos*Nominal_del_contrato*Precio_inicial
Exposicion_Contrato = Exposicion_Total/Numero_de_contratos

Garantia_Inicial <- 0.07
Margen_mantenimiento <- Garantia_Inicial/2

Valor_de_la_garantia_inicial = Exposicion_Total*Garantia_Inicial

Valor_de_la_garantía_minima = Margen_mantenimiento*Valor_de_la_garantia_inicial

Valor_de_la_garantia_inicial*Exposicion_Total
## [1] 1816916339784280320
Apalancamiento = Exposicion_Total/Valor_de_la_garantia_inicial
Apalancamiento
## [1] 14.28571

Se liquidan los precios futuros

TRM_Filas <- TRM[c(22, 43, 64, 85, 106), ]

Media_Filas <- rowMeans(TRM_Filas)

Media_TRM <- data.frame(Media_Futuro = Media_Filas)

Tabla_liquidacion <- Media_TRM
Media_TRM$fecha <- fecha
Media_TRM$TRM_OBSERVADA <- TRM_OBSERVADA
Media_TRM <- Media_TRM[, c("fecha", "TRM_OBSERVADA", "Media_Futuro")]
Tabla_liquidacion <- Media_TRM
Dif_Fut_TRM <- diff(Tabla_liquidacion[,3])*-1
Dif_Fut_TRM <- append(0,Dif_Fut_TRM)
Tabla_liquidacion <- cbind(Tabla_liquidacion,(Dif_Fut_TRM*Numero_de_contratos*Nominal_del_contrato))

colnames(Tabla_liquidacion) <- c("Fecha","TRM","Futuro","Liquidacion_Diaria")

Se calcula el llamada al margen

margen <- matrix()
tabaux <- matrix()
Llamado_al_margen <- matrix()

for (i in 1:(nrow(Tabla_liquidacion))) {
  # Tabla Auxiliar
  tabaux[1]=Valor_de_la_garantia_inicial
  tabaux[i+1] <- tabaux[i] + Tabla_liquidacion$Liquidacion_Diaria[i+1]
  # Llamado al Margen
  Llamado_al_margen[i] <- if(tabaux[i]<Valor_de_la_garantía_minima){Valor_de_la_garantia_inicial-tabaux[i]}
  else{0}
  # Margen 
  margen[i] <- tabaux[i]+Llamado_al_margen[i]
}

margen <- na.omit(margen)

Tabla_liquidacion <- cbind(Tabla_liquidacion,margen,Llamado_al_margen,Dif_Fut_TRM)

print(Tabla_liquidacion)
##        Fecha     TRM   Futuro Liquidacion_Diaria    margen Llamado_al_margen
## 1 17/10/2022 4636.83 4443.580                  0 356628860                 0
## 2 17/11/2022 4922.70 4444.799           -1526874 355101986                 0
## 3 17/12/2022 4802.48 4441.568            4048640 359150626                 0
## 4 17/01/2023 4693.99 4436.843            5920055 365070680                 0
## 5 17/02/2023 4966.33 4435.516            1662065 366732745                 0
##   Dif_Fut_TRM
## 1    0.000000
## 2   -1.218575
## 3    3.231157
## 4    4.724704
## 5    1.326469

2.6 ¿Cuál es la probabilidad de ser llamado al margen si solo se deposita en la cuenta el margen inicial?

llamadas_al_margen <- sum(Llamado_al_margen > 0)

probabilidad_llamado_al_margen <- llamadas_al_margen / nrow(Tabla_liquidacion)

cat("La probabilidad de ser llamado al margen es:", probabilidad_llamado_al_margen)
## La probabilidad de ser llamado al margen es: 0

La probabilidad de ser llamado al margen si solo se deposita en la cuenta el margen inicial es nula

¿Cuánto debería de haber en la cuenta de margen al inicio para que la probabilidad de ser llamado al margen antes de cubrir el primer flujo sea menor al 1%?

# Definir la probabilidad objetivo
probabilidad_objetivo <- 0.01

# Definir el rango inicial para la búsqueda binaria
min_garantia <- 0
max_garantia <- Exposicion_Total

# Realizar búsqueda binaria para encontrar la garantía inicial adecuada
while (max_garantia - min_garantia > 1) {
  # Calcular la garantía inicial candidata
  garantia_candidata <- (max_garantia + min_garantia) / 2
  
  # Calcular el valor mínimo de la garantía
  valor_de_la_garantia_minima <- Margen_mantenimiento * garantia_candidata
  
  # Calcular la probabilidad de ser llamado al margen
  probabilidad_llamado_al_margen <- mean(margen < valor_de_la_garantia_minima)
  
  # Ajustar el rango según la probabilidad calculada
  if (probabilidad_llamado_al_margen < probabilidad_objetivo) {
    max_garantia <- garantia_candidata
  } else {
    min_garantia <- garantia_candidata
  }
}

# La garantía inicial necesaria será el promedio de los valores min_garantia y max_garantia
garantia_inicial_necesaria <- (max_garantia + min_garantia) / 2

# Imprimir el resultado
cat("La garantía inicial necesaria para que la probabilidad de ser llamado al 1% es:", garantia_inicial_necesaria)
## La garantía inicial necesaria para que la probabilidad de ser llamado al 1% es: 0.2965505

3. Tercera Parte

Modelo Vasicek

dr(t) = k(- r_0)dt + dW

Como resultan las tasas simuladas con 10 iteraciones, para los siguientes 10 periodos, a 252 días.

r0<-0.0387
theta<-0.08
k<-0.44
beta<-0.03

n<-10
T<-10
m<-252
dt<-T/m

r<-matrix(0,m+1,n)
r[1,]<-r0

for (j in 1:n) {
  for (i in 2:(m+1)) {
    dr<-k*(theta-r[i-1,j])*dt+beta*sqrt(dt)*rnorm(1,0,1)
    r[i,j]<-r[i-1,j]+dr
  }
}
t1<-seq(0,T,dt)
rT.expected <- theta+(r0-theta)*exp(-k*t)
rT.stdev<-sqrt(beta^2/(2*k)*(1-exp(-2*k*t)))
matplot(t1, r[,1:10], type="l", lty=1, main="Short Rate Paths", ylab="rt") 
abline(h=theta, col="red", lty=2)
lines(t, rT.expected, lty=2) 
lines(t, rT.expected + 2*rT.stdev, lty=2) 
lines(t, rT.expected - 2*rT.stdev, lty=2) 
points(0,r0)

Con la curva de short rate paths se puede observar la evolución del comportamiento de las tasas de interés a corto plazo, sobre estas se espera un crecimiento constante en la mitad del tiempo y al final un crecimiento mas contundente, en su momento de estabilidad podemos deducir que la economía no tuvo mucha variación ni factores que hicieran que fluctuara mucho en el mercado

Como quedan las curvas yield de ambas tasas en los periodos descritos.

## function to find ZCB price using Vasicek model
VasicekZCBprice <- 
  function(r0, k, theta, beta, T){
    b.vas <- (1/k)*(1-exp(-T*k)) 
    a.vas <- (theta-beta^2/(2*k^2))*(T-b.vas)+(beta^2)/(4*k)*b.vas^2
    return(exp(-a.vas-b.vas*r0))
  }

## define model parameters for plotting yield curves
theta <- 0.10
k <- 0.5
beta <- 0.03

r0 <- seq(0.00, 0.20, 0.05)
n <- length(r0)
yield <- matrix(0, 10, n)
for(i in 1:n){
  for(T in 1:10){
    yield[T,i] <- -log(VasicekZCBprice(r0[i], k, theta, beta, T))/T
  }
}

maturity <- seq(1, 10, 1)
matplot(maturity, yield, type="l", col="black", lty=1, main="Yield Curve Shapes")
abline(h=theta, col="red",lty=2)

En la grafica de la curva de yield podemos analizar la relacion que se tiene con los rendimientos y la madurez de la TRM, la cual representan el riesgo que se tiene, Presentan un compartimiento constante en el cual se observa que su estado en el mercado no ha sido tan fluctuante en la madurez de 5 a 10

Opciones - Arboles Binomiales - Laboratorio 3

tick = read.table("C:/Users/Felipe/OneDrive - INSTITUTO TECNOLOGICO METROPOLITANO - ITM/Derivados Financieros/Opciones/opciones.txt", header = TRUE)

Se realizo el analisis con los activos correspondientes al mercado NasDaq, acorde a unas tendencias del activo desde el 2014 hasta la fecha del 17 de abril del 2024. Las acciones corresponden a:

-EBAY: eBay es un sitio destinado a la subasta y comercio electrónico de productos a través de internet.

-ADBE: Adobe Inc., antes Adobe Systems Incorporated, es una empresa de software estadounidense.

-FTNT: Fortinet es una empresa multinacional de Estados Unidos. Se dedica al desarrollo y la comercialización de software, dispositivos y servicios de ciberseguridad.

Se descargan los paquetes requeridos para el analisis

options(warn = -1)
suppressPackageStartupMessages({
  library(tidyquant) 
  library(plotly) 
  library(timetk)
  library(tidyverse)
  library(quantmod)
  library(gower)
  library(tseries)
  library(xts)
  library(TTR)
  library(ROCR)
  library(ROCR)
  library(RQuantLib)
  library(Deriv)
  library(ggplot2)
})

Fijar la base de datos

attach(tick)
names(tick)
## [1] "Date" "EBAY" "ADBE" "FTNT"
options(scipen = 999)
head(tick)
##       Date     EBAY   ADBE  FTNT
## 1 1/6/2017 31.87507 141.38 7.842
## 2 2/6/2017 32.36065 143.48 7.810
## 3 5/6/2017 32.57138 143.59 7.874
## 4 6/6/2017 32.49809 143.03 7.818
## 5 7/6/2017 32.77294 143.62 7.840
## 6 8/6/2017 33.11194 142.63 7.904

Creación del portafolio óptimo de inversión

Optimización del portafolio, utilizando el óptimo de Markowitz

tick <- c('EBAY', 'ADBE', 'FTNT')

price_data <- tq_get(tick, from = '2017-06-01', to = '2024-04-17', get = 'stock.prices')

log_ret_tidy <- price_data %>%
  group_by(symbol) %>%
  tq_transmute(select = adjusted,
               mutate_fun = periodReturn,
               period = 'daily',
               col_rename = 'ret',
               type = 'log')

head(na.omit(log_ret_tidy))
## # A tibble: 6 × 3
## # Groups:   symbol [1]
##   symbol date            ret
##   <chr>  <date>        <dbl>
## 1 EBAY   2017-06-01  0      
## 2 EBAY   2017-06-02  0.0151 
## 3 EBAY   2017-06-05  0.00649
## 4 EBAY   2017-06-06 -0.00225
## 5 EBAY   2017-06-07  0.00842
## 6 EBAY   2017-06-08  0.0103
log_ret_xts <- log_ret_tidy %>%
  spread(symbol, value = ret) %>%
  tk_xts()
## Using column `date` for date_var.
#log_ret_xts[is.na(log_ret_xts)] <- 0

head(log_ret_xts)
##                     ADBE         EBAY         FTNT
## 2017-06-01  0.0000000000  0.000000000  0.000000000
## 2017-06-02  0.0147442876  0.015118960 -0.004088948
## 2017-06-05  0.0007663679  0.006491160  0.008161245
## 2017-06-06 -0.0039076009 -0.002253106 -0.007137455
## 2017-06-07  0.0041164988  0.008422485  0.002810107
## 2017-06-08 -0.0069169899  0.010290871  0.008130082

Analisis técnico

Datos y acciones utilizadas

actions<-c('EBAY', 'ADBE', 'FTNT')
getSymbols(actions, from = '2017-06-01', to = '2024-04-17', src="yahoo")
## [1] "EBAY" "ADBE" "FTNT"

Medias Moviles

for (action in actions) {
  # Media movil para 50 días
  SMA50<-SMA(Cl(get(action)), n=50)
  # Media movil para 200 días
  SMA200<-SMA(Cl(get(action)), n=200)
  # Calculo de MACD
  MACD<-MACD(Cl(get(action)))
  # Calculo de Bandas de Bollinger
  BBands<-BBands(Cl(get(action)))
}

Resumen de Indicadores

cat("Ultimo precio de cierre", as.numeric(Cl(get(action))[nrow(get(action))]), "\n" )
## Ultimo precio de cierre 64.48
cat("Media movil para 50 días", as.numeric(SMA50[nrow(SMA50)]), "\n")
## Media movil para 50 días 68.7618
cat("Media movil para 200 días", as.numeric(SMA200[nrow(SMA200)]), "\n")
## Media movil para 200 días 63.02745

El ultimo precio de cierre es 64.48. Se puede analizar que en la media móvil de 50 dias se destaca una tendencia bajista, en un corto plazo de 50 dias. La cual permite analizar que las fluctuaciones diarias del precio baja, al compararlo con la media móvil a los 200 dias se percibe que se encuentra un poco por encima del promedio, la cual nos permite analizar como será la tendencia en un largo plazo.

cat("MACD:\n")
## MACD:
print(summary(MACD))
##      Index                 macd             signal       
##  Min.   :2017-06-01   Min.   :-9.9680   Min.   :-8.0214  
##  1st Qu.:2019-02-20   1st Qu.:-0.8637   1st Qu.:-0.7765  
##  Median :2020-11-04   Median : 1.2320   Median : 1.1941  
##  Mean   :2020-11-06   Mean   : 0.8382   Mean   : 0.8414  
##  3rd Qu.:2022-07-26   3rd Qu.: 2.5728   3rd Qu.: 2.4530  
##  Max.   :2024-04-16   Max.   : 8.7621   Max.   : 7.7135  
##                       NA's   :25        NA's   :33
cat("Bandas de Bollinger:\n")
## Bandas de Bollinger:
print(summary(BBands))
##      Index                  dn             mavg              up        
##  Min.   :2017-06-01   Min.   : 6.87   Min.   : 7.361   Min.   : 7.497  
##  1st Qu.:2019-02-20   1st Qu.:14.55   1st Qu.:15.862   1st Qu.:17.038  
##  Median :2020-11-04   Median :25.12   Median :27.386   Median :29.607  
##  Mean   :2020-11-06   Mean   :32.91   Mean   :35.834   Mean   :38.760  
##  3rd Qu.:2022-07-26   3rd Qu.:52.52   3rd Qu.:58.402   3rd Qu.:62.819  
##  Max.   :2024-04-16   Max.   :74.61   Max.   :77.595   Max.   :89.757  
##                       NA's   :19      NA's   :19       NA's   :19      
##       pctB        
##  Min.   :-0.5461  
##  1st Qu.: 0.3504  
##  Median : 0.6624  
##  Mean   : 0.6021  
##  3rd Qu.: 0.8542  
##  Max.   : 1.4448  
##  NA's   :19

Con el indicador MACD se analiza que se encuentra por encima de la señal, lo cual puede dar un mensaje de compra en los activos, la media se encuentra muy cercana a la señal lo cual denota que no se tiene una volatilidad muy amplia. Ademas, con el indicador de Bandas de Bollinger se analiza un comportamiento de unos min muy cercanos, lo cual da a enteder que los precios pueden estar muy cercanos.

Retornos

mean_ret <- colMeans(log_ret_xts)
print(round(mean_ret, 5))
##    ADBE    EBAY    FTNT 
## 0.00070 0.00026 0.00122

Los 3 activos generan una rentabilidad, es decir, una ganancia la cual no en una medida muy grande pero eso aporta al portafolio creado por los activos, debido a que se tienen en cuenta que son activos que están teniendo una tendencia bajista en sus comportamientos en el pasar del tiempo

Datos estadisticos

# Covarianza
cov_mat <- cov(log_ret_xts) * 252
print(round(cov_mat,4))
##        ADBE   EBAY   FTNT
## ADBE 0.1304 0.0460 0.0861
## EBAY 0.0460 0.0978 0.0448
## FTNT 0.0861 0.0448 0.1754
#crear pesos aleatorios
wts <- runif(n = length(tick))
print(wts)
## [1] 0.1569330 0.7654246 0.2121442
print(sum(wts))
## [1] 1.134502
#suma de los pesos aleatorios para ser 1
wts <- wts/sum(wts)
print(wts)
## [1] 0.1383277 0.6746790 0.1869933
sum(wts)
## [1] 1
# rentabilidad anualizada del portafolio
port_returns <- (sum(wts * mean_ret) + 1)^252 - 1
print(port_returns)
## [1] 0.1349176
# riesgo del portaflio
port_risk <- sqrt(t(wts) %*% (cov_mat %*% wts))
print(port_risk)
##           [,1]
## [1,] 0.2783442
# asumir rf es 0%
sharpe_ratio <- port_returns/port_risk
print(sharpe_ratio)
##           [,1]
## [1,] 0.4847147

Covarianza: sobre los activos se tiene que sus variaciones son positivas, lo que indica que si un activo aumenta es muy probable que el otro activo tenga similar comportamiento, es decir que aumente, ya que muestra la relación que tienen entre los dos activos que se analizan. Dado que entre mayor sea el valor en positivo mayor es la relación entre ellos.

Rentabilidad anualizada del portafolio: La rentabilidad anualizada del portafolio corresponde a 0.3501, lo cual se puede interpretar como el rendimiento promedio esperado de la cartera de acciones en el portafolio de inversión que permite analizar una visión general del rendimiento a largo durante cierto periodo de tiempo.

Analisis de inversión del Portafolio

Inversión destinada

num_port <- 10000

# matrix de desarrollo

all_wts <- matrix(nrow = num_port,
                  ncol = length(tick))

Analisis de rentabilidad y riesgo del Portafolio

Retornos y datos estadisticos del Portafolio

# Retornos del Portafolio

port_returns <- vector('numeric', length = num_port)

# Desviación del Portafolio

port_risk <- vector('numeric', length = num_port)

# Portfolio Sharpe Ratio

sharpe_ratio <- vector('numeric', length = num_port)

for (i in seq_along(port_returns)) {
  wts <- runif(length(tick))
  wts <- wts/sum(wts)
  all_wts[i,] <- wts
  port_ret <- sum(wts * mean_ret)
  port_ret <- ((port_ret + 1)^252) - 1
  port_returns[i] <- port_ret
  port_sd <- sqrt(t(wts) %*% (cov_mat  %*% wts))
  port_risk[i] <- port_sd
  sr <- port_ret/port_sd
  sharpe_ratio[i] <- sr
}

portfolio_values <- tibble(Return = port_returns,
                           Risk = port_risk,
                           SharpeRatio = sharpe_ratio)


# Convertir la matrix y renombrar las columnas
all_wts <- tk_tbl(all_wts)
colnames(all_wts) <- colnames(log_ret_xts)
# Combinar
portfolio_values <- tk_tbl(cbind(all_wts, portfolio_values))

head(portfolio_values)
## # A tibble: 6 × 6
##     ADBE   EBAY   FTNT Return  Risk SharpeRatio
##    <dbl>  <dbl>  <dbl>  <dbl> <dbl>       <dbl>
## 1 0.543  0.384  0.0729  0.155 0.287       0.539
## 2 0.159  0.754  0.0871  0.111 0.282       0.392
## 3 0.268  0.434  0.298   0.183 0.282       0.648
## 4 0.0833 0.552  0.365   0.177 0.286       0.621
## 5 0.638  0.0439 0.318   0.238 0.331       0.717
## 6 0.392  0.251  0.356   0.216 0.299       0.720
# Vairaicion minima
min_var <- portfolio_values[which.min(portfolio_values$Risk),]
print(min_var)
## # A tibble: 1 × 6
##    ADBE  EBAY  FTNT Return  Risk SharpeRatio
##   <dbl> <dbl> <dbl>  <dbl> <dbl>       <dbl>
## 1 0.276 0.571 0.153  0.143 0.275       0.520
# El Portafolio con mayor Sharpe Ratio
max_sr <- portfolio_values[which.max(portfolio_values$SharpeRatio),]
print(max_sr)
## # A tibble: 1 × 6
##     ADBE      EBAY  FTNT Return  Risk SharpeRatio
##    <dbl>     <dbl> <dbl>  <dbl> <dbl>       <dbl>
## 1 0.0303 0.0000441 0.970  0.354 0.412       0.857

Graficos descriptivos

Variación del Portafolio

var_porta <- min_var %>%
  gather(ADBE:FTNT, key = Accion,
         value = Peso) %>%
  mutate(Asset = as.factor(Accion)) %>%
  ggplot(aes(x = fct_reorder(Accion,Peso), y = Peso, fill = Accion)) +
  geom_bar(stat = 'identity') +
  theme_minimal() +
  labs(x = 'Accion', y = 'Peso', title = "Varianza Minima del Portafolio") +
  scale_y_continuous(labels = scales::percent) 

ggplotly(var_porta)

El activo con la minima variazion es FTNT y el mayor es EBAY

Tendencia del Portafolio

tangency_porta <- max_sr %>%
  gather(ADBE:FTNT, key = Accion,
         value = Peso) %>%
  mutate(Accion = as.factor(Accion)) %>%
  ggplot(aes(x = fct_reorder(Accion,Peso), y = Peso, fill = Accion)) +
  geom_bar(stat = 'identity') +
  theme_minimal() +
  labs(x = 'Accion', y = 'Peso', title = "Tangencia del Portafolio") +
  scale_y_continuous(labels = scales::percent) 

ggplotly(tangency_porta)

Optimización del Portafolio

opti_porta <- portfolio_values %>%
  ggplot(aes(x = Risk, y = Return, color = SharpeRatio)) +
  geom_point() +
  theme_classic() +
  scale_y_continuous(labels = scales::percent) +
  scale_x_continuous(labels = scales::percent) +
  labs(x = 'Riesgo anuliazado',
       y = 'Retornos anualizados',
       title = "Optimización del portafolio y frontera eficiente") +
  geom_point(aes(x = Risk,
                 y = Return), data = min_var, color = 'red') +
  geom_point(aes(x = Risk,
                 y = Return), data = max_sr, color = 'red') +
  annotate('text', x = 0.35, y = 0.40, label = "Tangencia Portafolio") +
  annotate('text', x = 0.35, y = 0.05, label = "Var Min Porta") +
  annotate(geom = 'segment', x = 0.30, xend = 0.27,  y = 0.05, 
           yend = 0.1, color = 'red', arrow = arrow(type = "open")) +
  annotate(geom = 'segment', x = 0.38, xend = 0.4136,  y = 0.40, 
           yend = 0.365, color = 'red', arrow = arrow(type = "open"))

ggplotly(opti_porta)

Creación de Arboles binomiales a través del modelo Cox-Ross-Rubinstein (CRR)

Calculo de Varianzad, Volatilidades y Retornos

# Varianza 1. Precio strike de EBAY y su Volatilidad Implicita
precio_strike <- 50.25
vol_impl <- 3.541
# Varianza 2 EBAY
opcion<-c("EBAY")
data_opcion <- lapply(opcion, FUN = function(x){
  ROC(Ad(getSymbols(x, from="2023-06-01", to = "2024-04-17", auto.assign = FALSE)),
      type = "continuous")
}) #%returns
ret_opcion<-as.data.frame(do.call(merge,data_opcion))
colnames(ret_opcion) <- gsub(".Adjusted", "", colnames(ret_opcion))
ret_opcion<-ret_opcion[-1,]

# Volatilidad de EBAY
var_opcion <-var(ret_opcion)
desve_opcion <- sqrt(var_opcion)
print(desve_opcion)
## [1] 0.01717442
# Varianza 3
#Volatilidad del portafolio
# Retornos EBAY
opcion_EBAY<-c("EBAY")
data_opcion_EBAY <- lapply(opcion_EBAY, FUN = function(x){
  ROC(Ad(getSymbols(x, from="2023-06-01", to = "2024-04-17", auto.assign = FALSE)),
      type = "continuous")
}) #%returns

ret_opcion_EBAY<-as.data.frame(do.call(merge,data_opcion_EBAY))
colnames(ret_opcion_EBAY) <- gsub(".Adjusted", "", colnames(ret_opcion_EBAY))
ret_opcion_EBAY<-ret_opcion_EBAY[-1,]

# Retornos ADBE
opcion_ADBE<-c("ADBE")
data_opcion_ADBE <- lapply(opcion_ADBE, FUN = function(x){
  ROC(Ad(getSymbols(x, from="2023-06-01", to = "2024-04-17", auto.assign = FALSE)),
      type = "continuous")
}) #%returns

ret_opcion_ADBE<-as.data.frame(do.call(merge,data_opcion_ADBE))
colnames(ret_opcion_ADBE) <- gsub(".Adjusted", "", colnames(ret_opcion_ADBE))
ret_opcion_ADBE<-ret_opcion_ADBE[-1,]

# Retornos FTNT
opcion_FTNT<-c("FTNT")
data_opcion_FTNT <- lapply(opcion_FTNT, FUN = function(x){
  ROC(Ad(getSymbols(x, from="2023-06-01", to = "2024-04-17", auto.assign = FALSE)),
      type = "continuous")
}) #%returns

ret_opcion_FTNTE<-as.data.frame(do.call(merge,data_opcion_FTNT))
colnames(ret_opcion_FTNTE) <- gsub(".Adjusted", "", colnames(ret_opcion_FTNTE))
ret_opcion_FTNTE<-ret_opcion_FTNTE[-1,]

rentabilidad_port<-cbind(ret_opcion_EBAY,ret_opcion_ADBE,ret_opcion_FTNTE)

Análisis mediante el Black-Scholes

Datos

opcions <- c('EBAY', 'ADBE', 'FTNT')
start_date <- "2023-06-01"
end_date <- Sys.Date()

getSymbols("EBAY", src = "yahoo", from = "2023-06-01", to = "2024-04-17")
## [1] "EBAY"
getSymbols("ADBE", src = "yahoo", from = "2023-06-01", to = "2024-04-17")
## [1] "ADBE"
getSymbols("FTNT", src = "yahoo", from = "2023-06-01", to = "2024-04-17")
## [1] "FTNT"
tail(EBAY)
##            EBAY.Open EBAY.High EBAY.Low EBAY.Close EBAY.Volume EBAY.Adjusted
## 2024-04-09     51.80     52.01    51.51      51.96     3566500      51.69703
## 2024-04-10     51.96     52.54    51.90      52.46     4901300      52.19450
## 2024-04-11     52.60     52.65    51.81      51.89     3650900      51.62739
## 2024-04-12     51.71     52.00    51.05      51.31     4246600      51.05033
## 2024-04-15     51.62     51.90    50.74      50.89     3878400      50.63245
## 2024-04-16     50.63     50.75    49.87      50.25     5161500      49.99569
tail(ADBE)
##            ADBE.Open ADBE.High ADBE.Low ADBE.Close ADBE.Volume ADBE.Adjusted
## 2024-04-09    486.00    493.31   483.31     492.55     2548600        492.55
## 2024-04-10    489.39    491.77   480.28     487.22     2487900        487.22
## 2024-04-11    487.36    488.67   479.74     484.28     2978500        484.28
## 2024-04-12    477.95    478.78   468.60     474.09     5620000        474.09
## 2024-04-15    477.02    478.52   468.35     470.10     3353200        470.10
## 2024-04-16    470.00    478.98   468.49     476.22     2660100        476.22
tail(FTNT)
##            FTNT.Open FTNT.High FTNT.Low FTNT.Close FTNT.Volume FTNT.Adjusted
## 2024-04-09     69.14     69.14    67.80      68.22     2799600         68.22
## 2024-04-10     67.08     68.50    67.08      68.13     3641300         68.13
## 2024-04-11     68.61     68.86    67.44      68.22     2917900         68.22
## 2024-04-12     67.47     67.72    65.93      66.45     5132600         66.45
## 2024-04-15     67.08     67.19    64.58      64.73     4911100         64.73
## 2024-04-16     64.62     65.57    64.26      64.48     3015000         64.48

Black-Scholes Call Option Price for EBAY

ebay_option_price_quantmod <- function(type, underlying, strike, expire, rate, volatility, div = 0) {
  T <- expire
  S <- underlying
  K <- strike
  r <- rate
  sigma <- volatility
  D <- div
  
  d1 <- (log(S / K) + (r - D + 0.5 * sigma^2) * T) / (sigma * sqrt(T))
  d2 <- d1 - sigma * sqrt(T)
  
  if (type == "call") {
    option_price <- S * exp(-D * T) * pnorm(d1) - K * exp(-r * T) * pnorm(d2)
  } else if (type == "put") {
    option_price <- K * exp(-r * T) * pnorm(-d2) - S * exp(-D * T) * pnorm(-d1)
  } else {
    stop("Invalid option type. Use 'call' or 'put'.")
  }
  
  return(option_price)
}

Datos obtenidos de los comportamiento de la acción en el mercado de acciones

underlying_price <- 50.25  # Current stock price
strike_price <- 47.5 # Strike price
time_to_expiry <- 3/12 
risk_free_rate <- 0.0544 # Risk-free rate (current 3-month bond rate)
dividend_yield <- 1.08 # Dividend yield 
volatility <- 0.6104 # Volatility (Blended)

ebay_bs_call_price <- ebay_option_price_quantmod(type = "call",
                                               underlying = underlying_price,
                                               strike = strike_price,
                                               expire = time_to_expiry,
                                               rate = risk_free_rate,
                                               volatility = volatility,
                                               div = dividend_yield)

Precio de opción de compra

Opción in-the-money, el precio de ejercicio (47.5) es menor al precio de la acción (50.25)

print(paste("Precio de opción de compra EBAY:", ebay_bs_call_price))
## [1] "Precio de opción de compra EBAY: 1.97870515839798"

Efecto hipotético de la evolución de los precios ante variaciones de los tipos de interés para un valor determinado

Calcular el precio de la opción Black-Scholes con tipo de interés variable

black_scholes_with_rate_change <- function(S, K, T, r, r_new, sigma, type = "call") {
  d1 <- (log(S / K) + ((r_new + (sigma^2) / 2) * T)) / (sigma * sqrt(T))
  d2 <- d1 - sigma * sqrt(T)
  
  if (type == "call") {
    option_price <- S * pnorm(d1) - K * exp(-r_new * T) * pnorm(d2)
  } else {
    option_price <- K * exp(-r_new * T) * pnorm(-d2) - S * pnorm(-d1)
  }
  
  return(option_price)
}

# Parametros
S <- 50.25  # Current stock price
K <- 47  # Strike price
r <- 0.0544  # Initial risk-free rate
sigma <- 3.541  # Volatility (Blended)

# Definir rango
T <- seq(0, 1, 0.1)

# Calcular los precios de las opciones en diferentes momentos con el tipo de interés inicial
option_prices_initial_rate <- sapply(T, function(t) black_scholes_with_rate_change(S, K, t, r, r, sigma))

# Nuevo tipo de interés (bajada de 25 puntos básicos)
r_new <- r - 0.0025  # Adjusting for 25 basis points drop

# Calculo con el nuevo interes
option_prices_new_rate <- sapply(T, function(t) black_scholes_with_rate_change(S, K, t, r, r_new, sigma))

# Macro de los datos
df_initial_rate <- data.frame(Time = T, OptionPrice = option_prices_initial_rate, RateType = "Initial Rate")
df_new_rate <- data.frame(Time = T, OptionPrice = option_prices_new_rate, RateType = "New Rate")

# Combinar
df_combined <- rbind(df_initial_rate, df_new_rate)

Evolución del Precio de la opción con los interes calculados en el tiempo

ggplot(df_combined, aes(x = Time, y = OptionPrice, color = RateType)) +
  geom_line() +
  labs(title = "Evolución del Precio de la opción con los interes calculados en el tiempo",
       x = "Time to Maturity (Years)",
       y = "Option Price") +
  theme_minimal() +
  scale_color_manual(values = c("aquamarine", "red"))

Obtener el precio de la opción de compra ADBE

Función para calcular el precio de la opción Black-Scholes

black_scholes <- function(S, K, T, r, sigma, type = "call") {
  d1 <- (log(S / K) + (r + sigma^2 / 2) * T) / (sigma * sqrt(T))
  d2 <- d1 - sigma * sqrt(T)
  
  if (type == "call") {
    option_price <- S * pnorm(d1) - K * exp(-r * T) * pnorm(d2)
  } else {
    option_price <- K * exp(-r * T) * pnorm(-d2) - S * pnorm(-d1)
  }
  
  return(option_price)
}

Datos obtenidos de los comportamiento de la acción en el mercado de acciones

S_adbe <- 476.220001  # Current stock price
K_adbe <- 480  # Strike price
T_adbe <- 0.25  # Time to maturity or expiry (in years)
r_adbe <- 0.0544  # Risk-free rate (current 3-month bond rate)
D_adbe <- 0  # Dividend yield
sigma_adbe <- 0.1836  # Volatility (Blended) 

Precio de la opción de compra ADBE mediante la fórmula Black-Schole

adbe_bs_price <- black_scholes(S_adbe, K_adbe, T_adbe, r_adbe, sigma_adbe, type = "call")

print(paste("Opción de Compra de ADBE:", adbe_bs_price))
## [1] "Opción de Compra de ADBE: 18.7702540654244"

La accion ADBE nos indica que presenta una opcion de compra de 18.7702, la cual es un valor en el que el titular tiene derecho a comprar la accion subyacente en el periodo de su validez

Obtener el precio de la opción de compra FTNT

black_scholes <- function(S, K, T, r, sigma, type = "call") {
  d1 <- (log(S / K) + (r + sigma^2 / 2) * T) / (sigma * sqrt(T))
  d2 <- d1 - sigma * sqrt(T)
  
  if (type == "call") {
    option_price <- S * pnorm(d1) - K * exp(-r * T) * pnorm(d2)
  } else {
    option_price <- K * exp(-r * T) * pnorm(-d2) - S * pnorm(-d1)
  }
  
  return(option_price)
}

Datos obtenidos de los comportamiento de la acción en el mercado de acciones

S_ftnt <- 64.480003  # Current stock price
K_ftnt <- 60  # Strike price
T_ftnt <- 0.25  # Time to maturity or expiry (in years)
r_ftnt <- 0.0544  # Risk-free rate (current 3-month bond rate)
D_ftnt <- 0  # Dividend yield
sigma_ftnt <- 0.6948  # Volatility (Blended)

Precio de la opción de compra FTNT mediante la fórmula Black-Schole

ftnt_bs_price <- black_scholes(S_ftnt, K_ftnt, T_ftnt, r_ftnt, sigma_ftnt, type = "call")

print(paste("Opción de Compra de FTNT:", ftnt_bs_price))
## [1] "Opción de Compra de FTNT: 11.4270153583501"

Cox Ross Rubinstein Model para EBAY

Modelo de datos

crr_option_price <- function(S0, X, T, r, sigma, n, type = "call") {
  delta_t <- T / n
  u <- exp(sigma * sqrt(delta_t))
  d <- 1 / u
  p <- (exp(r * delta_t) - d) / (u - d)
  
  # Generate stock prices at expiration
  ST <- S0 * u^(n:0) * d^(0:n)
  
  # Calculate option payoffs at expiration
  payoff <- pmax(ST - X, 0)  # For a call option
  
  # Backward induction to calculate option price at t=0
  for (i in (n - 1):0) {
    payoff <- exp(-r * delta_t) * (p * payoff[2:(i + 2)] + (1 - p) * payoff[1:(i + 1)])
  }
  
  return(payoff[1])
}

underlying_price <- 50.25  # Current stock price
strike_price <- 47.5 # Strike price
time_to_expiry <- 3/12 
risk_free_rate <- 0.0544 # Risk-free rate (current 3-month bond rate)
dividend_yield <- 1.08 # Dividend yield 
volatility <- 0.6104 # Volatility (Blended)
n <- 5

Precio de la opción de compra EBAY mediante un modelo similar al CRR

ebay_crr_price <- crr_option_price(underlying_price, strike_price, time_to_expiry, risk_free_rate, volatility, n)

cat("Precio de la opción de compra EBAY (tipo CRR):", ebay_crr_price, "\n")
## Precio de la opción de compra EBAY (tipo CRR): 10.26548

Cox Ross Rubinstein Model para ADBE

underlying_price_adbe <- 476.220001  # Current stock price
strike_price_adbe <- 480  # Strike price
time_to_expiry_adbe <- 0.25  # Time to maturity or expiry (in years)
risk_free_rate_adbe <- 0.0544  # Risk-free rate (current 3-month bond rate)
dividend_yield_adbe <- 0  # Dividend yield
volatility_adbe <- 0.1836  # Volatility (Blended) 
n_adbe <- 5

Precio de la opción de compra ABDE mediante un modelo similar al CRR

adbe_crr_price <- crr_option_price(underlying_price_adbe, strike_price_adbe, 
                                   time_to_expiry_adbe, risk_free_rate_adbe, volatility_adbe, n_adbe)

cat("Precio de la opción de compra ADBE (tipo CRR):", adbe_crr_price, "\n")
## Precio de la opción de compra ADBE (tipo CRR): 15.12879

El modelo CRR utiliza un enfoque de árbol binomial para valorar opciones, considerando varios factores como el precio actual de la acción, el precio de ejercicio, el tiempo hasta la expiración de la opción, la tasa de interés libre de riesgo y la volatilidad del activo subyacente. De acuerdo con el modelo CRR y las condiciones de mercado proporcionadas, el valor intrínseco de la opción de compra de ADBE es de aproximadamente $15.13. Esto indica que se espera que el precio de la acción de ADBE aumente lo suficiente antes del vencimiento de la opción para que el titular pueda obtener ganancias al ejercer la opción de compra.

Cox Ross Rubinstein Model para FTNT

underlying_price_ftnt <- 64.480003  # Current stock price
strike_price_ftnt <- 60  # Strike price
time_to_expiry_ftnt <- 0.25  # Time to maturity or expiry (in years)
risk_free_rate_ftnt <- 0.0544  # Risk-free rate (current 3-month bond rate)
dividend_yield_ftnt <- 0  # Dividend yield
volatility_ftnt <- 0.6948  # Volatility (Blended) 
n_ftnt <- 5

Precio de la opción de compra FTNT mediante un modelo similar al CRR

ftnt_crr_price <- crr_option_price(underlying_price_ftnt, strike_price_ftnt, 
                                   time_to_expiry_ftnt, risk_free_rate_ftnt, volatility_ftnt, n_ftnt)

cat("Precio de la opción de compra FTNT (tipo CRR):", ftnt_crr_price, "\n")
## Precio de la opción de compra FTNT (tipo CRR): 16.10385

Opciones Europeas EBAY

s <- 50.25  # Current stock price
k <- 47.5 # Strike price
tt <- 3/12 
r <- 0.0544 # Risk-free rate (current 3-month bond rate)
d <- 1.08 # Dividend yield 
n <- 0.6104 # Volatility (Blended)
nstep <- 5

# Calcular el precio de la opción call europea de EBAY
european_call_option_price <- EuropeanOption(type = "call", underlying = s, 
                                             strike = k, dividendYield = d, 
                                             riskFreeRate = r, maturity = tt, 
                                             volatility = n)$value

# Calcular el precio de la opción put europea de EBAY
european_put_option_price <- EuropeanOption(type = "put", underlying = s, 
                                            strike = k, dividendYield = d, 
                                            riskFreeRate = r, maturity = tt, 
                                            volatility = n)$value

cat("Precio de opción call europea de EBAY:", european_call_option_price, "\n")
## Precio de opción call europea de EBAY: 1.978705
cat("Precio de opción put europea de EBAY:", european_put_option_price, "\n")
## Precio de opción put europea de EBAY: 10.47726

El precio de opción call ebay es de 1.9787, el cual indica que es el precio al cual se tiene derecho para comprar el activo subyacente, se debe de tener en cuenta que un factor importante que influye en el valor del precio es la volatilidad debido a que si esta aumenta también aumentara la volatilidad de la opción call.

El precio de opcion put de ebay es de 10.47726, este es el precio en el que el titular de la opcion tiene derecho de vender la accion subyacente, recordado que como es una opcion europea solo se puede realizar en la fecha de vencimiento lo que en cierta medida puede afectar su precio ya que el tiempo restante influye en la prima de la opcion dejando claro que en cualquiera de los escenarios posibles se cumple cierto riesgo

Modelo de árbol binomial CRR para EBAY

calculate_option_prices <- function(s, k, tt, r, d, n, nstep, crr = TRUE) {
  dt <- tt / nstep  # Paso de tiempo
  u <- exp(n * sqrt(dt))  # Factor de aumento
  d <- 1 / u  # Factor de reducción
  p <- (exp((r - d) * dt) - d) / (u - d)  # Probabilidad de subida
  
  # Inicializar una matriz para almacenar los precios de la opción en cada nodo del árbol
  option_prices <- matrix(0, nrow = nstep + 1, ncol = nstep + 1)
  
  # Calcular los precios de las opciones en los nodos finales del árbol
  for (j in 0:nstep) {
    option_prices[nstep + 1, j + 1] <- max(s * u^j * d^(nstep - j) - k, 0)
  }
  
  # Calcular los precios de las opciones en los nodos anteriores del árbol
  for (i in (nstep - 1):0) {
    for (j in 0:i) {
      option_prices[i + 1, j + 1] <- exp(-r * dt) * (p * option_prices[i + 2, j + 2] + (1 - p) * option_prices[i + 2, j + 1])
    }
  }
  
  return(option_prices)
}

# Función para mostrar la matriz del árbol binomial de forma más definida
binomial_tree_ebay <- function(option_prices) {
  # Obtener dimensiones de la matriz
  nrow <- nrow(option_prices)
  ncol <- ncol(option_prices)
  
  # Iterar sobre la matriz y mostrar los precios de la opción
  for (i in 1:nrow) {
    cat(rep("  ", nrow - i))  # Agregar espacios al principio de cada fila
    for (j in 1:ncol) {
      if (option_prices[i, j] != 0) {  # Solo imprimir valores no nulos
        cat(sprintf("%8.2f", option_prices[i, j]))  # Imprimir valores de la fila actual
      } else {
        cat(rep("        ", 1))  # Imprimir espacios en blanco para valores nulos
      }
    }
    cat("\n")  # Nueva línea para la siguiente fila
  }
}

# Calcular los precios de las opciones en cada nodo del árbol binomial
option_prices <- calculate_option_prices(s, k, tt, r, d, n, nstep)

# Mostrar la matriz del árbol binomial de forma más definida
binomial_tree_ebay(option_prices)
##                   2.66                                        
##                1.18    5.85                                
##             0.33    3.00   11.95                        
##                  1.03    7.23   22.11                
##                       3.22   15.83   35.67        
##                            10.10   28.18   51.93

Opciones Europeas ADBE

s <- 476.220001  # Current stock price
k <- 480 # Strike price
tt <- 3/12 
r <- 0.0544 # Risk-free rate (current 3-month bond rate)
d <- 1.08 # Dividend yield 
n <- 0.6948 # Volatility (Blended)
nstep <- 5

# Calcular el precio de la opción call europea de ADBE
european_call_option_price_adbe <- EuropeanOption(type = "call", underlying = s, 
                                                  strike = k, dividendYield = d, 
                                                  riskFreeRate = r, maturity = tt, 
                                                  volatility = n)$value

# Calcular el precio de la opción put europea de ADBE
european_put_option_price_adbe <- EuropeanOption(type = "put", underlying = s, 
                                                 strike = k, dividendYield = d, 
                                                 riskFreeRate = r, maturity = tt, 
                                                 volatility = n)$value

cat("Precio de opción call europea de ADBE:", european_call_option_price_adbe, "\n")
## Precio de opción call europea de ADBE: 18.39353
cat("Precio de opción put europea de ADBE:", european_put_option_price_adbe, "\n")
## Precio de opción put europea de ADBE: 128.3731

El elevado precio de la opción de venta europea de ADBE indica una expectativa de un posible descenso del precio de la acción, mientras que el precio relativamente bajo de la opción de compra europea indica una menor expectativa de un aumento significativo del precio de la acción. En resumen, los precios de estas opciones reflejan las perspectivas del mercado sobre la evolución futura del precio de la acción de ADBE.

Modelo de árbol binomial CRR para ADBE

calculate_option_prices_adbe <- function(s, k, tt, r, d, n, nstep, crr = TRUE) {
  dt <- tt / nstep  # Paso de tiempo
  u <- exp(n * sqrt(dt))  # Factor de aumento
  d <- 1 / u  # Factor de reducción
  p <- (exp((r - d) * dt) - d) / (u - d)  # Probabilidad de subida
  
  # Inicializar una matriz para almacenar los precios de la opción en cada nodo del árbol
  option_prices <- matrix(0, nrow = nstep + 1, ncol = nstep + 1)
  
  # Calcular los precios de las opciones en los nodos finales del árbol
  for (j in 0:nstep) {
    option_prices[nstep + 1, j + 1] <- max(s * u^j * d^(nstep - j) - k, 0)
  }
  
  # Calcular los precios de las opciones en los nodos anteriores del árbol
  for (i in (nstep - 1):0) {
    for (j in 0:i) {
      option_prices[i + 1, j + 1] <- exp(-r * dt) * (p * option_prices[i + 2, j + 2] + (1 - p) * option_prices[i + 2, j + 1])
    }
  }
  
  return(option_prices)
}

# Función para mostrar la matriz del árbol binomial de forma más definida
binomial_tree_adbe <- function(option_prices) {
  # Obtener dimensiones de la matriz
  nrow <- nrow(option_prices)
  ncol <- ncol(option_prices)
  
  # Iterar sobre la matriz y mostrar los precios de la opción
  for (i in 1:nrow) {
    cat(rep("  ", nrow - i))  # Agregar espacios al principio de cada fila
    for (j in 1:ncol) {
      if (option_prices[i, j] != 0) {  # Solo imprimir valores no nulos
        cat(sprintf("%8.2f", option_prices[i, j]))  # Imprimir valores de la fila actual
      } else {
        cat(rep("        ", 1))  # Imprimir espacios en blanco para valores nulos
      }
    }
    cat("\n")  # Nueva línea para la siguiente fila
  }
}

# Calcular los precios de las opciones en cada nodo del árbol binomial
option_prices <- calculate_option_prices_adbe(s, k, tt, r, d, n, nstep)

# Mostrar la matriz del árbol binomial de forma más definida
binomial_tree_adbe(option_prices)
##                  26.41                                        
##               11.05   57.08                                
##             2.85   27.39  116.42                        
##                  8.53   65.00  219.30                
##                      25.50  143.84  370.70        
##                            76.26  278.97  555.55

Opciones Europeas FTNT

s <- 64.480003  # Current stock price
k <- 60  # Strike price
tt <- 0.25  # Time to maturity or expiry (in years)
r <- 0.0544  # Risk-free rate (current 3-month bond rate)
d <- 0  # Dividend yield
n <- 0.6948  # Volatility (Blended) 
nstep <- 5

# Calcular el precio de la opción call europea de FTNT
european_call_option_price_ftnt <- EuropeanOption(type = "call", underlying = s, 
                                                  strike = k, dividendYield = d, 
                                                  riskFreeRate = r, maturity = tt, 
                                                  volatility = n)$value

# Calcular el precio de la opción put europea de FTNT
european_put_option_price_ftnt <- EuropeanOption(type = "put", underlying = s, 
                                                 strike = k, dividendYield = d, 
                                                 riskFreeRate = r, maturity = tt, 
                                                 volatility = n)$value

# Imprimir los resultados
cat("Precio de opción call europea de FTNT:", european_call_option_price_ftnt, "\n")
## Precio de opción call europea de FTNT: 11.42702
cat("Precio de opción put europea de FTNT:", european_put_option_price_ftnt, "\n")
## Precio de opción put europea de FTNT: 6.136536

El precio de una opción call europea tiende a aumentar cuando el precio del activo subyacente aumenta, mientras que el precio de una opción put europea tiende a aumentar cuando el precio del activo subyacente disminuye. Además, ambos precios son influenciados por factores como el tiempo hasta la expiración, la tasa de interés y la volatilidad del activo subyacente. En el caso del activo, el precio de la opción call europea de FTNT es de 11.42702, lo que sugiere una expectativa de un aumento en el precio de FTNT, mientras que el precio de la opción put europea de FTNT es de 6.136536, indicando una expectativa de una posible disminución en el precio de FTNT.

Modelo de árbol binomial CRR para FTNT

calculate_option_prices_ftnt <- function(s, k, tt, r, d, n, nstep, crr = TRUE) {
  dt <- tt / nstep  # Paso de tiempo
  u <- exp(n * sqrt(dt))  # Factor de aumento
  d <- 1 / u  # Factor de reducción
  p <- (exp((r - d) * dt) - d) / (u - d)  # Probabilidad de subida
  
  # Inicializar una matriz para almacenar los precios de la opción en cada nodo del árbol
  option_prices <- matrix(0, nrow = nstep + 1, ncol = nstep + 1)
  
  # Calcular los precios de las opciones en los nodos finales del árbol
  for (j in 0:nstep) {
    option_prices[nstep + 1, j + 1] <- max(s * u^j * d^(nstep - j) - k, 0)
  }
  
  # Calcular los precios de las opciones en los nodos anteriores del árbol
  for (i in (nstep - 1):0) {
    for (j in 0:i) {
      option_prices[i + 1, j + 1] <- exp(-r * dt) * (p * option_prices[i + 2, j + 2] + (1 - p) * option_prices[i + 2, j + 1])
    }
  }
  
  return(option_prices)
}

# Función para mostrar la matriz del árbol binomial de forma más definida
binomial_tree_ftnt <- function(option_prices) {
  # Obtener dimensiones de la matriz
  nrow <- nrow(option_prices)
  ncol <- ncol(option_prices)
  
  # Iterar sobre la matriz y mostrar los precios de la opción
  for (i in 1:nrow) {
    cat(rep("  ", nrow - i))  # Agregar espacios al principio de cada fila
    for (j in 1:ncol) {
      if (option_prices[i, j] != 0) {  # Solo imprimir valores no nulos
        cat(sprintf("%8.2f", option_prices[i, j]))  # Imprimir valores de la fila actual
      } else {
        cat(rep("        ", 1))  # Imprimir espacios en blanco para valores nulos
      }
    }
    cat("\n")  # Nueva línea para la siguiente fila
  }
}

# Calcular los precios de las opciones en cada nodo del árbol binomial
option_prices <- calculate_option_prices_ftnt(s, k, tt, r, d, n, nstep)

# Mostrar la matriz del árbol binomial de forma más definida
binomial_tree_ftnt(option_prices)
##                   4.62                                        
##                2.05    9.76                                
##             0.57    5.00   19.26                        
##                  1.71   11.57   34.66                
##                       5.12   24.45   55.17        
##                            15.32   42.76   80.21

Creación de coberturas

# Long Straddle payoff Ebay

prices <- seq(40,55,1) # Vector of prices
strike <- 47 # strike price for both put and call 
premium_call <- 1.978705 # option price call
premium_put <- 10.47726 # option price put 

# call option payoff at expiration 
intrinsicValuesCall <- prices - strike - premium_call
payoffLongCall <- pmax(-premium_call,intrinsicValuesCall)

# put option payoff at expiration
intrinsicValuesPut <- strike - prices - premium_put
payoffLongPut <- pmax(-premium_put,intrinsicValuesPut)

# The payoff of the Strategy is the sum of the call and put payoff. Need
# to sum wise element by element between the two vectors
payoff <- rowSums(cbind(payoffLongCall,payoffLongPut))

# Make a DataFrame with all the variable to plot it with ggplot
results <- data.frame(cbind(prices,payoffLongCall,payoffLongPut,payoff))

ggplot(results, aes(x=prices)) + 
  geom_line(aes(y = payoffLongCall, color = "LongCall")) + 
  geom_line(aes(y = payoffLongPut, color="LongPut"))+
  geom_line(aes(y=payoff, color = 'Payoff')) +
  scale_colour_manual("", 
                      breaks = c("LongCall", "LongPut", "Payoff"),
                      values = c("red", "blue", "black")) + ylab("Payoff")+
  ggtitle("Long Straddle Payoff")

Cobertura simulada del activo FTNT

s <- 64.480003  # Current stock price
k <- 60  # Strike price
tt <- 0.25  # Time to maturity or expiry (in years)
r <- 0.0544  # Risk-free rate (current 3-month bond rate)
d <- 0  # Dividend yield
n <- 0.6948  # Volatility (Blended) 
nstep <- 5

# Valor de las opciones de compra (call) y venta (put)
d1 <- (log(s/k) + (r + 0.5 * n^2) * tt) / (n * sqrt(tt))
d2 <- d1 - n * sqrt(tt)

call_price <- s * pnorm(d1) - k * exp(-r * tt) * pnorm(d2)
put_price <- k * exp(-r * tt) * pnorm(-d2) - s * pnorm(-d1)

# Payoff de la estrategia Long Straddle
prices <- seq(50,70,1) # Vector of prices
strike <- 60 # strike price for both put and call 
premium_call <- 11.42702  # option price call
premium_put <- 6.136536 # option price put 

# Payoff de la opci??n de compra (call) al vencimiento
intrinsicValuesCall <- prices - k - premium_call
payoffLongCall <- pmax(-premium_call, intrinsicValuesCall)

# Payoff de la opci??n de venta (put) al vencimiento
intrinsicValuesPut <- k - prices - premium_put
payoffLongPut <- pmax(-premium_put, intrinsicValuesPut)

# Payoff de la estrategia Long Straddle
payoff <- payoffLongCall + payoffLongPut

# Crear un DataFrame con los resultados para graficar
results <- data.frame(prices, payoffLongCall, payoffLongPut, payoff)

# Graficar el payoff de la estrategia Long Straddle
library(ggplot2)
ggplot(results, aes(x = prices)) + 
  geom_line(aes(y = payoffLongCall, color = "LongCall")) + 
  geom_line(aes(y = payoffLongPut, color = "LongPut")) +
  geom_line(aes(y = payoff, color = "Straddle Payoff")) +
  scale_color_manual("", 
                     breaks = c("LongCall", "LongPut", "Straddle Payoff"),
                     values = c("red", "blue", "black")) +
  ylab("Payoff") +
  ggtitle("Long Straddle Payoff")

BSM and Swaps - Laboratorio 4

bsm = read.table("C:/Users/Felipe/OneDrive - INSTITUTO TECNOLOGICO METROPOLITANO - ITM/Derivados Financieros/BSM and Swaps/BSM (1).txt", header = TRUE)

# Definimos medidas

prome_nflx <- mean(bsm$NFLX)
prome_ebay <- mean(bsm$EBAY)

ret_nflx <- diff(log(bsm$NFLX))
ret_ebay <- diff(log(bsm$EBAY))

El promedio de las acciones de NFLX es de 420.036 y de EBAY es de 47.103 lo cual indica que en cierto momento presentaron una tendencia alcista donde sus precios fueron creciendo

#Definimos formulas de uso

Black Scholes Merton y valoracion de las griegas

black_scholes_merton <- function(So, K, r, VencimientoDias, sigma, Stcall, Stput) {
  
  Ano <- 252
  
  #Definir los vencimientos a partir de un número de días establecido
  VencimientoDias = seq(from = VencimientoDias, by = 90, length.out = 6)
  
  #Definir un conjunto de Volatilidad a partir de un valor sigma inicial
  sigma = seq(from = sigma, by = 0.05, length.out = 6)
  
  ## Cálculo del vencimiento
  T <- VencimientoDias / Ano
  
  
  #Definir d1 y d2
  d1 <- (log(So/K) + (r + ((sigma^2)/2)) * T) / (sigma * sqrt(T))
  d2 <- (log(So/K) + (r - ((sigma^2)/2)) * T) / (sigma * sqrt(T))
  
  
  # Definir N1 y N2 para la posición Call y Put
  Nd1 <- pnorm(d1)
  Nd2 <- pnorm(d2)
  Nd1P <- pnorm(-d1)
  Nd2P <- pnorm(-d2)
  
  #Valoración Call
  Call <- So * Nd1 - (K * exp(-r * T) * Nd2)
  
  #Valoración Put
  Put <- (K * exp(-r * T) * Nd2P) - So * Nd1P
  
  ##Crear vector de varios precios st a partir de un stc dado  
  St <- seq(from = Stcall - 30 * 5, to = Stcall + 30 * 5, by = 5)
  num_filas <- length(St)
  num_columnas <- length(sigma)
  
  ## Matriz resultados de la Valoración Call
  resultadosCall <- matrix(NA, nrow = num_filas, ncol = num_columnas)
  
  
  ## 
  for (i in 1:num_filas) {
    for (j in 1:num_columnas) {
      resultado <- (St[i] * pnorm((log(St[i]/K) + (r + ((sigma[j]^2)/2)) * T[j]) / (sigma[j] * sqrt(T[j]))) -
                      K * exp(-r * T[j]) * pnorm((log(St[i]/K) + (r - ((sigma[j]^2)/2)) * T[j]) / (sigma[j] * sqrt(T[j])))) /
        Call[j]
      resultadosCall[i, j] <- resultado
    }
  }
  
  #Definir el nombre de las columnas
  colnames(resultadosCall) <- paste("Vto a", VencimientoDias, "días")
  
  ##Crear vector de varios precios st a partir de un stp dado
  StP <- seq(from = Stput - 30 * 5, to = Stcall + 30 * 5, by = 5)
  
  #matriz de resultados de la valoración Put
  resultadosPut <- matrix(NA, nrow = num_filas, ncol = num_columnas)
  
  for (i in 1:num_filas) {
    for (j in 1:num_columnas) {
      resultado <- (K * exp(-r * T[j]) * pnorm(-(log(StP[i]/K) + (r - ((sigma[j]^2)/2)) * T[j]) / (sigma[j] * sqrt(T[j])))
                    - StP[i] * pnorm(-(log(StP[i]/K) + (r + ((sigma[j]^2)/2)) * T[j]) / (sigma[j] * sqrt(T[j])))) /
        Put[j]
      resultadosPut[i, j] <- resultado
    }
  }
  
  colnames(resultadosPut) <- paste("Vto a", VencimientoDias, "días")
  
  #incluir columna de los valores de St para la posición Call en la matriz de resultados
  CallTable <- cbind(St, resultadosCall)
  
  # definir la tabla como un dataframe para evitar error en el tipo de datos
  CallTable <- as.data.frame(CallTable)
  
  #Proceso similar al anterior realizado ahora para la posición Put
  PutTable <- cbind(StP, resultadosPut)
  PutTable <- as.data.frame(PutTable)
  
  # Graficar Call
  colores <- rainbow(num_columnas)
  matplot(1:num_filas, resultadosCall, type = "l", col = colores, lty = 1, xlab = "Índice", ylab = "Valor", main = "Gráfico de Líneas de Resultados Call")
  legend("topleft", legend = colnames(resultadosCall), col = colores, lty = 1, cex = 0.4)
  grid()
  png(filename = "CallPlot.png")
  dev.off()
  
  # Graficar Put
  colores <- rainbow(num_columnas)
  matplot(1:num_filas, resultadosPut, type = "l", col = colores, lty = 1, xlab = "Índice", ylab = "Valor", main = "Gráfico de Líneas de Resultados Put")
  legend("topright", legend = colnames(resultadosPut), col = colores, lty = 1, cex = 0.4)
  grid()
  png(filename = "PutPlot.png")
  dev.off()
  
  return(list(CallTable = CallTable, PutTable = PutTable))
}

# Valoracion de griegas 

valoracion_griegas <- function(t=0,T,S,K,r,q=0,sigma,isPut=0) {
  # t and T are measured in years; all parameters are annualized
  # q is the continuous dividend yield
  d1 <- (log(S/K)+(r-q+sigma^2/2)*(T-t))/(sigma*sqrt(T-t))
  d2 <- d1-sigma*sqrt(T-t)
  binary <- pnorm(-d2)*exp(-r*T)
  
  # Call Delta at t
  Delta <- exp(-q*(T-t))*pnorm(d1)
  Gamma <- exp(-q*(T-t))*exp(-d1^2/2)/sqrt(2*pi)/S/sigma/sqrt(T-t)
  Vega <- S*exp(-q*(T-t))/sqrt(2*pi)*exp(-d1^2/2)*sqrt(T-t)
  Theta <- -S*exp(-q*(T-t))*sigma/sqrt(T-t)/2*dnorm(d1) - r*K*exp(-r*(T-t))*pnorm(d2) + 
    q*S*exp(-q*(T-t))*pnorm(d1)
  Rho <- (T-t)*K*exp(-r*(T-t))*pnorm(d2)
  
  
  # Black-Scholes formula for Calls
  BSprice <- -K*exp(-r*(T-t))*pnorm(d2)+S*Delta
  
  if (isPut==1) {
    Delta <- -exp(-q*(T-t))*pnorm(-d1)
    BSprice <- S*Delta+K*exp(-r*(T-t))*pnorm(-d2)
    Theta <- -S*exp(-q*(T-t))*sigma/sqrt(T-t)/2*dnorm(d1) + r*K*exp(-r*(T-t))*pnorm(-d2) - 
      q*S*exp(-q*(T-t))*pnorm(-d1)
    Rho <- -(T-t)*K*exp(-r*(T-t))*pnorm(-d2)
  }
  Bank <- BSprice-Delta*S
  
  return (list(Delta=Delta,Gamma=Gamma,Theta=Theta,Vega=Vega,Rho=Rho,Price=BSprice,d1=d1,d2=d2,B=Bank))
}

Valore los precios de las opciones mediante el modelo de Black, Scholes y Merton. Calcule y analice las griegas

Netflix

# Simulacion 1 So =  355.06, K =  420, StCall= 360 y StPut = 420

# Llamada a la función con valores específicos y gráficas
resultado <- black_scholes_merton(So = 355.06, K = 420, r = 0.05160, VencimientoDias = 90, sigma = sd(ret_nflx), Stcall = 360, Stput = 420)

#Vencimiento tres meses (12 semanas)
#Call
call_result <- valoracion_griegas(t=0,T=12/52,S=360,K=420,r=0.05160,q=0,sigma=sd(ret_nflx),isPut=0)
#Put
put_result <- valoracion_griegas(t=0,T=12/52,S=420,K=420,r=0.05160,q=0,sigma=sd(ret_nflx),isPut=1)

call_df <- as.data.frame(call_result)
put_df <- as.data.frame(put_result)
call_df$type <- 'Call'
put_df$type <- 'Put'
result_df <- rbind(call_df, put_df)
print(result_df)
##                             Delta                           Gamma
## 1  0.0000000000000000000000199256 0.00000000000000000000003858025
## 2 -0.2013223207740032494328374923 0.04663134252354541459117953650
##                           Theta                         Vega
## 1 -0.00000000000000000000260083  0.0000000000000000000344706
## 2  0.72761768781622437884948340 56.7094394188440702464504284
##                               Rho                           Price         d1
## 1   0.000000000000000000001653008 0.00000000000000000000001017769 -9.9043604
## 2 -19.670454382522756020534870913 0.68326093251722852528473595157  0.8369074
##           d2                              B type
## 1 -9.9187116 -0.000000000000000000007163037 Call
## 2  0.8225561 85.238635657598592842987272888  Put

En un vencimiento de 90 días para un call , tenemos un delta de 1.992560e-23 lo que significa cuanto cambia el precio de la opción en comparación con los cambios del precio subyacente, por lo tanto, un aumento en el precio del subyacente, el precio de la opción call aumentara en 1.992560e-23.

Se tiene un gamma de 3.858025e-23 el cual indica el cambio de la tasa de cambio de delta en relación con los cambios del precio subyacente y así mismo poder evaluar el riesgo de volatilidad de la cartera de las opciones .El vega de 3.447060e-20 indica que si hay un aumento del 1%, por lo tanto el precio de la opción call aumentara en 3.447060e-20 Con un vencimiento de 90 dias para un put, se tiene un theta de 7.276177e-01 lo que indica que en el momento que se mantiene todo constante, el valor de la opción en put aumentara en 7.276177e-01 unidades por dia. Adicionalmente, se tiene un Rho de -1.967045e+01 lo que al ser negativo indica que disminuye su valor cuando hay un aumento en la tasa de interés

# Simulacion 2 So =  355.06, K =  420, StCall= 420 y StPut = 490

# Llamada a la función con valores específicos y gráficas
resultado <- black_scholes_merton(So = 355.06, K = 420, r = 0.05160, VencimientoDias = 90, sigma = sd(ret_nflx), Stcall = 420, Stput = 490)

#Vencimiento tres meses (12 semanas)
#Call
call_result <- valoracion_griegas(t=0,T=12/52,S=420,K=420,r=0.05160,q=0,sigma=sd(ret_nflx),isPut=0)
#Put
put_result <- valoracion_griegas(t=0,T=12/52,S=490,K=420,r=0.05160,q=0,sigma=sd(ret_nflx),isPut=1)

call_df <- as.data.frame(call_result)
put_df <- as.data.frame(put_result)
call_df$type <- 'Call'
put_df$type <- 'Put'
result_df <- rbind(call_df, put_df)
print(result_df)
##                                     Delta
## 1  0.798677679225996750567162507650209591
## 2 -0.000000000000000000000000000000265829
##                                     Gamma
## 1 0.0466313425235454145911795365009311354
## 2 0.0000000000000000000000000000004408977
##                                     Theta                                  Vega
## 1 -20.68784919442044056836493837181478739 56.7094394188440702464504283852875233
## 2  -0.00000000000000000000000000004050969  0.0000000000000000000000000007298084
##                                      Rho
## 1 76.10533668293639664170768810436129570
## 2 -0.00000000000000000000000000003009589
##                                     Price         d1         d2
## 1 5.6548329821942502348974812775850296021  0.8369074  0.8225561
## 2 0.0000000000000000000000000000001593235 11.5781751 11.5638238
##                                         B type
## 1 -329.7897922927243712365452665835618973 Call
## 2    0.0000000000000000000000000001304155  Put
# Simulacion 3 So =  355.06, K =  420, StCall= 605.5 y StPut = 420

# Llamada a la función con valores específicos y gráficas
resultado <- black_scholes_merton(So = 355.06, K = 420, r = 0.05160, VencimientoDias = 90, sigma = sd(ret_nflx), Stcall = 605.5, Stput = 420)

#Vencimiento tres meses (12 semanas)
#Call
call_result <- valoracion_griegas(t=0,T=12/52,S=605.5,K=420,r=0.05160,q=0,sigma=sd(ret_nflx),isPut=0)
#Put
put_result <- valoracion_griegas(t=0,T=12/52,S=420,K=420,r=0.05160,q=0,sigma=sd(ret_nflx),isPut=1)

call_df <- as.data.frame(call_result)
put_df <- as.data.frame(put_result)
call_df$type <- 'Call'
put_df$type <- 'Put'
result_df <- rbind(call_df, put_df)
print(result_df)
##        Delta
## 1  1.0000000
## 2 -0.2013223
##                                                                                                                                                              Gamma
## 1 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001467977
## 2 0.04663134252354541459117953650093113537877798080444335937500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
##         Theta
## 1 -21.4154669
## 2   0.7276177
##                                                                                                                                                            Vega
## 1  0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000371045
## 2 56.7094394188440702464504283852875232696533203125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
##         Rho       Price         d1         d2          B type
## 1  95.77579 190.4715720 26.3259558 26.3116045 -415.02843 Call
## 2 -19.67045   0.6832609  0.8369074  0.8225561   85.23864  Put

En la valoracion de 90 dias con un st call de 605.5 y un st put de 420 tenemos un gamma en call de 1.467977e-25 lo que significa que si el precio del subyacente aumenta en 1 unidad, el delta de la opción aumentara en aproximadamente 1.467977e-25, se tiene un theta de -21.4154669 lo que da a entender es que el valor de la opción disminuirá en aproximadamente -21.41 a medida que pasa el tiempo siendo lo otro todo igual.Un rho de 95.77579 indica que el valor de la opción aumenta en 95.77579 si las tasas de intereses suben

Ebay

# Simulacion 1 So =  33.30934, K =  45, StCall= 48.5 y StPut = 44.5

# Llamada a la función con valores específicos y gráficas
resultado <- black_scholes_merton(So = 33.309, K = 45, r = 0.05160, VencimientoDias = 90, sigma = sd(ret_ebay), Stcall = 48.5, Stput = 44.5)

#Vencimiento tres meses (12 semanas)
#Call
call_result <- valoracion_griegas(t=0,T=12/52,S=48.5,K=45,r=0.05160,q=0,sigma=sd(ret_ebay),isPut=0)
#Put
put_result <- valoracion_griegas(t=0,T=12/52,S=44.5,K=45,r=0.05160,q=0,sigma=sd(ret_ebay),isPut=1)

call_df <- as.data.frame(call_result)
put_df <- as.data.frame(put_result)
call_df$type <- 'Call'
put_df$type <- 'Put'
result_df <- rbind(call_df, put_df)
print(result_df)
##        Delta                     Gamma      Theta                     Vega
## 1  1.0000000 0.00000000000000002079826 -2.2945143 0.0000000000000002334716
## 2 -0.4685591 0.89963004359628584438724  0.7032542 8.5017337510823836055351
##         Rho     Price         d1        d2         B type
## 1 10.261692 4.0326684 8.74333208 8.7333978 -44.46733 Call
## 2 -4.848767 0.1604437 0.07889244 0.0689582  21.01132  Put
# Simulacion 2 So =  33.30934, K =  45, StCall= 42 y StPut = 63

# Llamada a la función con valores específicos y gráficas
resultado <- black_scholes_merton(So = 33.309, K = 45, r = 0.05160, VencimientoDias = 90, sigma = sd(ret_ebay), Stcall = 42, Stput = 63)

#Vencimiento tres meses (12 semanas)
#Call
call_result <- valoracion_griegas(t=0,T=12/52,S=42,K=45,r=0.05160,q=0,sigma=sd(ret_ebay),isPut=0)
#Put
put_result <- valoracion_griegas(t=0,T=12/52,S=63,K=45,r=0.05160,q=0,sigma=sd(ret_ebay),isPut=1)

call_df <- as.data.frame(call_result)
put_df <- as.data.frame(put_result)
call_df$type <- 'Call'
put_df$type <- 'Put'
result_df <- rbind(call_df, put_df)
print(result_df)
##                                                                                                                                                                                                                                                                                     Delta
## 1  0.000000004696529377534608700513890644501202586980070918798446655273437500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 2 -0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000008523936
##                                                                                                                                                                                                                                                                                  Gamma
## 1 0.0000000664823442418244817293804249658251137589104473590850830078125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 2 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004780765
##                                                                                                                                                                                                                                                                                  Theta
## 1 -0.000000035238124624976087588372475334352884601685218513011932373046875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 2 -0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000378015
##                                                                                                                                                                                                                                                                                  Vega
## 1 0.000000559665367318659257760485314925347211101325228810310363769531250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 2 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009055283
##                                                                                                                                                                                                                                                                                   Rho
## 1  0.00000004544574477401222861727703161704994272440671920776367187500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 2 -0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000012396
##                                                                                                                                                                                                                                                                                     Price
## 1 0.0000000003226731690672739750460826235745059875625884160399436950683593750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 2 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001518987
##          d1        d2
## 1 -5.741339 -5.751274
## 2 35.073577 35.063643
##                                                                                                                                                                                                                                                                                       B
## 1 -0.0000001969315606873862931243401863667941142921335995197296142578125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 2  0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005371598
##   type
## 1 Call
## 2  Put
# Simulacion 3 So =  33.30934, K =  45, StCall= 53 y StPut = 43

# Llamada a la función con valores específicos y gráficas
resultado <- black_scholes_merton(So = 33.309, K = 45, r = 0.05160, VencimientoDias = 90, sigma = sd(ret_ebay), Stcall = 53, Stput = 43)

#Vencimiento tres meses (12 semanas)
#Call
call_result <- valoracion_griegas(t=0,T=12/52,S=53,K=45,r=0.05160,q=0,sigma=sd(ret_ebay),isPut=0)
#Put
put_result <- valoracion_griegas(t=0,T=12/52,S=43,K=45,r=0.05160,q=0,sigma=sd(ret_ebay),isPut=1)

call_df <- as.data.frame(call_result)
put_df <- as.data.frame(put_result)
call_df$type <- 'Call'
put_df$type <- 'Put'
result_df <- rbind(call_df, put_df)
print(result_df)
##        Delta
## 1  1.0000000
## 2 -0.9996278
##                                                                          Gamma
## 1 0.00000000000000000000000000000000000000000000000000000000000000000001102578
## 2 0.00316384294930163907644260490314991329796612262725830078125000000000000000
##       Theta
## 1 -2.294514
## 2  2.292440
##                                                                          Vega
## 1 0.0000000000000000000000000000000000000000000000000000000000000000001478034
## 2 0.0279174248705441885309852523278095759451389312744140625000000000000000000
##         Rho    Price        d1        d2         B type
## 1  10.26169 8.532668 17.674879 17.664945 -44.46733 Call
## 2 -10.25801 1.467373 -3.372713 -3.382647  44.45137  Put

En conclusion de la opcion Ebay trabajada en las simulaciones anteriores, se denota:

En la opción Ebay con un st call de 48.5 y un st put de 44.5 se tienen los siguientes valores: Theta de -2.2945143 en call, lo que significa que al mantener todo lo demás constante, el valor de la opción disminuirá en 2.294 unidades por dia.un rho de 10.261692 lo que significa que si la tasa de interés aumenta en 1,el precio de la opción en call aumentara en aproximadamente en 10.2616 unidades. Un gamma en put de 8.996300e-01 lo que indica que si el precio del subyacente aumenta, entonces el delta de la opción put. Se tiene un theta de 0.7032542 significa que con todas las demás variables constantes, el valor de la opción aumentara en aproximadamente 0.7032 uniddes por dia

Con un st call de 53 y un st put de 43 se tiene un delta put de -0.9996278 lo que significa que si el precio del activo subyacente disminuye, el precio del valor de la opción aumentara en aprox 0.9996, un rho de call de 10.26169 lo que significa que el valor de la opción aumentara en aproximadamente 10.2616 cuando las tasas de interés aumenten

Valore los precios de las opciones mediante el modelo de Black, Scholes y Merton, pero modificando la tasa de variación implícita. Calcule y analice las griegas

Netflix

# Llamada a la función con valores específicos y gráficas
resultado <- black_scholes_merton(So = 355.06, K = 420, r = 0.05160, VencimientoDias = 90, sigma = 2.9219, Stcall = 360, Stput = 420)

#Vencimiento tres meses (12 semanas)
#Call
call_result <- valoracion_griegas(t=0,T=12/52,S=360,K=420,r=0.05160,q=0,sigma=2.9219,isPut=0)
#Put
put_result <- valoracion_griegas(t=0,T=12/52,S=420,K=420,r=0.05160,q=0,sigma=2.9219,isPut=1)

call_df <- as.data.frame(call_result)
put_df <- as.data.frame(put_result)
call_df$type <- 'Call'
put_df$type <- 'Put'
result_df <- rbind(call_df, put_df)
print(result_df)
##        Delta        Gamma     Theta     Vega       Rho    Price        d1
## 1  0.7259064 0.0006592581 -369.2388 57.61078  20.20315 173.7793 0.6004787
## 2 -0.2387587 0.0005258352 -379.7688 62.54484 -72.40172 213.4621 0.7103011
##           d2         B type
## 1 -0.8031567 -87.54697 Call
## 2 -0.6933342 313.74077  Put

Al modificar la variación implícita, se presenta las siguientes variaciones: Delta en call de 0.7259064 lo que se entiende que si el precio del subyacente aumenta entonces el valor de la opción también aumenta en aproximadamente 0.7259; un gamma en put de 0.0005258352 o que significa que el valor de gamma va aumentando a medida que el precio del subyacente se vaya alejando del precio strike.Con un theta en call de -369.2388 lo que significa que el vaor de la opción va disminuyendo a medida que todo se mantiene constante. Un vega en put de 62.54484 indica que el valor de la opción aumenta cuando la volatilidad implícita del precio subyacente aumente

Ebay

# Llamada a la función con valores específicos y gráficas
resultado <- black_scholes_merton(So = 33.309, K = 45, r = 0.05160, VencimientoDias = 90, sigma = 2.0234, Stcall = 48.5, Stput = 44.5)

#Vencimiento tres meses (12 semanas)
#Call
call_result <- valoracion_griegas(t=0,T=12/52,S=48.5,K=45,r=0.05160,q=0,sigma=2.0234,isPut=0)
#Put
put_result <- valoracion_griegas(t=0,T=12/52,S=44.5,K=45,r=0.05160,q=0,sigma=2.0234,isPut=1)

call_df <- as.data.frame(call_result)
put_df <- as.data.frame(put_result)
call_df$type <- 'Call'
put_df$type <- 'Put'
result_df <- rbind(call_df, put_df)
print(result_df)
##        Delta       Gamma     Theta     Vega       Rho    Price        d1
## 1  0.7174604 0.007171747 -35.32704 7.877131  3.548449 19.42022 0.5753137
## 2 -0.3132140 0.008192744 -31.63646 7.575461 -7.042089 16.57769 0.4867605
##           d2         B type
## 1 -0.3966962 -15.37661 Call
## 2 -0.4852494  30.51572  Put

Valore los precios de las opciones mediante el modelo de Black, Scholes y Merton, pero modificando la tasa de interés (una con intervalo de crecimiento y decrecimiento de 2%, hasta llegar a un total de 10 puntos de distancia, otra con una simulación de Vasicek de la tasa de interés)

Netflix

black_scholes_merton <- function(So, K, r_range, VencimientoDias, sigma, Stcall, Stput) {
  
  Ano <- 252
  
  # Definir los vencimientos a partir de un número de días establecido
  VencimientoDias <- seq(from = VencimientoDias, by = 90, length.out = 6)
  
  # Repetir sigma para cada vencimiento
  sigma <- rep(sigma, length(VencimientoDias))
  
  # Cálculo del vencimiento
  T <- VencimientoDias / Ano
  
  # Inicializar listas para almacenar resultados
  resultados_call <- list()
  resultados_put <- list()
  griegas_call <- list()
  griegas_put <- list()
  
  for (r in r_range) {
    
    # Definir d1 y d2
    d1 <- (log(So/K) + (r + ((sigma^2)/2)) * T) / (sigma * sqrt(T))
    d2 <- d1 - sigma * sqrt(T)
    
    # Definir N1 y N2 para la posición Call y Put
    Nd1 <- pnorm(d1)
    Nd2 <- pnorm(d2)
    Nd1P <- pnorm(-d1)
    Nd2P <- pnorm(-d2)
    
    # Valoración Call
    Call <- So * Nd1 - (K * exp(-r * T) * Nd2)
    
    # Valoración Put
    Put <- (K * exp(-r * T) * Nd2P) - So * Nd1P
    
    # Calcular las griegas para Call
    DeltaCall <- Nd1
    GammaCall <- dnorm(d1) / (So * sigma * sqrt(T))
    ThetaCall <- (-So * dnorm(d1) * sigma / (2 * sqrt(T)) - r * K * exp(-r * T) * Nd2) / Ano
    VegaCall <- So * dnorm(d1) * sqrt(T)
    RhoCall <- K * T * exp(-r * T) * Nd2
    
    # Calcular las griegas para Put
    DeltaPut <- Nd1 - 1
    GammaPut <- dnorm(d1) / (So * sigma * sqrt(T))
    ThetaPut <- (-So * dnorm(d1) * sigma / (2 * sqrt(T)) + r * K * exp(-r * T) * Nd2P) / Ano
    VegaPut <- So * dnorm(d1) * sqrt(T)
    RhoPut <- -K * T * exp(-r * T) * Nd2P
    
    # Almacenar resultados
    resultados_call[[paste0("r_", r)]] <- Call
    resultados_put[[paste0("r_", r)]] <- Put
    griegas_call[[paste0("r_", r)]] <- data.frame(VencimientoDias = VencimientoDias, Delta = DeltaCall, Gamma = GammaCall, Theta = ThetaCall, Vega = VegaCall, Rho = RhoCall)
    griegas_put[[paste0("r_", r)]] <- data.frame(VencimientoDias = VencimientoDias, Delta = DeltaPut, Gamma = GammaPut, Theta = ThetaPut, Vega = VegaPut, Rho = RhoPut)
  }
  
  return(list(Call = resultados_call, Put = resultados_put, GriegasCall = griegas_call, GriegasPut = griegas_put))
}

# Definir los parámetros
So <- 355.06
K <- 420
sigma <- sd(ret_nflx)
Stcall <- 360
Stput <- 420
VencimientoDias <- 90

# Definir el rango de tasas de interés
tasa <- 0.05160
tasa_mod <- seq(tasa - 0.10, tasa + 0.10, by = 0.02)

# Llamar a la función modificada
resultado_inter <- black_scholes_merton(So, K, tasa_mod, VencimientoDias, sigma, Stcall, Stput)

# Imprimir los resultados para cada tasa de interés
for (r in tasa_mod) {
  cat("\nResultados para r =", r, "\n")
  print(resultado_inter$Call[[paste0("r_", r)]])
  print(resultado_inter$Put[[paste0("r_", r)]])
  cat("\nGriegas para Call con r =", r, "\n")
  print(resultado_inter$GriegasCall[[paste0("r_", r)]])
  cat("\nGriegas para Put con r =", r, "\n")
  print(resultado_inter$GriegasPut[[paste0("r_", r)]])
}
## 
## Resultados para r = -0.0484 
## [1] 0.0000000000000000000000001045577 0.0000000000000006256005385786427
## [3] 0.0000000000009726011925181384366 0.0000000000322239814417754617251
## [5] 0.0000000002246116286040898429041 0.0000000007120840855961868956503
## [1]  72.26311  79.71391  87.29461  95.00750 102.85487 110.83906
## 
## Griegas para Call con r = -0.0484 
##   VencimientoDias                             Delta
## 1              90 0.0000000000000000000000001743933
## 2             180 0.0000000000000005773428170226192
## 3             270 0.0000000000006547015096518772935
## 4             360 0.0000000000176437814445653912642
## 5             450 0.0000000001059519086173374114454
## 6             540 0.0000000002996885479279694125890
##                               Gamma                               Theta
## 1 0.0000000000000000000000002878244 -0.00000000000000000000000005238185
## 2 0.0000000000000005236104393567673 -0.00000000000000007764036418372449
## 3 0.0000000000004310698619470260460 -0.00000000000005177271261672428095
## 4 0.0000000000094180421411293512119 -0.00000000000090548542890985475214
## 5 0.0000000000486079043613979811574 -0.00000000000366914831930243468265
## 6 0.0000000001224551397489777698020 -0.00000000000703685035750261867957
##                             Vega                             Rho
## 1 0.0000000000000000000003871454 0.00000000000000000000002207697
## 2 0.0000000000014085903552011765 0.00000000000014597552862390893
## 3 0.0000000017394635524333800769 0.00000000024802041088336866932
## 4 0.0000000506718824825950703685 0.00000000890339579752230371457
## 5 0.0000003269063225425620368425 0.00000006677620186619238559084
## 6 0.0000009882678943936894043823 0.00000022648999658937565989357
## 
## Griegas para Put con r = -0.0484 
##   VencimientoDias Delta                             Gamma       Theta
## 1              90    -1 0.0000000000000000000000002878244 -0.08207317
## 2             180    -1 0.0000000000000005236104393567673 -0.08350419
## 3             270    -1 0.0000000000004310698619470260460 -0.08496017
## 4             360    -1 0.0000000000094180421411293512119 -0.08644154
## 5             450    -1 0.0000000000486079043613979811574 -0.08794873
## 6             540    -1 0.0000000001224551397489777698020 -0.08948220
##                             Vega       Rho
## 1 0.0000000000000000000003871454 -152.6154
## 2 0.0000000000014085903552011765 -310.5528
## 3 0.0000000017394635524333800769 -473.9514
## 4 0.0000000506718824825950703685 -642.9536
## 5 0.0000003269063225425620368425 -817.7051
## 6 0.0000009882678943936894043823 -998.3551
## 
## Resultados para r = -0.0284 
## [1] 0.000000000000000000000006594814 0.000000000000056951366513194427
## [3] 0.000000000126579050270478856235 0.000000005952515447854735860123
## [5] 0.000000058559842381632784373557 0.000000260840530818382443541126
## [1] 69.22168 73.54700 77.91643 82.33039 86.78935 91.29377
## 
## Griegas para Call con r = -0.0284 
##   VencimientoDias                           Delta
## 1              90 0.00000000000000000000001059077
## 2             180 0.00000000000004906877365913140
## 3             270 0.00000000007751186292178445910
## 4             360 0.00000000289940061612906398864
## 5             450 0.00000002409760396127958746292
## 6             540 0.00000009411773666983289169698
##                             Gamma                            Theta
## 1 0.00000000000000000000001681705 -0.00000000000000000000000333122
## 2 0.00000000000004145242852534511 -0.00000000000000729684704543034
## 3 0.00000000004623904822395087239 -0.00000000000723512433283918869
## 4 0.00000000136880441755842640369 -0.00000000019022610209273331590
## 5 0.00000000957209961489235123481 -0.00000000117923079310976015378
## 6 0.00000003267359137095456929865 -0.00000000355740388941136121380
##                           Vega                          Rho
## 1 0.00000000000000000002262019 0.00000000000000000000134063
## 2 0.00000000011151322936226447 0.00000000001240386243492714
## 3 0.00000018658492783857876378 0.00000002935155321293390217
## 4 0.00000736457700537113689769 0.00000146215523902132945354
## 5 0.00006437594718855178712712 0.00001517417039305410167167
## 6 0.00026369053526577383413446 0.00007104986368108388969291
## 
## Griegas para Put con r = -0.0284 
##   VencimientoDias      Delta                           Gamma       Theta
## 1              90 -1.0000000 0.00000000000000000000001681705 -0.04781587
## 2             180 -1.0000000 0.00000000000004145242852534511 -0.04830333
## 3             270 -1.0000000 0.00000000004623904822395087239 -0.04879576
## 4             360 -1.0000000 0.00000000136880441755842640369 -0.04929320
## 5             450 -1.0000000 0.00000000957209961489235123481 -0.04979572
## 6             540 -0.9999999 0.00000003267359137095456929865 -0.05030337
##                           Vega       Rho
## 1 0.00000000000000000002262019 -151.5292
## 2 0.00000000011151322936226447 -306.1479
## 3 0.00000018658492783857876378 -463.9033
## 4 0.00000736457700537113689769 -624.8434
## 5 0.00006437594718855178712712 -789.0167
## 6 0.00026369053526577383413446 -956.4723
## 
## Resultados para r = -0.0084 
## [1] 0.000000000000000000000355482 0.000000000003802045938960463
## [3] 0.000000010391189526174379569 0.000000597442320220321508237
## [5] 0.000007151949112604426977979 0.000038609119829247431909813
## [1] 66.20189 67.46758 68.73706 70.01036 71.28749 72.56849
## 
## Griegas para Call con r = -0.0084 
##   VencimientoDias                          Delta                          Gamma
## 1              90 0.0000000000000000000005488712 0.0000000000000000000008372517
## 2             180 0.0000000000030438433337385460 0.0000000000023826474807973619
## 3             270 0.0000000057363039482428898629 0.0000000030684730075726581596
## 4             360 0.0000002552908322999947761129 0.0000001048717288710587790300
## 5             450 0.0000025186182666003412650504 0.0000008466966615808916375545
## 6             540 0.0000116536247640336222859692 0.0000033367304101585545618100
##                             Theta                       Vega
## 1 -0.0000000000000000000001804251 0.000000000000000001126166
## 2 -0.0000000000004960075499935849 0.000000006409677899887669
## 3 -0.0000000006174657149901720374 0.000012381976634112723927
## 4 -0.0000000204101810989545217386 0.000564241255397869242473
## 5 -0.0000001594475152208323952665 0.005694351476018104547816
## 6 -0.0000006082590240805033629697 0.026928910810657208374508
##                            Rho
## 1 0.00000000000000000006947383
## 2 0.00000000076924640581303398
## 3 0.00000217107952536101391936
## 4 0.00012863731513745115019390
## 5 0.00158412259397591585231846
## 6 0.00878384333333256592246663
## 
## Griegas para Put con r = -0.0084 
##   VencimientoDias      Delta                          Gamma       Theta
## 1              90 -1.0000000 0.0000000000000000000008372517 -0.01404206
## 2             180 -1.0000000 0.0000000000023826474807973619 -0.01408425
## 3             270 -1.0000000 0.0000000030684730075726581596 -0.01412657
## 4             360 -0.9999997 0.0000001048717288710587790300 -0.01416903
## 5             450 -0.9999975 0.0000008466966615808916375545 -0.01421174
## 6             540 -0.9999883 0.0000033367304101585545618100 -0.01425489
##                         Vega       Rho
## 1 0.000000000000000001126166 -150.4507
## 2 0.000000006409677899887669 -301.8054
## 3 0.000012381976634112723927 -454.0683
## 4 0.000564241255397869242473 -607.2432
## 5 0.005694351476018104547816 -761.3332
## 6 0.026928910810657208374508 -916.3379
## 
## Resultados para r = 0.0116 
## [1] 0.00000000000000000001637953 0.00000000018641030165014185
## [3] 0.00000054024334009964878559 0.00003284161459422233614314
## [5] 0.00041463376345990399229890 0.00235551672505338038909883
## [1] 63.20360 61.47438 59.75231 58.03738 56.32990 54.63104
## 
## Griegas para Call con r = 0.0116 
##   VencimientoDias                        Delta                        Gamma
## 1              90 0.00000000000000000002427794 0.00000000000000000003551782
## 2             180 0.00000000013792248008067687 0.00000000009943464677656261
## 3             270 0.00000026596901588613031291 0.00000012597603178401694765
## 4             360 0.00001210036756463985364689 0.00000423556857935920316348
## 5             450 0.00012193244901331139282835 0.00003364099335160887141579
## 6             540 0.00057581408750352819966162 0.00013042166993680796393922
##                            Theta                      Vega
## 1 -0.000000000000000000008325095 0.00000000000000004777412
## 2 -0.000000000024443564878118470 0.00000026749406408772667
## 3 -0.000000032445211659588653666 0.00050834153605341903751
## 4 -0.000001141811572017144651471 0.02278862528794390121534
## 5 -0.000009483846161175238194917 0.22624825257817274271055
## 6 -0.000038418219919733638946339 1.05256136570481428904600
##                          Rho
## 1 0.000000000000000003072766
## 2 0.000000034845961054139279
## 3 0.000100601480829031925970
## 4 0.006090735561295434509488
## 5 0.076569109970011511867582
## 6 0.433056499679891460097281
## 
## Griegas para Put con r = 0.0116 
##   VencimientoDias      Delta                        Gamma      Theta
## 1              90 -1.0000000 0.00000000000000000003551782 0.01925340
## 2             180 -1.0000000 0.00000000009943464677656261 0.01917380
## 3             270 -0.9999997 0.00000012597603178401694765 0.01909450
## 4             360 -0.9999879 0.00000423556857935920316348 0.01901445
## 5             450 -0.9998781 0.00003364099335160887141579 0.01892749
## 6             540 -0.9994242 0.00013042166993680796393922 0.01882027
##                        Vega       Rho
## 1 0.00000000000000004777412 -149.3799
## 2 0.00000026749406408772667 -297.5246
## 3 0.00050834153605341903751 -444.4417
## 4 0.02278862528794390121534 -590.1330
## 5 0.22624825257817274271055 -734.5475
## 6 1.05256136570481428904600 -877.4713
## 
## Resultados para r = 0.0316 
## [1] 0.000000000000000000645307 0.000000006724121778770155
## [3] 0.000017882612238347139755 0.000999869105908143818162
## [5] 0.011638037082184804482665 0.061098206739509386409281
## [1] 60.22665 55.56619 50.95805 46.40259 41.90791 37.50262
## 
## Griegas para Call con r = 0.0316 
##   VencimientoDias                       Delta                      Gamma
## 1              90 0.0000000000000000009166661 0.000000000000000001283869
## 2             180 0.0000000045695906713427826 0.000000003012893697776723
## 3             270 0.0000077501630044961012491 0.000003199674029995373153
## 4             360 0.0003108556578593227532128 0.000090178139079478527636
## 5             450 0.0027685361898535832021750 0.000600385369878842552888
## 6             540 0.0115856519576267354837418 0.001951114628450584644395
##                          Theta                     Vega
## 1 -0.0000000000000000003273449  0.000000000000001726899
## 2 -0.0000000008752133200245826  0.000008105134437633038
## 3 -0.0000010571210799735255940  0.012911402179001206861
## 4 -0.0000338464693309041244262  0.485185349296653800621
## 5 -0.0002558361723930822938591  4.037815988037454673076
## 6 -0.0009437407476177218403068 15.746370054636120272562
##                        Rho
## 1 0.0000000000000001160093
## 2 0.0000011541105299915703
## 3 0.0029291681401478991513
## 4 0.1562464868194614053820
## 5 1.7345686115843366170708
## 6 8.6839358085759403849124
## 
## Griegas para Put con r = 0.0316 
##   VencimientoDias      Delta                      Gamma      Theta
## 1              90 -1.0000000 0.000000000000000001283869 0.05207563
## 2             180 -1.0000000 0.000000003012893697776723 0.05149122
## 3             270 -0.9999922 0.000003199674029995373153 0.05091231
## 4             360 -0.9996891 0.000090178139079478527636 0.05030816
## 5             450 -0.9972315 0.000600385369878842552888 0.04952122
## 6             540 -0.9884143 0.001951114628450584644395 0.04827470
##                       Vega       Rho
## 1  0.000000000000001726899 -148.3167
## 2  0.000008105134437633038 -293.3044
## 3  0.012911402179001206861 -435.0164
## 4  0.485185349296653800621 -573.3603
## 5  4.037815988037454673076 -707.1159
## 6 15.746370054636120272562 -832.3908
## 
## Resultados para r = 0.0516 
## [1] 0.00000000000000002174393 0.00000017884240399592912
## [3] 0.00037955162399682523811 0.01713347304656709368942
## [5] 0.16299306746661557099287 0.70832613644450503898042
## [1] 57.27088 49.74180 42.35058 35.11070 28.13243 21.68372
## 
## Griegas para Call con r = 0.0516 
##   VencimientoDias                     Delta                     Gamma
## 1              90 0.00000000000000002954854 0.00000000000000003954386
## 2             180 0.00000011083943325383571 0.00000006628236760324226
## 3             270 0.00014254100794220813265 0.00005027773959484803839
## 4             360 0.00437339410745163532923 0.00101210851978525136034
## 5             450 0.03009542795621326927158 0.00481295406185640144148
## 6             540 0.09842133017690443685943 0.01117172417308731798002
##                        Theta                    Vega                    Rho
## 1 -0.00000000000000001097164  0.00000000000005318944  0.0000000000000037392
## 2 -0.00000002281868570075951  0.00017830947725282266  0.0000279827191193650
## 3 -0.00002150948352232243813  0.20288195312230442036  0.0538189914171038550
## 4 -0.00054039413722681230081  5.44544643203748535143  2.1938340553503006269
## 5 -0.00322909688075255670026 32.36891475982388044486 18.7905171119044069883
## 6 -0.00950445640288080303981 90.16082418358637085021 73.3653243346439580819
## 
## Griegas para Put con r = 0.0516 
##   VencimientoDias      Delta                     Gamma      Theta
## 1              90 -1.0000000 0.00000000000000003954386 0.08442966
## 2             180 -0.9999999 0.00000006628236760324226 0.08288797
## 3             270 -0.9998575 0.00005027773959484803839 0.08135296
## 4             360 -0.9956266 0.00101210851978525136034 0.07934819
## 5             450 -0.9699046 0.00481295406185640144148 0.07520074
## 6             540 -0.9015787 0.01117172417308731798002 0.06749327
##                      Vega       Rho
## 1  0.00000000000005318944 -147.2610
## 2  0.00017830947725282266 -289.1441
## 3  0.20288195312230442036 -425.7428
## 4  5.44544643203748535143 -555.1684
## 5 32.36891475982388044486 -665.1906
## 6 90.16082418358637085021 -732.4248
## 
## Resultados para r = 0.0716 
## [1] 0.0000000000000006268424 0.0000035169829098323675 0.0052158035357056098391
## [4] 0.1692100874380528807706 1.1938913708608751562679 3.9810112221184681402519
## [1] 54.336156 44.000032 33.930077 24.273274 15.725106  9.181064
## 
## Griegas para Call con r = 0.0716 
##   VencimientoDias                    Delta                   Gamma
## 1              90 0.0000000000000008133219 0.000000000000001037819
## 2             180 0.0000019714339001172133 0.000001058718123157209
## 3             270 0.0016649047451189344718 0.000488762579002708958
## 4             360 0.0342555962941584121739 0.005988101500897100721
## 5             450 0.1623659930467714063163 0.017330602371953211793
## 6             540 0.3780522688918105389533 0.024482852445950629983
##                       Theta                   Vega                     Rho
## 1 -0.0000000000000003135557   0.000000000001395944   0.0000000000001029112
## 2 -0.0000004342329607656474   0.002848110016652712   0.0004974716697612753
## 3 -0.0002755892558474151602   1.972266602282280346   0.6277770806423821348
## 4 -0.0047444928186002712292  32.217776370123971219  17.1336884753797598080
## 5 -0.0199095190469475713524 116.554777732032349036 100.8138895005817516903
## 6 -0.0424731921465293579820 197.587598896297009787 279.1076300798737861442
## 
## Griegas para Put con r = 0.0716 
##   VencimientoDias      Delta                   Gamma      Theta
## 1              90 -1.0000000 0.000000000000001037819 0.11632049
## 2             180 -0.9999980 0.000001058718123157209 0.11338329
## 3             270 -0.9983351 0.000488762579002708958 0.11024551
## 4             360 -0.9657444 0.005988101500897100721 0.10298625
## 5             450 -0.8376340 0.017330602371953211793 0.08510132
## 6             540 -0.6219477 0.024482852445950629983 0.05988641
##                     Vega       Rho
## 1   0.000000000001395944 -146.2129
## 2   0.002848110016652712 -285.0424
## 3   1.972266602282280346 -416.1417
## 4  32.217776370123971219 -524.5293
## 5 116.554777732032349036 -559.1704
## 6 197.587598896297009787 -492.8782
## 
## Resultados para r = 0.0916 
## [1]  0.00000000000001546634  0.00005131548037204912  0.04703731860235027540
## [4]  0.99777933323131406951  4.91899911737257866662 12.30154200128674801817
## [1] 51.422316 38.339750 25.725182 14.421881  6.483455  2.388053
## 
## Griegas para Call con r = 0.0916 
##   VencimientoDias                  Delta                  Gamma
## 1              90 0.00000000000001911954 0.00000000000002320855
## 2             180 0.00002576590364885170 0.00001227808999116819
## 3             270 0.01246248277787312050 0.00293949243441659746
## 4             360 0.15351737084419353474 0.01867615572380705233
## 5             450 0.46407698103684857927 0.02803082793670759812
## 6             540 0.74837944075140838684 0.02053563879757704450
##                      Theta                  Vega                    Rho
## 1 -0.000000000000007643086   0.00000000003121724   0.000000000002418971
## 2 -0.000006047712003713198   0.03302989749993816   0.006497947335135168
## 3 -0.002247545529278680444  11.86151109991004127   4.690598374831371764
## 4 -0.023619788445445068920 100.48330150600867228  76.442997655297205029
## 5 -0.064364093575746794684 188.51779353585050103 285.457453159948045140
## 6 -0.096699860468840270755 165.73181457399985561 543.038704782660715864
## 
## Griegas para Put con r = 0.0916 
##   VencimientoDias      Delta                  Gamma      Theta
## 1              90 -1.0000000 0.00000000000002320855 0.14775310
## 2             180 -0.9999742 0.00001227808999116819 0.14299162
## 3             270 -0.9875375 0.00293949243441659746 0.13614775
## 4             360 -0.8464826 0.01867615572380705233 0.11032126
## 5             450 -0.5359230 0.02803082793670759812 0.06526607
## 6             540 -0.2516206 0.02053563879757704450 0.02875816
##                    Vega       Rho
## 1   0.00000000003121724 -145.1723
## 2   0.03302989749993816 -280.9933
## 3  11.86151109991004127 -403.2431
## 4 100.48330150600867228 -449.9629
## 5 188.51779353585050103 -351.3719
## 6 165.73181457399985561 -196.5610
## 
## Resultados para r = 0.1116 
## [1]  0.0000000000003267445  0.0005580145275437404  0.2837241448033402946
## [4]  3.7013048802173216245 12.6709413411795139837 24.7192167691200097579
## [1] 48.5292159 32.7602133 17.8899875  6.7462692  1.7235646  0.3262258
## 
## Griegas para Call con r = 0.1116 
##   VencimientoDias                 Delta                 Gamma
## 1              90 0.0000000000003839551 0.0000000000004422406
## 2             180 0.0002481309737080925 0.0001033830658964717
## 3             270 0.0606188133279724622 0.0109370183640539603
## 4             360 0.4124302230990998241 0.0307059176229693073
## 5             450 0.7894299759897787094 0.0203647235521830852
## 6             540 0.9504669219416270742 0.0065926316297945722
##                    Theta                 Vega                   Rho
## 1 -0.0000000000001589552   0.0000000005948467   0.00000000004857155
## 2 -0.0000618485934181563   0.2781159017604594   0.06253097785517969
## 3 -0.0118477009113252697  44.1333215238886964  22.75670540938560293
## 4 -0.0700665665400721088 165.2070171268918273 203.90881447621291045
## 5 -0.1230654799313629505 136.9603765787323368 477.90011773884151580
## 6 -0.1399769005271278288  53.2054938048829982 670.18621829030155368
## 
## Griegas para Put con r = 0.1116 
##   VencimientoDias       Delta                 Gamma       Theta
## 1              90 -1.00000000 0.0000000000004422406 0.178732367
## 2             180 -0.99975187 0.0001033830658964717 0.171686856
## 3             270 -0.93938119 0.0109370183640539603 0.153190216
## 4             360 -0.58756978 0.0307059176229693073 0.088522775
## 5             450 -0.21057002 0.0203647235521830852 0.029327253
## 6             540 -0.04953308 0.0065926316297945722 0.006461346
##                   Vega        Rho
## 1   0.0000000005948467 -144.13901
## 2   0.2781159017604594 -276.95151
## 3  44.1333215238886964 -376.52858
## 4 165.2070171268918273 -307.66971
## 5 136.9603765787323368 -136.58671
## 6  53.2054938048829982  -38.38594
## 
## Resultados para r = 0.1316 
## [1]  0.000000000005913283  0.004548632444596357  1.175888515314838401
## [4]  9.296173756511933561 23.283934811697292844 38.286009592339723895
## [1] 45.6567070 27.2633088 10.8813994  2.2543508  0.2636917  0.0209571
## 
## Griegas para Call con r = 0.1316 
##   VencimientoDias                Delta                Gamma
## 1              90 0.000000000006588487 0.000000000007180477
## 2             180 0.001767286915904828 0.000632027729455780
## 3             270 0.195823118666514806 0.025175478366807873
## 4             360 0.718660851511401577 0.026612944926300987
## 5             450 0.955345833799505884 0.006645710801509730
## 6             540 0.995723176668141918 0.000810053669602347
##                   Theta                Vega                  Rho
## 1 -0.000000000002821531   0.000000009658278   0.0000000008333553
## 2 -0.000466410132351616   1.700249072621177   0.4449601856546943
## 3 -0.041315701753383061 101.588700347413493  73.2354299983049088
## 4 -0.134340699101386796 143.185600320492000 351.2450688301804007
## 5 -0.166464646841954833  44.694888770564674 564.1449231020628758
## 6 -0.164814245248699726   6.537496392922745 675.5474175331087281
## 
## Griegas para Put con r = 0.1316 
##   VencimientoDias        Delta                Gamma        Theta
## 1              90 -1.000000000 0.000000000007180477 0.2092631692
## 2             180 -0.998232713 0.000632027729455780 0.1991889424
## 3             270 -0.804176881 0.025175478366807873 0.1491729539
## 4             360 -0.281339148 0.026612944926300987 0.0474021267
## 5             450 -0.044654166 0.006645710801509730 0.0069338928
## 6             540 -0.004276823 0.000810053669602347 0.0006231162
##                  Vega         Rho
## 1   0.000000009658278 -143.113110
## 2   1.700249072621177 -272.639868
## 3 101.588700347413493 -317.584760
## 4 143.185600320492000 -145.923756
## 5  44.694888770564674  -28.783214
## 6   6.537496392922745   -3.298899
## 
## Resultados para r = 0.1516 
## [1]  0.000000000091725  0.028006704390874  3.476341496066141 17.338372091954454
## [5] 34.690966335850703 51.555747257490509
## [1] 42.8046428647 21.8638972800  5.4486007842  0.4938776463  0.0214218802
## [6]  0.0005905251
## 
## Griegas para Call con r = 0.1516 
##   VencimientoDias               Delta              Gamma                Theta
## 1              90 0.00000000009663308 0.0000000000993418 -0.00000000004276281
## 2             180 0.00935747802866716 0.0028053754280917 -0.00260818108948426
## 3             270 0.43499477877753506 0.0358516144341676 -0.09882694927527362
## 4             360 0.91605783231461135 0.0121590613771543 -0.18795343712811030
## 5             450 0.99525212416805997 0.0009741474177625 -0.19193326825312768
## 6             540 0.99984654456903777 0.0000380954553359 -0.18256003089619549
##                Vega                Rho
## 1   0.0000001336221   0.00000001222101
## 2   7.5468792707469   2.35318531747692
## 3 144.6693033060910 161.75668356073444
## 4  65.4193854698489 439.88160264238780
## 5   6.5515054421471 569.07723727010830
## 6   0.3074474089692 650.24950040826866
## 
## Griegas para Put con r = 0.1516 
##   VencimientoDias         Delta              Gamma         Theta
## 1              90 -0.9999999999 0.0000000000993418 0.23935031686
## 2             180 -0.9906425220 0.0028053754280917 0.22412760070
## 3             270 -0.5650052212 0.0358516144341676 0.11595912417
## 4             360 -0.0839421677 0.0121590613771543 0.01551271621
## 5             450 -0.0047478758 0.0009741474177625 0.00080956135
## 6             540 -0.0001534554 0.0000380954553359 0.00002462878
##                Vega          Rho
## 1   0.0000001336221 -142.0945153
## 2   7.5468792707469 -266.8581651
## 3 144.6693033060910 -220.7778800
## 4  65.4193854698489  -43.2834053
## 5   6.5515054421471   -3.0485762
## 6   0.3074474089692   -0.1180209

Valoracion con la simulación de Vasicek de la tasa de interés

vasicek_simu <- function(r0, alpha, beta, sigma, T, steps) {
  dt <- T / steps
  rates <- numeric(steps + 1)
  rates[1] <- r0
  for (i in 1:steps) {
    dW <- rnorm(1, mean = 0, sd = sqrt(dt))
    rates[i + 1] <- rates[i] + alpha * (beta - rates[i]) * dt + sigma * sqrt(dt) * dW
  }
  return(rates)
}

black_scholes_merton <- function(So, K, r, VencimientoDias, sigma, Stcall, Stput, rates) {
  
  Ano <- 252
  
  # Definir los vencimientos a partir de un número de días establecido
  VencimientoDias <- seq(from = VencimientoDias, by = 90, length.out = 6)
  
  # Definir un conjunto de Volatilidad a partir de un valor sigma inicial
  sigma <- seq(from = sigma, by = 0.05, length.out = 6)
  
  # Cálculo del vencimiento
  T <- VencimientoDias / Ano
  
  # Definir d1 y d2
  d1 <- (log(So/K) + (r + ((sigma^2)/2)) * T) / (sigma * sqrt(T))
  d2 <- d1 - sigma * sqrt(T)
  
  # Definir N1 y N2 para la posición Call y Put
  Nd1 <- pnorm(d1)
  Nd2 <- pnorm(d2)
  Nd1P <- pnorm(-d1)
  Nd2P <- pnorm(-d2)
  
  # Valoración Call
  Call <- So * Nd1 - (K * exp(-r * T) * Nd2)
  
  # Valoración Put
  Put <- (K * exp(-r * T) * Nd2P) - So * Nd1P
  
  # Crear vector de varios precios st a partir de un stc dado  
  St <- seq(from = Stcall, by = 10, length.out = 90)
  num_filas <- length(St)
  num_columnas <- length(sigma)
  
  # Matriz resultados de la Valoración Call
  resultadosCall <- matrix(NA, nrow = num_filas, ncol = num_columnas)
  
  for (i in 1:num_filas) {
    for (j in 1:num_columnas) {
      resultado <- (St[i] * pnorm((log(St[i]/K) + (r[j] + ((sigma[j]^2)/2)) * T[j]) / (sigma[j] * sqrt(T[j]))) -
                      K * exp(-r[j] * T[j]) * pnorm((log(St[i]/K) + (r[j] - ((sigma[j]^2)/2)) * T[j]) / (sigma[j] * sqrt(T[j])))) /
        Call[j]
      resultadosCall[i, j] <- resultado
    }
  }
  
  # Definir el nombre de las columnas
  colnames(resultadosCall) <- paste("Vto a", VencimientoDias, "días")
  
  # Crear vector de varios precios st a partir de un stp dado
  StP <- seq(from = Stput, by = 10, length.out = 90)
  
  # Matriz de resultados de la valoración Put
  resultadosPut <- matrix(NA, nrow = num_filas, ncol = num_columnas)
  
  for (i in 1:num_filas) {
    for (j in 1:num_columnas) {
      resultado <- (K * exp(-r[j] * T[j]) * pnorm(-(log(StP[i]/K) + (r[j] - ((sigma[j]^2)/2)) * T[j]) / (sigma[j] * sqrt(T[j]))) -
                      StP[i] * pnorm(-(log(StP[i]/K) + (r[j] + ((sigma[j]^2)/2)) * T[j]) / (sigma[j] * sqrt(T[j])))) /
        Put[j]
      resultadosPut[i, j] <- resultado
    }
  }
  
  colnames(resultadosPut) <- paste("Vto a", VencimientoDias, "días")
  
  # Incluir columna de los valores de St para la posición Call en la matriz de resultados
  CallTable <- cbind(St, resultadosCall)
  
  # Definir la tabla como un dataframe para evitar error en el tipo de datos
  CallTable <- as.data.frame(CallTable)
  
  # Proceso similar al anterior realizado ahora para la posición Put
  PutTable <- cbind(StP, resultadosPut)
  PutTable <- as.data.frame(PutTable)
  
  # Graficar Call
  colores <- rainbow(num_columnas)
  matplot(1:num_filas, resultadosCall, type = "l", col = colores, lty = 1, xlab = "Índice", ylab = "Valor", main = "Gráfico de Líneas de Resultados Call")
  legend("topleft", legend = colnames(resultadosCall), col = colores, lty = 1, cex = 0.4)
  grid()
  png(filename = "CallPlot.png")
  dev.off()
  
  # Graficar Put
  colores <- rainbow(num_columnas)
  matplot(1:num_filas, resultadosPut, type = "l", col = colores, lty = 1, xlab = "Índice", ylab = "Valor", main = "Gráfico de Líneas de Resultados Put")
  legend("topright", legend = colnames(resultadosPut), col = colores, lty = 1, cex = 0.4)
  grid()
  png(filename = "PutPlot.png")
  dev.off()
  
  return(list(CallTable = CallTable, PutTable = PutTable))
  
}

r0 <- 0.05160
alpha <- 0.1 
beta <- 0.05
sigma_r <- 0.01
T_vasicek <- 1  # Tiempo en años para la simulación de Vasicek
steps <- 252  # Número de pasos en la simulación de Vasicek
rates <- vasicek_simu(r0, alpha, beta, sigma_r, T_vasicek, steps)

Netflix

resultado <- black_scholes_merton(So = 355.06, K = 420, r = rates, VencimientoDias = 90, sigma = sd(ret_nflx), Stcall = 360, Stput = 420, rates = rates)

print(resultado$CallTable)
##      St             Vto a 90 días Vto a 180 días Vto a 270 días Vto a 360 días
## 1   360                  587.2285       1.696572       1.205798       1.108899
## 2   370             32711260.2358       4.386834       1.710736       1.350747
## 3   380         156961127587.3486       9.807073       2.342325       1.621163
## 4   390       82220506595183.2188      19.290885       3.106482       1.919667
## 5   400     6089030434876856.0000      33.950312       4.004120       2.245391
## 6   410    87814921451840224.0000      54.312562       5.031419       2.597149
## 7   420   379464918977745344.0000      80.165991       6.180544       2.973504
## 8   430   813691581784602752.0000     110.682840       7.440651       3.372833
## 9   440  1272510054706919680.0000     144.722600       8.798999       3.793400
## 10  450  1732396788501747712.0000     181.148303      10.242018       4.233407
## 11  460  2192295173878771968.0000     219.033222      11.756222       4.691049
## 12  470  2652193591955391488.0000     257.729438      13.328898       5.164552
## 13  480  3112092010056785408.0000     296.838250      14.948582       5.652213
## 14  490  3571990428158184960.0000     336.140096      16.605299       6.152416
## 15  500  4031888846259584512.0000     375.525467      18.290647       6.663657
## 16  510  4491787264360984064.0000     414.944428      19.997746       7.184549
## 17  520  4951685682462384128.0000     454.376001      21.721096       7.713831
## 18  530  5411584100563783680.0000     493.812014      23.456405       8.250366
## 19  540  5871482518665182208.0000     533.249498      25.200387       8.793138
## 20  550  6331380936766581760.0000     572.687444      26.950574       9.341249
## 21  560  6791279354867981312.0000     612.125526      28.705146       9.893910
## 22  570  7251177772969380864.0000     651.563647      30.462778      10.450430
## 23  580  7711076191070780416.0000     691.001778      32.222524      11.010212
## 24  590  8170974609172179968.0000     730.439912      33.983713      11.572741
## 25  600  8630873027273579520.0000     769.878046      35.745880      12.137575
## 26  610  9090771445374979072.0000     809.316181      37.508701      12.704337
## 27  620  9550669863476379648.0000     848.754315      39.271958      13.272706
## 28  630 10010568281577779200.0000     888.192450      41.035502      13.842413
## 29  640 10470466699679178752.0000     927.630585      42.799233      14.413229
## 30  650 10930365117780578304.0000     967.068719      44.563086      14.984963
## 31  660 11390263535881975808.0000    1006.506854      46.327018      15.557454
## 32  670 11850161953983375360.0000    1045.944989      48.091000      16.130568
## 33  680 12310060372084774912.0000    1085.383123      49.855015      16.704196
## 34  690 12769958790186174464.0000    1124.821258      51.619050      17.278244
## 35  700 13229857208287574016.0000    1164.259393      53.383097      17.852637
## 36  710 13689755626388973568.0000    1203.697527      55.147153      18.427312
## 37  720 14149654044490373120.0000    1243.135662      56.911214      19.002216
## 38  730 14609552462591772672.0000    1282.573797      58.675278      19.577308
## 39  740 15069450880693172224.0000    1322.011931      60.439343      20.152553
## 40  750 15529349298794571776.0000    1361.450066      62.203410      20.727922
## 41  760 15989247716895971328.0000    1400.888201      63.967478      21.303392
## 42  770 16449146134997370880.0000    1440.326335      65.731546      21.878944
## 43  780 16909044553098770432.0000    1479.764470      67.495615      22.454562
## 44  790 17368942971200169984.0000    1519.202605      69.259683      23.030234
## 45  800 17828841389301569536.0000    1558.640740      71.023752      23.605949
## 46  810 18288739807402969088.0000    1598.078874      72.787821      24.181699
## 47  820 18748638225504370688.0000    1637.517009      74.551890      24.757478
## 48  830 19208536643605770240.0000    1676.955144      76.315959      25.333280
## 49  840 19668435061707169792.0000    1716.393278      78.080027      25.909100
## 50  850 20128333479808569344.0000    1755.831413      79.844096      26.484935
## 51  860 20588231897909968896.0000    1795.269548      81.608165      27.060782
## 52  870 21048130316011368448.0000    1834.707682      83.372234      27.636639
## 53  880 21508028734112768000.0000    1874.145817      85.136303      28.212504
## 54  890 21967927152214163456.0000    1913.583952      86.900372      28.788375
## 55  900 22427825570315563008.0000    1953.022086      88.664441      29.364251
## 56  910 22887723988416962560.0000    1992.460221      90.428509      29.940131
## 57  920 23347622406518362112.0000    2031.898356      92.192578      30.516014
## 58  930 23807520824619761664.0000    2071.336490      93.956647      31.091900
## 59  940 24267419242721161216.0000    2110.774625      95.720716      31.667788
## 60  950 24727317660822560768.0000    2150.212760      97.484785      32.243678
## 61  960 25187216078923960320.0000    2189.650894      99.248854      32.819569
## 62  970 25647114497025359872.0000    2229.089029     101.012923      33.395461
## 63  980 26107012915126759424.0000    2268.527164     102.776992      33.971354
## 64  990 26566911333228158976.0000    2307.965298     104.541060      34.547248
## 65 1000 27026809751329558528.0000    2347.403433     106.305129      35.123142
## 66 1010 27486708169430958080.0000    2386.841568     108.069198      35.699037
## 67 1020 27946606587532357632.0000    2426.279703     109.833267      36.274932
## 68 1030 28406505005633757184.0000    2465.717837     111.597336      36.850828
## 69 1040 28866403423735156736.0000    2505.155972     113.361405      37.426723
## 70 1050 29326301841836556288.0000    2544.594107     115.125474      38.002619
## 71 1060 29786200259937955840.0000    2584.032241     116.889543      38.578515
## 72 1070 30246098678039355392.0000    2623.470376     118.653611      39.154412
## 73 1080 30705997096140754944.0000    2662.908511     120.417680      39.730308
## 74 1090 31165895514242154496.0000    2702.346645     122.181749      40.306204
## 75 1100 31625793932343554048.0000    2741.784780     123.945818      40.882101
## 76 1110 32085692350444953600.0000    2781.222915     125.709887      41.457997
## 77 1120 32545590768546353152.0000    2820.661049     127.473956      42.033894
## 78 1130 33005489186647752704.0000    2860.099184     129.238025      42.609790
## 79 1140 33465387604749152256.0000    2899.537319     131.002093      43.185687
## 80 1150 33925286022850551808.0000    2938.975453     132.766162      43.761583
## 81 1160 34385184440951951360.0000    2978.413588     134.530231      44.337480
## 82 1170 34845082859053350912.0000    3017.851723     136.294300      44.913377
## 83 1180 35304981277154750464.0000    3057.289857     138.058369      45.489273
## 84 1190 35764879695256150016.0000    3096.727992     139.822438      46.065170
## 85 1200 36224778113357549568.0000    3136.166127     141.586507      46.641067
## 86 1210 36684676531458949120.0000    3175.604261     143.350576      47.216963
## 87 1220 37144574949560352768.0000    3215.042396     145.114644      47.792860
## 88 1230 37604473367661748224.0000    3254.480531     146.878713      48.368757
## 89 1240 38064371785763151872.0000    3293.918665     148.642782      48.944653
## 90 1250 38524270203864547328.0000    3333.356800     150.406851      49.520550
##    Vto a 450 días Vto a 540 días
## 1        1.071881       1.053218
## 2        1.225649       1.164988
## 3        1.390223       1.282005
## 4        1.565240       1.404064
## 5        1.750289       1.530957
## 6        1.944916       1.662469
## 7        2.148640       1.798382
## 8        2.360961       1.938482
## 9        2.581368       2.082554
## 10       2.809350       2.230387
## 11       3.044398       2.381777
## 12       3.286016       2.536522
## 13       3.533718       2.694430
## 14       3.787041       2.855313
## 15       4.045539       3.018991
## 16       4.308789       3.185294
## 17       4.576393       3.354056
## 18       4.847976       3.525123
## 19       5.123187       3.698345
## 20       5.401700       3.873584
## 21       5.683213       4.050704
## 22       5.967446       4.229583
## 23       6.254141       4.410101
## 24       6.543062       4.592148
## 25       6.833992       4.775619
## 26       7.126734       4.960416
## 27       7.421107       5.146448
## 28       7.716948       5.333629
## 29       8.014106       5.521879
## 30       8.312448       5.711122
## 31       8.611852       5.901288
## 32       8.912206       6.092313
## 33       9.213411       6.284135
## 34       9.515379       6.476697
## 35       9.818028       6.669946
## 36      10.121286       6.863835
## 37      10.425087       7.058315
## 38      10.729374       7.253346
## 39      11.034094       7.448887
## 40      11.339200       7.644902
## 41      11.644651       7.841356
## 42      11.950408       8.038218
## 43      12.256440       8.235458
## 44      12.562714       8.433049
## 45      12.869206       8.630966
## 46      13.175891       8.829186
## 47      13.482748       9.027685
## 48      13.789757       9.226444
## 49      14.096903       9.425445
## 50      14.404170       9.624670
## 51      14.711545       9.824102
## 52      15.019015      10.023727
## 53      15.326571      10.223531
## 54      15.634202      10.423501
## 55      15.941901      10.623625
## 56      16.249660      10.823892
## 57      16.557472      11.024292
## 58      16.865332      11.224815
## 59      17.173234      11.425452
## 60      17.481173      11.626196
## 61      17.789146      11.827038
## 62      18.097148      12.027972
## 63      18.405177      12.228992
## 64      18.713229      12.430090
## 65      19.021302      12.631261
## 66      19.329394      12.832501
## 67      19.637502      13.033805
## 68      19.945625      13.235167
## 69      20.253761      13.436585
## 70      20.561909      13.638053
## 71      20.870067      13.839569
## 72      21.178234      14.041128
## 73      21.486410      14.242729
## 74      21.794593      14.444368
## 75      22.102783      14.646043
## 76      22.410978      14.847750
## 77      22.719178      15.049489
## 78      23.027384      15.251256
## 79      23.335593      15.453049
## 80      23.643806      15.654868
## 81      23.952022      15.856709
## 82      24.260241      16.058573
## 83      24.568463      16.260456
## 84      24.876687      16.462358
## 85      25.184913      16.664277
## 86      25.493141      16.866213
## 87      25.801371      17.068164
## 88      26.109602      17.270129
## 89      26.417835      17.472107
## 90      26.726068      17.674097
print(resultado$PutTable)
##     StP
## 1   420
## 2   430
## 3   440
## 4   450
## 5   460
## 6   470
## 7   480
## 8   490
## 9   500
## 10  510
## 11  520
## 12  530
## 13  540
## 14  550
## 15  560
## 16  570
## 17  580
## 18  590
## 19  600
## 20  610
## 21  620
## 22  630
## 23  640
## 24  650
## 25  660
## 26  670
## 27  680
## 28  690
## 29  700
## 30  710
## 31  720
## 32  730
## 33  740
## 34  750
## 35  760
## 36  770
## 37  780
## 38  790
## 39  800
## 40  810
## 41  820
## 42  830
## 43  840
## 44  850
## 45  860
## 46  870
## 47  880
## 48  890
## 49  900
## 50  910
## 51  920
## 52  930
## 53  940
## 54  950
## 55  960
## 56  970
## 57  980
## 58  990
## 59 1000
## 60 1010
## 61 1020
## 62 1030
## 63 1040
## 64 1050
## 65 1060
## 66 1070
## 67 1080
## 68 1090
## 69 1100
## 70 1110
## 71 1120
## 72 1130
## 73 1140
## 74 1150
## 75 1160
## 76 1170
## 77 1180
## 78 1190
## 79 1200
## 80 1210
## 81 1220
## 82 1230
## 83 1240
## 84 1250
## 85 1260
## 86 1270
## 87 1280
## 88 1290
## 89 1300
## 90 1310
##                                                                                                                                                                                                                                                                                                               Vto a 90 días
## 1  0.0101612182262113860675700749425232061184942722320556640625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 2  0.0004144694221170489890904153895689887576736509799957275390625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 3  0.0000044485933132503455112935486503999982232926413416862487792968750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 4  0.0000000124338146795141205806604911554558157149585895240306854248046875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 5  0.0000000000094101240982334284114474431959251887747086584568023681640625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 6  0.0000000000000020449765635898513541773846569071793055627495050430297851562500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 7  0.0000000000000000001362300369052116102053413826400429798013647086918354034423828125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 8  0.0000000000000000000000029727233233515838437682754502588977629784494638442993164062500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 9  0.0000000000000000000000000000226692893062682543944656721190966663925792090594768524169921875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 10 0.0000000000000000000000000000000000642729330622437293072876651756075716548366472125053405761718750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 11 0.0000000000000000000000000000000000000000718498522118562318178325298845265933778136968612670898437500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 12 0.0000000000000000000000000000000000000000000000334710243443025364656895348502985143568366765975952148437500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 13 0.0000000000000000000000000000000000000000000000000000068445913915436511912662731482726030662888661026954650878906250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 14 0.0000000000000000000000000000000000000000000000000000000000006451430390987123519169754715107956144493073225021362304687500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 15 0.0000000000000000000000000000000000000000000000000000000000000000000293402442288933166820302789190577641420532017946243286132812500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 16 0.0000000000000000000000000000000000000000000000000000000000000000000000000006720353248822102709518488961037974149803631007671356201171875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 17 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000080703783676185599955943406058622713317163288593292236328125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 18 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000527631485678864691011430432254769584687892347574234008789062500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 19 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001945571818925974374309140202399248664733022451400756835937500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 20 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004182555336556392952453847788873986246471758931875228881835937500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 21 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005407932335468834400202253753775494260480627417564392089843750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 22 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004330256597243897174857873988429446399095468223094940185546875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 23 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002207109599870552257361647208178112578025320544838905334472656250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 24 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000734830494806129004559114292760568787343800067901611328125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 25 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000163744752239474373103206294999267811363097280263900756835937500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 26 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000024986901431190918171452303164770114562998060137033462524414062500000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 27 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002668060081454874146430003567509459116990910843014717102050781250000000000000000000000000000000000000000000000000000000000000000000000000
## 28 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000203448469103468702065887208085825932357693091034889221191406250000000000000000000000000000000000000000000000000000000000000000
## 29 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011293430984470087680973313104537680828798329457640647888183593750000000000000000000000000000000000000000000000000000
## 30 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000464707366992324487310270231255060480179963633418083190917968750000000000000000000000000000000000000000000
## 31 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000014419421032087760860262992679281524033285677433013916015625000000000000000000000000000000000000
## 32 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000342889500736766845100621237119042916674516163766384124755859375000000000000000000000
## 33 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006345111620942902228102028283629465477133635431528091430664062500000000000
## 34 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000092701115934449646984252813020077610417502000927925109863281250
## 35 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001084018925509227997605252169499578940303763374686241
## 36 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010278388776533503737396074706467175019498
## 37 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000079998775948446025868369957390
## 38 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000517091435524114556
## 39 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002806539
## 40 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 41 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 42 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 43 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 44 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 45 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 46 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 47 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 48 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 49 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 50 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 51 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 52 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 53 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 54 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 55 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 56 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 57 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 58 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 59 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 60 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 61 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 62 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 63 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 64 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 65 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 66 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 67 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 68 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 69 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 70 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 71 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 72 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 73 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 74 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 75 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 76 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 77 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 78 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 79 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 80 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 81 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 82 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 83 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 84 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 85 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 86 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 87 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 88 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 89 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 90 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
##                                                                   Vto a 180 días
## 1  0.102345817182934339939492929261177778244018554687500000000000000000000000000
## 2  0.057087586595023602498155668172330479137599468231201171875000000000000000000
## 3  0.029701299830828118558878614408058638218790292739868164062500000000000000000
## 4  0.014419048932106687255227939203905407339334487915039062500000000000000000000
## 5  0.006539489200304256580342787685822258936241269111633300781250000000000000000
## 6  0.002775691450100150996227466038135389680974185466766357421875000000000000000
## 7  0.001105014758279031228394018171456991694867610931396484375000000000000000000
## 8  0.000413615263928976970367323851007768098497763276100158691406250000000000000
## 9  0.000145943241678996607447668654167216573114274069666862487792968750000000000
## 10 0.000048672991859575297909565327891812103189295157790184020996093750000000000
## 11 0.000015384074095366537796546191341207077130093239247798919677734375000000000
## 12 0.000004620442732668905575291184995023741066688671708106994628906250000000000
## 13 0.000001322053134770621095383028031911010202748002484440803527832031250000000
## 14 0.000000361291433662460800108583158785080513553111813962459564208984375000000
## 15 0.000000094528113529173574220917930510665883048204705119132995605468750000000
## 16 0.000000023733819129954816799961403450680563764763064682483673095703125000000
## 17 0.000000005731157057411357733447965223660958145046606659889221191406250000000
## 18 0.000000001333844764423630730116113185523829542944440618157386779785156250000
## 19 0.000000000299800713109437112291813520847938434599200263619422912597656250000
## 20 0.000000000065201450482734425993271154542441081503056921064853668212890625000
## 21 0.000000000013745796053072729594069639746933830792841035872697830200195312500
## 22 0.000000000002813979315014818992964767963016470275761093944311141967773437500
## 23 0.000000000000560301464819578704098720911552788948029046878218650817871093750
## 24 0.000000000000108679306819072872948225838563018896820722147822380065917968750
## 25 0.000000000000020565310803614866290867785325602312695991713553667068481445312
## 26 0.000000000000003801828556639783031692592096817406854825094342231750488281250
## 27 0.000000000000000687531046356521427032407189905427458143094554543495178222656
## 28 0.000000000000000121780627478167031215328802717934308930125553160905838012695
## 29 0.000000000000000021152674315545246771022580567489512759493663907051086425781
## 30 0.000000000000000003606962907742827785474368229579056333022890612483024597168
## 31 0.000000000000000000604463493731692800507021567923970906122121959924697875977
## 32 0.000000000000000000099652716677746174690072367141624454234261065721511840820
## 33 0.000000000000000000016177627953497268188751828654758924130874220281839370728
## 34 0.000000000000000000002588461634636071877603805124756775057903723791241645813
## 35 0.000000000000000000000408548994217384126882708361705454080947674810886383057
## 36 0.000000000000000000000063661568498212243319769876315206147410208359360694885
## 37 0.000000000000000000000009801183766641085308435332734688927303068339824676514
## 38 0.000000000000000000000001491997023320978315794049784415165049722418189048767
## 39 0.000000000000000000000000224724155873835855588144250205573371204081922769547
## 40 0.000000000000000000000000033512968937716945401310286722917908264207653701305
## 41 0.000000000000000000000000004951445681835117316581945656750463058415334671736
## 42 0.000000000000000000000000000725217320435472961263206892468247133365366607904
## 43 0.000000000000000000000000000105358503770358146909517232936437380885763559490
## 44 0.000000000000000000000000000015190512186348859636521313465351568083860911429
## 45 0.000000000000000000000000000002174709655196651198957868977856833225814625621
## 46 0.000000000000000000000000000000309292918992639003449539314427596536916098557
## 47 0.000000000000000000000000000000043720186694621489932946478695896530553000048
## 48 0.000000000000000000000000000000006145130967427076669647167950216726239887066
## 49 0.000000000000000000000000000000000859215150731036915801586140162271476583555
## 50 0.000000000000000000000000000000000119555664077939098577721410698870840860764
## 51 0.000000000000000000000000000000000016561639974264818317602199204685575750773
## 52 0.000000000000000000000000000000000002284868022476072498515298203614065641887
## 53 0.000000000000000000000000000000000000314047743724779605985208963403465531883
## 54 0.000000000000000000000000000000000000043018187849451196727405821729206536475
## 55 0.000000000000000000000000000000000000005874471417810567104751673372931008998
## 56 0.000000000000000000000000000000000000000799977390599737236617783331382725009
## 57 0.000000000000000000000000000000000000000108668777277738303572648947969980782
## 58 0.000000000000000000000000000000000000000014728894242508315810379765364857008
## 59 0.000000000000000000000000000000000000000001992454732224813954664932591498427
## 60 0.000000000000000000000000000000000000000000269072417689830643166594426052285
## 61 0.000000000000000000000000000000000000000000036284135089315133456192019600905
## 62 0.000000000000000000000000000000000000000000004886872389222030003443075774072
## 63 0.000000000000000000000000000000000000000000000657517179854078474398465514739
## 64 0.000000000000000000000000000000000000000000000088396702231555874772206404799
## 65 0.000000000000000000000000000000000000000000000011876945448811392966673161631
## 66 0.000000000000000000000000000000000000000000000001595130420749984572533625160
## 67 0.000000000000000000000000000000000000000000000000214185299609515993361427699
## 68 0.000000000000000000000000000000000000000000000000028758147253870595005942334
## 69 0.000000000000000000000000000000000000000000000000003861733570260602520837073
## 70 0.000000000000000000000000000000000000000000000000000518708107886432708607399
## 71 0.000000000000000000000000000000000000000000000000000069702632766849559131997
## 72 0.000000000000000000000000000000000000000000000000000009371819289374776893418
## 73 0.000000000000000000000000000000000000000000000000000001260978170493479669223
## 74 0.000000000000000000000000000000000000000000000000000000169807886895031223719
## 75 0.000000000000000000000000000000000000000000000000000000022889162740765371870
## 76 0.000000000000000000000000000000000000000000000000000000003088704840070344398
## 77 0.000000000000000000000000000000000000000000000000000000000417299362775836489
## 78 0.000000000000000000000000000000000000000000000000000000000056453643150938908
## 79 0.000000000000000000000000000000000000000000000000000000000007648128211772115
## 80 0.000000000000000000000000000000000000000000000000000000000001037722500761465
## 81 0.000000000000000000000000000000000000000000000000000000000000141030224261437
## 82 0.000000000000000000000000000000000000000000000000000000000000019199423193901
## 83 0.000000000000000000000000000000000000000000000000000000000000002618469579052
## 84 0.000000000000000000000000000000000000000000000000000000000000000357788915998
## 85 0.000000000000000000000000000000000000000000000000000000000000000048984786861
## 86 0.000000000000000000000000000000000000000000000000000000000000000006720227502
## 87 0.000000000000000000000000000000000000000000000000000000000000000000923904449
## 88 0.000000000000000000000000000000000000000000000000000000000000000000127297814
## 89 0.000000000000000000000000000000000000000000000000000000000000000000017579023
## 90 0.000000000000000000000000000000000000000000000000000000000000000000002433191
##                  Vto a 270 días    Vto a 360 días Vto a 450 días Vto a 540 días
## 1  0.25882594423400973049353979 0.414867068408448  0.54134429626    0.638048368
## 2  0.19930332911544193508213141 0.356376921382795  0.48977259544    0.594382866
## 3  0.15138391267616280178032184 0.304921910400756  0.44254851164    0.553511853
## 4  0.11346496769980686514234236 0.259906676237534  0.39939664655    0.515287260
## 5  0.08395347834698317635027109 0.220733067265357  0.36004403173    0.479564300
## 6  0.06134829586946081991793989 0.186814035914549  0.32422307009    0.446202152
## 7  0.04429501993176877122637691 0.157584624985241  0.29167391454    0.415064492
## 8  0.03161574303960872772689683 0.132510182942305  0.26214633237    0.386019895
## 9  0.02231815076645538714616990 0.111092062105495  0.23540110893    0.358942136
## 10 0.01558941417690891916014717 0.092871121951694  0.21121104579    0.333710381
## 11 0.01078020080784063833290176 0.077429390101454  0.18936160835    0.310209306
## 12 0.00738337214952501652565076 0.064390234916658  0.16965127542    0.288329144
## 13 0.00501088481116160940759263 0.053417384412127  0.15189164013    0.267965669
## 14 0.00337133077097922497986082 0.044213093716907  0.13590730693    0.249020136
## 15 0.00224959909094474275192965 0.036515723603679  0.12153562549    0.231399185
## 16 0.00148939129454030692346900 0.030096950247603  0.10862629703    0.215014703
## 17 0.00097878839463793709634032 0.024758784706068  0.09704088443    0.199783671
## 18 0.00063872611989533513866119 0.020330541847981  0.08665225274    0.185627989
## 19 0.00041404644533725817228190 0.016665863925401  0.07734396295    0.172474284
## 20 0.00026671519463953658130376 0.013639874299279  0.06900963762    0.160253715
## 21 0.00017078896153416712588163 0.011146512130090  0.06155231417    0.148901765
## 22 0.00010874957885299594358315 0.009096078907021  0.05488379809    0.138358036
## 23 0.00006887903711660541873369 0.007413012088400  0.04892402621    0.128566039
## 24 0.00004340781706305132454232 0.006033889321721  0.04360044749    0.119472992
## 25 0.00002722662928767229805925 0.004905658124322  0.03884742715    0.111029611
## 26 0.00001700132254015333688104 0.003984079966180  0.03460567832    0.103189917
## 27 0.00001057174529952610744820 0.003232373875793  0.03082172387    0.095911045
## 28 0.00000654775982548660398681 0.002620042519049  0.02744739019    0.089153052
## 29 0.00000404038402760069551272 0.002121862775762  0.02443933369    0.082878744
## 30 0.00000248446741872471108230 0.001717022822484  0.02175860016    0.077053505
## 31 0.00000152270914774668567927 0.001388388349791  0.01937021635    0.071645129
## 32 0.00000093038218752163210096 0.001121881580621  0.01724281313    0.066623671
## 33 0.00000056682650524312114216 0.000905958046264  0.01534827886    0.061961294
## 34 0.00000034439970264491036318 0.000731167492259  0.01366144160    0.057632135
## 35 0.00000020872522032468060812 0.000589786736393  0.01215977857    0.053612167
## 36 0.00000012619980162493397130 0.000475513720851  0.01082315126    0.049879080
## 37 0.00000007613468846686208069 0.000383213347707  0.00963356450    0.046412160
## 38 0.00000004583654949559570240 0.000308706935012  0.00857494768    0.043192181
## 39 0.00000002754284824807283391 0.000248598265762  0.00763295664    0.040201303
## 40 0.00000001652085608152655714 0.000200130218747  0.00679479446    0.037422972
## 41 0.00000000989325866838482386 0.000161066869852  0.00604904966    0.034841832
## 42 0.00000000591538431205461187 0.000129596739922  0.00538555038    0.032443640
## 43 0.00000000353194935634539656 0.000104253548649  0.00479523306    0.030215186
## 44 0.00000000210611734982498486 0.000083851422215  0.00427002442    0.028144221
## 45 0.00000000125439308532688465 0.000067432005490  0.00380273542    0.026219384
## 46 0.00000000074629740022699397 0.000054221357127  0.00338696616    0.024430144
## 47 0.00000000044356730085428346 0.000043594867356  0.00301702061    0.022766735
## 48 0.00000000026340049291224739 0.000035048742423  0.00268783033    0.021220104
## 49 0.00000000015628646912545748 0.000028176854375  0.00239488617    0.019781858
## 50 0.00000000009266386174405555 0.000022651967529  0.00213417717    0.018444214
## 51 0.00000000005490582421689920 0.000018210529775  0.00190213608    0.017199959
## 52 0.00000000003251461439794730 0.000014640363421  0.00169559062    0.016042403
## 53 0.00000000001924520776829087 0.000011770711432  0.00151172006    0.014965345
## 54 0.00000000001138624623080603 0.000009464194771  0.00134801644    0.013963036
## 55 0.00000000000673412672408290 0.000007610318672  0.00120225003    0.013030144
## 56 0.00000000000398155017913554 0.000006120233040  0.00107243858    0.012161726
## 57 0.00000000000235352862048833 0.000004922507368  0.00095681985    0.011353199
## 58 0.00000000000139093917942879 0.000003959725614  0.00085382728    0.010600312
## 59 0.00000000000082194356729200 0.000003185743306  0.00076206820    0.009899121
## 60 0.00000000000048567283463720 0.000002563479088  0.00068030456    0.009245970
## 61 0.00000000000028696919639880 0.000002063137299  0.00060743570    0.008637467
## 62 0.00000000000016956535460021 0.000001660777989  0.00054248306    0.008070466
## 63 0.00000000000010020031892029 0.000001337166833  0.00048457662    0.007542047
## 64 0.00000000000005921750322106 0.000001076850412  0.00043294280    0.007049501
## 65 0.00000000000003500242180642 0.000000867412897  0.00038689371    0.006590315
## 66 0.00000000000002069332573205 0.000000698878679  0.00034581760    0.006162156
## 67 0.00000000000001223666564060 0.000000563232361  0.00030917043    0.005762859
## 68 0.00000000000000723789278085 0.000000454033140  0.00027646828    0.005390413
## 69 0.00000000000000428245086586 0.000000366105028  0.00024728065    0.005042952
## 70 0.00000000000000253465048288 0.000000295288040  0.00022122458    0.004718744
## 71 0.00000000000000150073090220 0.000000238238362  0.00019795929    0.004416180
## 72 0.00000000000000088891371284 0.000000192267849  0.00017718154    0.004133765
## 73 0.00000000000000052674547021 0.000000155215133  0.00015862143    0.003870110
## 74 0.00000000000000031227574640 0.000000125342108  0.00014203873    0.003623927
## 75 0.00000000000000018521801162 0.000000101250792  0.00012721955    0.003394017
## 76 0.00000000000000010991233958 0.000000081816550  0.00011397344    0.003179265
## 77 0.00000000000000006525866982 0.000000066134467  0.00010213080    0.002978638
## 78 0.00000000000000003876754456 0.000000053476260  0.00009154056    0.002791173
## 79 0.00000000000000002304337102 0.000000043255671  0.00008206815    0.002615974
## 80 0.00000000000000001370503856 0.000000035000657  0.00007359365    0.002452212
## 81 0.00000000000000000815604322 0.000000028331044  0.00006601020    0.002299111
## 82 0.00000000000000000485681832 0.000000022940571  0.00005922255    0.002155953
## 83 0.00000000000000000289404298 0.000000018582452  0.00005314578    0.002022068
## 84 0.00000000000000000172562411 0.000000015057774  0.00004770417    0.001896833
## 85 0.00000000000000000102963313 0.000000012206163  0.00004283020    0.001779668
## 86 0.00000000000000000061478115 0.000000009898281  0.00003846362    0.001670034
## 87 0.00000000000000000036733865 0.000000008029789  0.00003455069    0.001567430
## 88 0.00000000000000000021964775 0.000000006516488  0.00003104345    0.001471386
## 89 0.00000000000000000013143369 0.000000005290412  0.00002789908    0.001381469
## 90 0.00000000000000000007870672 0.000000004296681  0.00002507938    0.001297272

Ebay

resultado <- black_scholes_merton(So = 33.309, K = 45, r = rates, VencimientoDias = 90, sigma = sd(ret_ebay), Stcall = 48.5, Stput = 44.5, rates = rates)

print(resultado$CallTable)
##       St
## 1   48.5
## 2   58.5
## 3   68.5
## 4   78.5
## 5   88.5
## 6   98.5
## 7  108.5
## 8  118.5
## 9  128.5
## 10 138.5
## 11 148.5
## 12 158.5
## 13 168.5
## 14 178.5
## 15 188.5
## 16 198.5
## 17 208.5
## 18 218.5
## 19 228.5
## 20 238.5
## 21 248.5
## 22 258.5
## 23 268.5
## 24 278.5
## 25 288.5
## 26 298.5
## 27 308.5
## 28 318.5
## 29 328.5
## 30 338.5
## 31 348.5
## 32 358.5
## 33 368.5
## 34 378.5
## 35 388.5
## 36 398.5
## 37 408.5
## 38 418.5
## 39 428.5
## 40 438.5
## 41 448.5
## 42 458.5
## 43 468.5
## 44 478.5
## 45 488.5
## 46 498.5
## 47 508.5
## 48 518.5
## 49 528.5
## 50 538.5
## 51 548.5
## 52 558.5
## 53 568.5
## 54 578.5
## 55 588.5
## 56 598.5
## 57 608.5
## 58 618.5
## 59 628.5
## 60 638.5
## 61 648.5
## 62 658.5
## 63 668.5
## 64 678.5
## 65 688.5
## 66 698.5
## 67 708.5
## 68 718.5
## 69 728.5
## 70 738.5
## 71 748.5
## 72 758.5
## 73 768.5
## 74 778.5
## 75 788.5
## 76 798.5
## 77 808.5
## 78 818.5
## 79 828.5
## 80 838.5
## 81 848.5
## 82 858.5
## 83 868.5
## 84 878.5
## 85 888.5
## 86 898.5
## 87 908.5
## 88 918.5
## 89 928.5
## 90 938.5
##                                                                                                               Vto a 90 días
## 1    2937011007935952768682448400006446664484008844846480244462248660004642062604022484628220004886428640004408662842846468
## 2    9732987160438000617868428828066082288464262646408228060820080804664222000068208848084444840446080024824260666424604022
## 3   16528963312940054066648266266066444246846040400644046066066864844848840446006622286022640666802264622682442842686644846
## 4   23324939465442105274620842600460040820068680680684824608428648482844664880848286466688800882680404868682422606084484884
## 5   30120915617944158722000606048484420080442462282880888604864424202848866026484804444624406660624082068660224804840408648
## 6   36916891770446212172680068486480862840226644224606446604200280422822480662044424042440202068466666088048242468202626222
## 7   43712867922948261130066860888280282246484240244860044466608244860840084826068444882842820002286462464046280448640088644
## 8   50508844075450314588644080266286064808268482646044602486066440000444008482008642260062642880040026460028806080402826208
## 9   57304820227952368036026484664282006606242664288264000468482604440800220208848682488224422608862620466000884264284026282
## 10  64100796380454421484404808242084028468020086886480668480808004680202244822480888466646242486086684460424400408026264226
## 11  70896772532956474932286008440080860220004428288666066462224200080668404480028020444866026464240686464806028640408062800
## 12  77692748685458528386668622028486608888888640880042684240820466226260488004660068462026846282662840460280444824840602484
## 13  84488724837960581824042846202482824440662886462208082222046622466662642622208226400406626000884844466862022066222402828
## 14  91284700990462635270424440800488662402846004064484880284662288806068622426040464428606400848240048262244640202400240402
## 15  98080677142964688728886666088484400064644646662664204262288424846480806844488402646026260660422062268660264484882848046
## 16 104876653295466742176668880666462626628424868868820602244484686286886060668220660684040240688684066260002842460224646620
## 17 111672629447968795624042464882488464660202080466006020226004846622688240486662808606460024426040060266624200662466284004
## 18 118468605600470849072424688460464200222462222062282828208226006682080000804400040624880804244422464262046884044888022688
## 19 125264581752972902510206802048480448884260464660448246260846248022400288608828884662804684062484468268482462020220884282
## 20 132060557905474955968288026826466284846020004228644644242048888462802448022664042686200448806840482264804020422462622666
## 21 138856534057977009416062042404482482408828246824800442224688060402224608846402280608624222628222482246246608404084060440
## 22 145652510210479044944880888060662480226802224042420248026448044244440404642086024880488262206668684866064840664664660466
## 23 152448486362981098394860002648688628888262066640686046008040286684862682446822282822402046040640688862486024662806408240
## 24 159244462515483151840644226428666064442460608248282444082640466024244822248260420844828820862002682868228686048044266624
## 25 166040438667985223200680880068488640648844464422284084244222864662220084620882660020484422840088808246242682246228246486
## 26 172836414820487258736408424624666400664028042602604280006082248804486880486846406280268440828444000860060824420808842802
## 27 179632390972989330106248088264480026862400800628646680268464286442024044426028046066824082486822806248026848628002442644
## 28 186428367125491365622266862080668082682688424806064886060224660884280200622620822266066000464268008862844080484662046660
## 29 193224343277993436002002426620482668086060284880006486222806408422866462064602462642664640022246204240860084002446028422
## 30 200020319430495472528820264246664668806044608008426682026466082664082668260204208202406668000622006866688206868026622828
## 31 206816295582997543888866864886484244004626428086468222288006820202660820600486848488402860008608242242004202066220204680
## 32 213612271735499579424684402602666000060600042204848428080866464446886288006080684248246228286444004468822462220800808086
## 33 220408247888001650784620002242446686228026802288880828242240200024462280448062424424442420642022640244888468428004828848
## 34 227204224040503686320448840848628686084200486460200224044000884426628646602624268224286888822468842460604220624684424284
## 35 234000200193005721846286684464086486064484044688820420806860262664844842802226044886020206800844204484022440880264028280
## 36 240796176345507793226206288204660262208826860662622860068440008206422006440200686260026406266222840462448446488428000042
## 37 247592152498009828742044026820042068288800248880242026860200682648648262646802422820868866486668042488866608244608604448
## 38 254388128650511900102860446660622644442226244068024666062684428086026422088086062208864066842044848464222602440802686200
## 39 261184104803013935648608064086884464202400622286644822824444006428482828284448804808608424022480040480440864246882280206
## 40 267980080955516007008824884826664420460842428260646462046084802066820882626668448282866624480068846468066868444286460068
## 41 274776057108018042544662402242846246426026006482066628888644486248086248082224280842640046666244048682282080000266066804
## 42 281572033260520113904488226082626822684442022466068068000268262846620442460444820220604286024822886460808086208422086626
## 43 288368009413022149440226860888888622640426280484488404842028646228826608666806606880488604244268046684066248062600682662
## 44 295163985565524220800046664228668208808868206862260864064468646626464828008060446064646804602646684462482244260806662424
## 45 301959961718026256320284208044840004864242864000880000806228020008680064264682242864286262688082084686800462828884268420
## 46 308755937870528327702000602880624080022668480064882640028862026606208288606846862042484462246660682464226468062280248282
## 47 315551914023030363222844646200882880682642068202402806860622400888424644062268608802228824226846882688644820820268842088
## 48 322347890175532434682668064046666466246064064280084446886042480466062648404448248086282024880420680466000826028462822840
## 49 329143866328034470122402088466844266806068642408624602648002864868288004640040084846066482800866880680428088682604428846
## 50 335939842480536505644224622268026082882442800626240842480662248260484260006446820406840860040242084608646200440682024882
## 51 342735818633038612844464808046482424202206264460208482062886466044240228420284264408268882026862262446200086088002628460
## 52 349531794785540648384286840468666624288286442688828648804846244026666484886800000068062240062008626460628208842084224266
## 53 356327770938042683924020484268848444244268000806444284666406628428662020822402846808846622082444886648042460440262820202
## 54 363123747090544719446842408680020244220262684024064444408066002820088286488804682468620080008880020662220622204440426208
## 55 369919723243046826646080602448486686640022642868022084080660200604848044002846226260068002208400268400884468846620880886
## 56 376715699395548862166804226260668406626406206086648220822220684086244600262268862020842460224846422428242680600802486822
## 57 383511675548050897726646260680842608682480888204262480684880462088260866428660808680626848264282662642420882464880082628
## 58 390307651700552933248460884402024408268464442422888642446840846480686022664466444640420206280628026666888004022068684664
## 59 397103627853054968768282846222206228222468024660402882282400220862682262820888480200004864400044286880066226886040280660
## 60 403899604005557075968042022662662660664228084488462822860604428646448440444420004002422600406684428422620006428460648288
## 61 410695580158059111588264646402846460620602646606086082606664806048864686600222640662406268426006668646088228282648244284
## 62 417491556310561147040088608804028260604686220844602224464224686440284842866644686222000426462442822660466426820620846080
## 63 424287532463063182560800222644200460660668882062246484200284064422280008402046228262080004482688062888624848684808442086
## 64 431083508615565289760668808484686822002448842882206424888484266200046266620088866084402826688208204426288428222048080604
## 65 437879484768067325282482420824868622066422424020820664624044646608462422286480402624006488608844464440666640080226682600
## 66 444675460920569360802204084626002424022826088248446826482004024084462688442806444284686646624080628664824062644208288606
## 67 451471437073071396362428008426284264628880240466062086228664804482884228688608080244660224664626268882202284402486884402
## 68 458267413225573503562286284806660686448660620284020606806882026260640006226240628046082046840246200620666060040806248220
## 69 465063389378075539184000246606842826404664882402644866662842404268040248462048260606682604880482460444044282804884844026
## 70 471859365530577574604822860048024626060628446660260028400402884644062808628464206266666882806628604662408284462066440022
## 71 478655341683079610124046484848208426066022048888886668266062662042482060884860842226240444826244864886886606426044046008
## 72 485451317835581717324404608628684888486860088088864228824662864820228828404804480028688266022884206624240282868664600646
## 73 492247293988083752886626622028866688442864640246480468680222244208648488640200422688662844048000446842608604422642206642
## 74 499043270140585788406840646860008488408868244464004600448882622604660620206626042242240002088642600666086026466624802428
## 75 505839246293087823926262600260282680404222806682620840264822002602080880462424084288246660008888860880444028024602408424
## 76 512635222445589931126422484440668042824602846420668880842040204480826048080066222080668406204408202622808628862022842062
## 77 519431198598091966688844408840240842880066448648284060608600082868848208246462264646242064220044446846286020420024468048
## 78 526227174750594002208068422242022642846060002866808202464660482264268460482280804200226222246280606660644448084402064044
## 79 533023150903096037728480684482604442842064664084424442222220840642660620648686846864820880286826846884022460048480666040
## 80 539819127055598073240644608884488242406428228202048682048280240648680862804002488820404068206062000002080862606462262646
## 81 546615103208100180440862284262464604228806206042028622626400842448426040422024026622828280402688442840844462444882600664
## 82 553411079360602215000284448664046404884260860268642804482060200804866200688442668288822448422828606664222864002860202260
## 83 560207055513104251520408460864688006288664424486268044240020600202868442224848608842406026442440846882280886666242808266
## 84 567003031665606287042860484206462806844268626604882284066680068608268082480666640806480284484680006002668208224220404262
## 85 573799007818108394242080060684448268666408664844862824644868260408044880028288888600802406668206044848422884062640862880
## 86 580594983970610429862202222886020068260002628662486006400828060464446422264004820244406682600846282668886206626628464886
## 87 587390960123112465322626246286602868826466822280602246268488428862446662400420460808480240620088842886868208664600060882
## 88 594186936275614500844888200628484608282860884008626486024448828268886842686808402864064408660628002006222626228688666868
## 89 600982912428116608044006084866462020202240822246666026662668020068622000286840620666488640846244020842000200060008420406
## 90 607778888580618643564428008208044820608602026064680268428228488424024242422266682242482808886484288662064628628406026402
##    Vto a 180 días Vto a 270 días Vto a 360 días Vto a 450 días Vto a 540 días
## 1         2206409       145.3234       15.66096       6.403514       4.028152
## 2         6466470       364.1920       33.32316      11.942844       6.810371
## 3        10740462       592.5120       52.67271      18.126052       9.907890
## 4        15014454       821.0760       72.33010      24.547450      13.164871
## 5        19288446      1049.6425       92.03006      31.048269      16.499465
## 6        23562439      1278.2090      111.73507      37.574255      19.871321
## 7        27836431      1506.7754      131.44063      44.108052      23.261063
## 8        32110423      1735.3419      151.14626      50.644268      26.659455
## 9        36384415      1963.9084      170.85189      57.181238      30.062080
## 10       40658407      2192.4749      190.55752      63.718446      33.466804
## 11       44932399      2421.0414      210.26314      70.255732      36.872585
## 12       49206392      2649.6079      229.96877      76.793043      40.278908
## 13       53480384      2878.1744      249.67440      83.330363      43.685511
## 14       57754376      3106.7409      269.38003      89.867686      47.092264
## 15       62028368      3335.3074      289.08566      96.405010      50.499095
## 16       66302360      3563.8739      308.79129     102.942334      53.905970
## 17       70576353      3792.4404      328.49692     109.479658      57.312868
## 18       74850345      4021.0069      348.20255     116.016982      60.719780
## 19       79124337      4249.5734      367.90818     122.554306      64.126700
## 20       83398329      4478.1398      387.61381     129.091631      67.533623
## 21       87672321      4706.7063      407.31944     135.628955      70.940549
## 22       91946314      4935.2728      427.02507     142.166279      74.347477
## 23       96220306      5163.8393      446.73070     148.703603      77.754406
## 24      100494298      5392.4058      466.43633     155.240928      81.161335
## 25      104768290      5620.9723      486.14196     161.778252      84.568264
## 26      109042282      5849.5388      505.84759     168.315576      87.975194
## 27      113316274      6078.1053      525.55322     174.852900      91.382123
## 28      117590267      6306.6718      545.25885     181.390225      94.789053
## 29      121864259      6535.2383      564.96448     187.927549      98.195983
## 30      126138251      6763.8048      584.67010     194.464873     101.602913
## 31      130412243      6992.3713      604.37573     201.002197     105.009843
## 32      134686235      7220.9378      624.08136     207.539522     108.416773
## 33      138960228      7449.5043      643.78699     214.076846     111.823702
## 34      143234220      7678.0707      663.49262     220.614170     115.230632
## 35      147508212      7906.6372      683.19825     227.151495     118.637562
## 36      151782204      8135.2037      702.90388     233.688819     122.044492
## 37      156056196      8363.7702      722.60951     240.226143     125.451422
## 38      160330189      8592.3367      742.31514     246.763467     128.858352
## 39      164604181      8820.9032      762.02077     253.300792     132.265282
## 40      168878173      9049.4697      781.72640     259.838116     135.672212
## 41      173152165      9278.0362      801.43203     266.375440     139.079142
## 42      177426157      9506.6027      821.13766     272.912764     142.486071
## 43      181700149      9735.1692      840.84329     279.450089     145.893001
## 44      185974142      9963.7357      860.54892     285.987413     149.299931
## 45      190248134     10192.3022      880.25455     292.524737     152.706861
## 46      194522126     10420.8687      899.96018     299.062061     156.113791
## 47      198796118     10649.4352      919.66581     305.599386     159.520721
## 48      203070110     10878.0016      939.37144     312.136710     162.927651
## 49      207344103     11106.5681      959.07706     318.674034     166.334581
## 50      211618095     11335.1346      978.78269     325.211358     169.741511
## 51      215892087     11563.7011      998.48832     331.748683     173.148441
## 52      220166079     11792.2676     1018.19395     338.286007     176.555370
## 53      224440071     12020.8341     1037.89958     344.823331     179.962300
## 54      228714064     12249.4006     1057.60521     351.360656     183.369230
## 55      232988056     12477.9671     1077.31084     357.897980     186.776160
## 56      237262048     12706.5336     1097.01647     364.435304     190.183090
## 57      241536040     12935.1001     1116.72210     370.972628     193.590020
## 58      245810032     13163.6666     1136.42773     377.509953     196.996950
## 59      250084024     13392.2331     1156.13336     384.047277     200.403880
## 60      254358017     13620.7996     1175.83899     390.584601     203.810810
## 61      258632009     13849.3661     1195.54462     397.121925     207.217740
## 62      262906001     14077.9325     1215.25025     403.659250     210.624669
## 63      267179993     14306.4990     1234.95588     410.196574     214.031599
## 64      271453985     14535.0655     1254.66151     416.733898     217.438529
## 65      275727978     14763.6320     1274.36714     423.271222     220.845459
## 66      280001970     14992.1985     1294.07277     429.808547     224.252389
## 67      284275962     15220.7650     1313.77839     436.345871     227.659319
## 68      288549954     15449.3315     1333.48402     442.883195     231.066249
## 69      292823946     15677.8980     1353.18965     449.420520     234.473179
## 70      297097939     15906.4645     1372.89528     455.957844     237.880109
## 71      301371931     16135.0310     1392.60091     462.495168     241.287039
## 72      305645923     16363.5975     1412.30654     469.032492     244.693968
## 73      309919915     16592.1640     1432.01217     475.569817     248.100898
## 74      314193907     16820.7305     1451.71780     482.107141     251.507828
## 75      318467900     17049.2969     1471.42343     488.644465     254.914758
## 76      322741892     17277.8634     1491.12906     495.181789     258.321688
## 77      327015884     17506.4299     1510.83469     501.719114     261.728618
## 78      331289876     17734.9964     1530.54032     508.256438     265.135548
## 79      335563868     17963.5629     1550.24595     514.793762     268.542478
## 80      339837860     18192.1294     1569.95158     521.331086     271.949408
## 81      344111853     18420.6959     1589.65721     527.868411     275.356338
## 82      348385845     18649.2624     1609.36284     534.405735     278.763267
## 83      352659837     18877.8289     1629.06847     540.943059     282.170197
## 84      356933829     19106.3954     1648.77410     547.480384     285.577127
## 85      361207821     19334.9619     1668.47973     554.017708     288.984057
## 86      365481814     19563.5284     1688.18535     560.555032     292.390987
## 87      369755806     19792.0949     1707.89098     567.092356     295.797917
## 88      374029798     20020.6614     1727.59661     573.629681     299.204847
## 89      378303790     20249.2278     1747.30224     580.167005     302.611777
## 90      382577782     20477.7943     1767.00787     586.704329     306.018707
print(resultado$PutTable)
##      StP
## 1   44.5
## 2   54.5
## 3   64.5
## 4   74.5
## 5   84.5
## 6   94.5
## 7  104.5
## 8  114.5
## 9  124.5
## 10 134.5
## 11 144.5
## 12 154.5
## 13 164.5
## 14 174.5
## 15 184.5
## 16 194.5
## 17 204.5
## 18 214.5
## 19 224.5
## 20 234.5
## 21 244.5
## 22 254.5
## 23 264.5
## 24 274.5
## 25 284.5
## 26 294.5
## 27 304.5
## 28 314.5
## 29 324.5
## 30 334.5
## 31 344.5
## 32 354.5
## 33 364.5
## 34 374.5
## 35 384.5
## 36 394.5
## 37 404.5
## 38 414.5
## 39 424.5
## 40 434.5
## 41 444.5
## 42 454.5
## 43 464.5
## 44 474.5
## 45 484.5
## 46 494.5
## 47 504.5
## 48 514.5
## 49 524.5
## 50 534.5
## 51 544.5
## 52 554.5
## 53 564.5
## 54 574.5
## 55 584.5
## 56 594.5
## 57 604.5
## 58 614.5
## 59 624.5
## 60 634.5
## 61 644.5
## 62 654.5
## 63 664.5
## 64 674.5
## 65 684.5
## 66 694.5
## 67 704.5
## 68 714.5
## 69 724.5
## 70 734.5
## 71 744.5
## 72 754.5
## 73 764.5
## 74 774.5
## 75 784.5
## 76 794.5
## 77 804.5
## 78 814.5
## 79 824.5
## 80 834.5
## 81 844.5
## 82 854.5
## 83 864.5
## 84 874.5
## 85 884.5
## 86 894.5
## 87 904.5
## 88 914.5
## 89 924.5
## 90 934.5
##                                                                                                                                                                                                                Vto a 90 días
## 1  0.00868357498733376628741176261883083498105406761169433593750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 2  0.00000000000000000000000000000000000000000000000000000000000000000015981159020085773745517565558316164242569357156753540039062500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 3  0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006345296
## 4  0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 5  0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 6  0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 7  0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 8  0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 9  0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 10 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 11 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 12 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 13 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 14 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 15 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 16 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 17 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 18 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 19 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 20 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 21 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 22 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 23 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 24 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 25 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 26 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 27 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 28 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 29 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 30 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 31 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 32 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 33 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 34 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 35 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 36 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 37 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 38 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 39 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 40 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 41 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 42 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 43 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 44 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 45 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 46 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 47 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 48 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 49 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 50 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 51 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 52 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 53 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 54 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 55 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 56 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 57 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 58 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 59 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 60 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 61 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 62 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 63 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 64 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 65 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 66 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 67 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 68 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 69 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 70 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 71 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 72 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 73 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 74 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 75 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 76 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 77 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 78 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 79 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 80 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 81 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 82 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 83 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 84 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 85 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 86 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 87 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 88 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 89 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 90 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
##                                                                                                                                                                                                                                                                                                                 Vto a 180 días
## 1  0.0573948587590920392131899063770106295123696327209472656250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 2  0.0000044344941716037496151799068844212570184026844799518585205078125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 3  0.0000000000006907181908911212038504334742583523620851337909698486328125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 4  0.0000000000000000000024380743976055313266149832118756535237480420619249343872070312500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 5  0.0000000000000000000000000000009519483660604650636719026302046131604583933949470520019531250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 6  0.0000000000000000000000000000000000000001071692298896024937954023215080923137065838091075420379638671875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 7  0.0000000000000000000000000000000000000000000000000062748829801832854248869186797321617632405832409858703613281250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 8  0.0000000000000000000000000000000000000000000000000000000000002772808872117692149429635239954450298682786524295806884765625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 9  0.0000000000000000000000000000000000000000000000000000000000000000000000117514203951759955480739494593223071206011809408664703369140625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 10 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000005583946900361241891513203183805558182939421385526657104492187500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 11 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000329506725971445497383634226640225506343995220959186553955078125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 12 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000025808380033714973327517439027900536530069075524806976318359375000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 13 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002799651604491537565215508731597537916968576610088348388671875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 14 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000431763495761157038146590969596161357912933453917503356933593750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 15 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000096077800119296150041167670075026308040833100676536560058593750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 16 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000031063843772172396438292774067946311333798803389072418212890625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 17 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000014614350015185753471798346669885404480737634003162384033203125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 18 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009980983201052933457934901451125142557430081069469451904296875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 19 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009846118223581676981784327473690154874930158257484436035156250000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 20 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000013934724714479086196683432774534594500437378883361816406250000000000000000000000000000000000000000000000000000000000000000000000000000000
## 21 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000028066870364059174746546032608307541522663086652755737304687500000000000000000000000000000000000000000000000000000000000000000000
## 22 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000079751360185292989642830141505669416801538318395614624023437500000000000000000000000000000000000000000000000000000000000
## 23 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000316751902761160347211412402490537942867376841604709625244140625000000000000000000000000000000000000000000000000
## 24 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001741915377335450830411506251138575862569268792867660522460937500000000000000000000000000000000000000000
## 25 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000013137836609788464127231491507252769679325865581631660461425781250000000000000000000000000000000
## 26 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000134615771177164603839525314210590067887096665799617767333984375000000000000000000000000
## 27 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001856479619870320912737582386142776158521883189678192138671875000000000000000000
## 28 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000034145984732431792210358145744919511344050988554954528808593750000000000
## 29 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000830196790832263826868941958281311599421314895153045654296875000
## 30 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000026452474229153129870253935429502689657965674996376037598
## 31 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001095391635471779142024101316721385046548675745726
## 32 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000058477696893066791806493898153718191679218
## 33 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003993518661803402948311247921964195
## 34 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000346273446071944569790192203
## 35 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000037849374337390016636
## 36 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005179336879962
## 37 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000881422
## 38 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 39 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 40 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 41 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 42 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 43 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 44 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 45 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 46 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 47 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 48 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 49 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 50 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 51 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 52 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 53 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 54 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 55 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 56 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 57 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 58 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 59 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 60 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 61 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 62 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 63 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 64 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 65 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 66 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 67 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 68 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 69 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 70 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 71 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 72 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 73 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 74 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 75 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 76 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 77 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 78 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 79 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 80 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 81 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 82 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 83 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 84 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 85 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 86 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 87 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 88 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 89 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 90 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
##                                                                                                                                      Vto a 270 días
## 1  0.1439914875139197136810764732217648997902870178222656250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 2  0.0058345328046376359470981398658295802306383848190307617187500000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 3  0.0000811914449797935204936050190838159323902800679206848144531250000000000000000000000000000000000000000000000000000000000000000000000000000000
## 4  0.0000005804330544316391267065102788080821483163163065910339355468750000000000000000000000000000000000000000000000000000000000000000000000000000
## 5  0.0000000028169920536490762955073030582298088120296597480773925781250000000000000000000000000000000000000000000000000000000000000000000000000000
## 6  0.0000000000110765470456803893385937936910679013635672163218259811401367187500000000000000000000000000000000000000000000000000000000000000000000
## 7  0.0000000000000394524633735846737975228037953456805553287267684936523437500000000000000000000000000000000000000000000000000000000000000000000000
## 8  0.0000000000000001366773873758433133608972132044812042295234277844429016113281250000000000000000000000000000000000000000000000000000000000000000
## 9  0.0000000000000000004821351042751646588657710168490666546858847141265869140625000000000000000000000000000000000000000000000000000000000000000000
## 10 0.0000000000000000000017838369582605424709404601246731658648059237748384475708007812500000000000000000000000000000000000000000000000000000000000
## 11 0.0000000000000000000000070556531964865513680343345193080040189670398831367492675781250000000000000000000000000000000000000000000000000000000000
## 12 0.0000000000000000000000000301964499071806736184286901192308505414985120296478271484375000000000000000000000000000000000000000000000000000000000
## 13 0.0000000000000000000000000001408659082331059549456075963291823427425697445869445800781250000000000000000000000000000000000000000000000000000000
## 14 0.0000000000000000000000000000007192663187397801624178156343347723122860770672559738159179687500000000000000000000000000000000000000000000000000
## 15 0.0000000000000000000000000000000040276843613262189531046275625669750297674909234046936035156250000000000000000000000000000000000000000000000000
## 16 0.0000000000000000000000000000000000247454085243873613594173255236796649114694446325302124023437500000000000000000000000000000000000000000000000
## 17 0.0000000000000000000000000000000000001667047405363244936757349812239681341452524065971374511718750000000000000000000000000000000000000000000000
## 18 0.0000000000000000000000000000000000000012298392556370830553747267033237733357964316383004188537597656250000000000000000000000000000000000000000
## 19 0.0000000000000000000000000000000000000000099179521015995256473518626449958901503123342990875244140625000000000000000000000000000000000000000000
## 20 0.0000000000000000000000000000000000000000000872488754313233085165013580564163930830545723438262939453125000000000000000000000000000000000000000
## 21 0.0000000000000000000000000000000000000000000008353500148243417402701971319345375377452000975608825683593750000000000000000000000000000000000000
## 22 0.0000000000000000000000000000000000000000000000086837381126879108674682106183695395884569734334945678710937500000000000000000000000000000000000
## 23 0.0000000000000000000000000000000000000000000000000977713151679308789532285572931868955492973327636718750000000000000000000000000000000000000000
## 24 0.0000000000000000000000000000000000000000000000000011893681641126061738003572010313746432075276970863342285156250000000000000000000000000000000
## 25 0.0000000000000000000000000000000000000000000000000000155942565945332377807218404708322623264393769204616546630859375000000000000000000000000000
## 26 0.0000000000000000000000000000000000000000000000000000002198461755634951401896376443900749109161552041769027709960937500000000000000000000000000
## 27 0.0000000000000000000000000000000000000000000000000000000033248083428575283227671827157578832157014403492212295532226562500000000000000000000000
## 28 0.0000000000000000000000000000000000000000000000000000000000538176530316260923018922834870636506821028888225555419921875000000000000000000000000
## 29 0.0000000000000000000000000000000000000000000000000000000000009303413000039869588074503692354255690588615834712982177734375000000000000000000000
## 30 0.0000000000000000000000000000000000000000000000000000000000000171396395670377053757453544857725091787870042026042938232421875000000000000000000
## 31 0.0000000000000000000000000000000000000000000000000000000000000003358299586998829132453853185680259230139199644327163696289062500000000000000000
## 32 0.0000000000000000000000000000000000000000000000000000000000000000069846752548134792130431203194262934630387462675571441650390625000000000000000
## 33 0.0000000000000000000000000000000000000000000000000000000000000000001539098575330578026667399660354362822545226663351058959960937500000000000000
## 34 0.0000000000000000000000000000000000000000000000000000000000000000000035867204338480249527568166634239332779543474316596984863281250000000000000
## 35 0.0000000000000000000000000000000000000000000000000000000000000000000000882447856463598688525618030098485178314149379730224609375000000000000000
## 36 0.0000000000000000000000000000000000000000000000000000000000000000000000022883457401586625914319261809737326984759420156478881835937500000000000
## 37 0.0000000000000000000000000000000000000000000000000000000000000000000000000624461758688211204413806565405309356719953939318656921386718750000000
## 38 0.0000000000000000000000000000000000000000000000000000000000000000000000000017905273495961619746597026647805250831879675388336181640625000000000
## 39 0.0000000000000000000000000000000000000000000000000000000000000000000000000000538658832085761167442899965962510577810462564229965209960937500000
## 40 0.0000000000000000000000000000000000000000000000000000000000000000000000000000016978426869314324947415895117330819630296900868415832519531250000
## 41 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000559951213800130318280420804732955275540007278323173522949218750
## 42 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000019298084633461468693008122876619836461031809449195861816406250
## 43 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000694151899394603718804197534097966126864776015281677246093750
## 44 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000026029023304567055366407629657388156374508980661630630493164
## 45 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000001016322908297697250436589233579809388174908235669136047363
## 46 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000041276529131210800854269449278177717133075930178165435791
## 47 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000001741879464820413002390520063045187271200120449066162109
## 48 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000076302748018737688666911223034361455574980936944484711
## 49 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003466171509364631698720329855412103370326803997159004
## 50 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000163133998072399767002675641247577686954173259437084
## 51 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007947592779237453967586257697064411331666633486748
## 52 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000400451735959405518815862334847111014823894947767
## 53 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000020851095512302238134047516204816474783001467586
## 54 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001121051680221820829436683852886602608123212121
## 55 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000062188061818554533155892216633731095498660579
## 56 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003556736210071224910111986616811918793246150
## 57 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000209579904165976603318266580089357375982217
## 58 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000012714579965300419569541878761498310268507
## 59 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000793634066535996785625092786453649296163
## 60 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000050936133111813748546373159520328499639
## 61 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003359309663160786055095818891658154826
## 62 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000227526830855781610142736515189909596
## 63 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000015816941990161217337050592046665543
## 64 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001127916331537872542166781042460855
## 65 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000082463316739638107656998333716558
## 66 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006177986690581352187227881511689
## 67 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000474040438290429466151876258806
## 68 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000037235144608340520642683624253
## 69 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002992633946817863043257657019
## 70 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000245989817837213160692071134
## 71 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000020670447191233854539963583
## 72 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001774859378571488629887376
## 73 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000155660044604886514361952
## 74 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000013938392709598214557962
## 75 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001273793498918717045530
## 76 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000118759838981608399893
## 77 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011291787243527451732
## 78 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001094513684004328351
## 79 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000108116627839017038
## 80 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010879983269181858
## 81 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001115023920031521
## 82 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000116337604403361
## 83 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000012353772755135
## 84 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001334719271396
## 85 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000146676964016
## 86 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000016390409596
## 87 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001861877811
## 88 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000214944715
## 89 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000025211601
## 90 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003003716
##                                                   Vto a 360 días
## 1  0.25764808290385687872259268260677345097064971923828125000000
## 2  0.04901934205029017527222023886679380666464567184448242187500
## 3  0.00704593459201187290869006218940739927347749471664428710937
## 4  0.00085759358552360922568758017092704903916455805301666259766
## 5  0.00009541749985131455284032009345196456706617027521133422852
## 6  0.00001019062266476682098760575545526307905674912035465240479
## 7  0.00000107757158663747605923353967138922371304943226277828217
## 8  0.00000011505150970604278701020159458856539913540473207831383
## 9  0.00000001255855681445132456886329408440872157370904460549355
## 10 0.00000000141245154132749320893824851452791335759684443473816
## 11 0.00000000016446067365371038278189924630723339760152157396078
## 12 0.00000000001987935907938784993193720440629590484604705125093
## 13 0.00000000000249810114488308525294499307101148133369861170650
## 14 0.00000000000032652026528907607447714533943639025892480276525
## 15 0.00000000000004438801443902706158305127015495372688747011125
## 16 0.00000000000000627284515768661988122795181155311183829326183
## 17 0.00000000000000092082913816405795644909337838157625810708851
## 18 0.00000000000000014028376284029703904582958573499240628734697
## 19 0.00000000000000002215656699393977674579503389651335965027101
## 20 0.00000000000000000362402995757998408520375588359740959276678
## 21 0.00000000000000000061318508013511342997006736688092587428400
## 22 0.00000000000000000010720538260998044170812029673989229650033
## 23 0.00000000000000000001934580249589836283084093304651673861372
## 24 0.00000000000000000000359941390877154290643680223382716576452
## 25 0.00000000000000000000068975410733211163887002026484651651117
## 26 0.00000000000000000000013599772098396260653230954718040379703
## 27 0.00000000000000000000002756240395690180445924244434507954793
## 28 0.00000000000000000000000573641401369759693128561051089775447
## 29 0.00000000000000000000000122492161451745693880564791466980523
## 30 0.00000000000000000000000026812886691658909907743507661237459
## 31 0.00000000000000000000000006011538250518685589166012483985924
## 32 0.00000000000000000000000001379397806529526054604255225211062
## 33 0.00000000000000000000000000323687327551458911274566421223398
## 34 0.00000000000000000000000000077620987644850365037157979841709
## 35 0.00000000000000000000000000019008552202274389767919227089976
## 36 0.00000000000000000000000000004750593291344812294299537747122
## 37 0.00000000000000000000000000001210879465601933428330755360136
## 38 0.00000000000000000000000000000314590577988050179992877974922
## 39 0.00000000000000000000000000000083259017689843511610126025602
## 40 0.00000000000000000000000000000022434564435471428187063303028
## 41 0.00000000000000000000000000000006151417643643750192677249755
## 42 0.00000000000000000000000000000001715474610130473391653854742
## 43 0.00000000000000000000000000000000486333897687761121473443149
## 44 0.00000000000000000000000000000000140095596254145990638279029
## 45 0.00000000000000000000000000000000040988409483543416789164127
## 46 0.00000000000000000000000000000000012174726327093921110543764
## 47 0.00000000000000000000000000000000003669791509777988597774262
## 48 0.00000000000000000000000000000000001122114764640851580020271
## 49 0.00000000000000000000000000000000000347923152416592745394402
## 50 0.00000000000000000000000000000000000109350929337323892908199
## 51 0.00000000000000000000000000000000000034826015280804873204719
## 52 0.00000000000000000000000000000000000011235234591729619486400
## 53 0.00000000000000000000000000000000000003670438773365453292855
## 54 0.00000000000000000000000000000000000001213883472191836477303
## 55 0.00000000000000000000000000000000000000406284159716627216348
## 56 0.00000000000000000000000000000000000000137578993504981934469
## 57 0.00000000000000000000000000000000000000047122000057667450148
## 58 0.00000000000000000000000000000000000000016320331579677601278
## 59 0.00000000000000000000000000000000000000005714212121709795818
## 60 0.00000000000000000000000000000000000000002022079486553568430
## 61 0.00000000000000000000000000000000000000000723020623900854752
## 62 0.00000000000000000000000000000000000000000261164070556578780
## 63 0.00000000000000000000000000000000000000000095277323589359300
## 64 0.00000000000000000000000000000000000000000035098244811313180
## 65 0.00000000000000000000000000000000000000000013053003222605180
## 66 0.00000000000000000000000000000000000000000004899786211723371
## 67 0.00000000000000000000000000000000000000000001856097334142900
## 68 0.00000000000000000000000000000000000000000000709413268276329
## 69 0.00000000000000000000000000000000000000000000273522736983473
## 70 0.00000000000000000000000000000000000000000000106366837612927
## 71 0.00000000000000000000000000000000000000000000041712215989492
## 72 0.00000000000000000000000000000000000000000000016492720063435
## 73 0.00000000000000000000000000000000000000000000006573903598407
## 74 0.00000000000000000000000000000000000000000000002641122306452
## 75 0.00000000000000000000000000000000000000000000001069355185519
## 76 0.00000000000000000000000000000000000000000000000436274492900
## 77 0.00000000000000000000000000000000000000000000000179324653977
## 78 0.00000000000000000000000000000000000000000000000074250994233
## 79 0.00000000000000000000000000000000000000000000000030966214689
## 80 0.00000000000000000000000000000000000000000000000013005908243
## 81 0.00000000000000000000000000000000000000000000000005500532175
## 82 0.00000000000000000000000000000000000000000000000002342213440
## 83 0.00000000000000000000000000000000000000000000000001004046256
## 84 0.00000000000000000000000000000000000000000000000000433247085
## 85 0.00000000000000000000000000000000000000000000000000188158052
## 86 0.00000000000000000000000000000000000000000000000000082236966
## 87 0.00000000000000000000000000000000000000000000000000036167760
## 88 0.00000000000000000000000000000000000000000000000000016004452
## 89 0.00000000000000000000000000000000000000000000000000007124924
## 90 0.00000000000000000000000000000000000000000000000000003190778
##                         Vto a 450 días           Vto a 540 días
## 1  0.374606940378118258294648512674030 0.4798651292178535698874
## 2  0.133867318015037428668989605284878 0.2375813658127602090442
## 3  0.044115123278443434118312183045418 0.1156211857457971337038
## 4  0.013959669888069884194359282503228 0.0561564044152714353375
## 5  0.004351263239028169832467440869550 0.0274602413721389618240
## 6  0.001357210591152908495810036626494 0.0135862239886880981077
## 7  0.000427717377902907681507665982323 0.0068193979383446463871
## 8  0.000136985779842638602781662582331 0.0034771478398677399015
## 9  0.000044739681256508033622629194603 0.0018019985129473150166
## 10 0.000014929204487754798690978680353 0.0009491864296697140628
## 11 0.000005094591432712591606846164183 0.0005080411227090840878
## 12 0.000001778440563999474591412586211 0.0002761890553825522578
## 13 0.000000635006748410851189125952976 0.0001524203270834109821
## 14 0.000000231827577247541571068591149 0.0000853406766166567657
## 15 0.000000086490362001071395920900886 0.0000484491823472579019
## 16 0.000000032954276632597299294749615 0.0000278724465614214065
## 17 0.000000012814430179069297680190254 0.0000162393573568194508
## 18 0.000000005081844672456013616880510 0.0000095768636757195733
## 19 0.000000002053841000465533858177283 0.0000057135307759596832
## 20 0.000000000845332736188806294335557 0.0000034465931054108707
## 21 0.000000000354081390393267946871403 0.0000021012057706738972
## 22 0.000000000150834796180091940953627 0.0000012940191631676615
## 23 0.000000000065304372749971832967132 0.0000008046703058167019
## 24 0.000000000028718124074831454625896 0.0000005050364134824746
## 25 0.000000000012819928860727616532628 0.0000003198065489327782
## 26 0.000000000005806112327267588336076 0.0000002042462437931192
## 27 0.000000000002666378040691367283131 0.0000001315146234397418
## 28 0.000000000001241000709480672291492 0.0000000853506681316210
## 29 0.000000000000585092888080788059608 0.0000000558110680486109
## 30 0.000000000000279305197208227773496 0.0000000367611691281090
## 31 0.000000000000134940871258690618488 0.0000000243834889082445
## 32 0.000000000000065953317158140978200 0.0000000162827733364428
## 33 0.000000000000032597607153329193103 0.0000000109441337838293
## 34 0.000000000000016286453240110169572 0.0000000074021011527402
## 35 0.000000000000008222479458271694452 0.0000000050367990514192
## 36 0.000000000000004193395970583468937 0.0000000034473907490490
## 37 0.000000000000002159604217031170358 0.0000000023728897371957
## 38 0.000000000000001122775168837209319 0.0000000016422335986734
## 39 0.000000000000000589105676593743192 0.0000000011425779029207
## 40 0.000000000000000311855048523844284 0.0000000007990190996483
## 41 0.000000000000000166515439980958993 0.0000000005615383391873
## 42 0.000000000000000089657511464992296 0.0000000003965393932570
## 43 0.000000000000000048667894816619731 0.0000000002813291866071
## 44 0.000000000000000026626870247246708 0.0000000002004954565350
## 45 0.000000000000000014679855308971432 0.0000000001435152556301
## 46 0.000000000000000008153688630313839 0.0000000001031669182535
## 47 0.000000000000000004561710588097141 0.0000000000744696286424
## 48 0.000000000000000002570140701398966 0.0000000000539714425091
## 49 0.000000000000000001458006575389508 0.0000000000392687326272
## 50 0.000000000000000000832638861882539 0.0000000000286801691154
## 51 0.000000000000000000478600175419225 0.0000000000210244358548
## 52 0.000000000000000000276844174599461 0.0000000000154679400855
## 53 0.000000000000000000161129296840308 0.0000000000114199834526
## 54 0.000000000000000000094345925869845 0.0000000000084602720387
## 55 0.000000000000000000055566981023261 0.0000000000062885652424
## 56 0.000000000000000000032914965008553 0.0000000000046895501768
## 57 0.000000000000000000019606189024698 0.0000000000035082338753
## 58 0.000000000000000000011742447136713 0.0000000000026326328308
## 59 0.000000000000000000007070241128766 0.0000000000019815469402
## 60 0.000000000000000000004279239138904 0.0000000000014958906425
## 61 0.000000000000000000002603179063972 0.0000000000011325227908
## 62 0.000000000000000000001591464393255 0.0000000000008598386502
## 63 0.000000000000000000000977681001727 0.0000000000006546093181
## 64 0.000000000000000000000603473780351 0.0000000000004997075135
## 65 0.000000000000000000000374227586974 0.0000000000003824654811
## 66 0.000000000000000000000233123492412 0.0000000000002934852986
## 67 0.000000000000000000000145870424315 0.0000000000002257740965
## 68 0.000000000000000000000091672463525 0.0000000000001741134197
## 69 0.000000000000000000000057857785222 0.0000000000001345978836
## 70 0.000000000000000000000036668910252 0.0000000000001042966323
## 71 0.000000000000000000000023335158080 0.0000000000000810041603
## 72 0.000000000000000000000014909546528 0.0000000000000630563654
## 73 0.000000000000000000000009563669625 0.0000000000000491943632
## 74 0.000000000000000000000006158255362 0.0000000000000384633755
## 75 0.000000000000000000000003980442803 0.0000000000000301374513
## 76 0.000000000000000000000002582344540 0.0000000000000236632679
## 77 0.000000000000000000000001681417485 0.0000000000000186180644
## 78 0.000000000000000000000001098717075 0.0000000000000146780717
## 79 0.000000000000000000000000720470754 0.0000000000000115947585
## 80 0.000000000000000000000000474066274 0.0000000000000091769142
## 81 0.000000000000000000000000312987383 0.0000000000000072771009
## 82 0.000000000000000000000000207325768 0.0000000000000057813840
## 83 0.000000000000000000000000137782088 0.0000000000000046015305
## 84 0.000000000000000000000000091858706 0.0000000000000036690668
## 85 0.000000000000000000000000061434412 0.0000000000000029307444
## 86 0.000000000000000000000000041213861 0.0000000000000023450701
## 87 0.000000000000000000000000027732699 0.0000000000000018796464
## 88 0.000000000000000000000000018716984 0.0000000000000015091285
## 89 0.000000000000000000000000012669302 0.0000000000000012136505
## 90 0.000000000000000000000000008600454 0.0000000000000009776115

Estrategias

Netflix

prome_nflx
## [1] 420.0369
st_netflix <- 355.06
st_1_netflix <- -415.207115
k_netflix <- 300

#Largo en la acción
largo_accion_n <- (st_netflix + st_1_netflix) + st_1_netflix
print(largo_accion_n)
## [1] -475.3542
#largo en la call
largo_call_n <- max((st_netflix - k_netflix), 0)
print(largo_call_n)
## [1] 55.06
#Corto en la put
corto_put_n <- -max((k_netflix - st_netflix), 0)
print(corto_put_n)
## [1] 0

Ebay

prome_ebay
## [1] 47.10313
st_ebay <- 33.309
st_1_ebay <- -50.709305
k_ebay <- 30 

#Largo en la acción
largo_accion_e <- (st_ebay + st_1_ebay) + st_1_ebay
print(largo_accion_e)
## [1] -68.10961
#largo en la call
largo_call_e <- max((st_ebay - k_ebay), 0)
print(largo_call_e)
## [1] 3.309
#Corto en la put
corto_put_e <- -max((k_ebay - st_ebay), 0)
print(corto_put_e)
## [1] 0

PyG

Netflix

PyG_Netflix <- bsm$NFLX + (largo_accion_n + largo_call_n + corto_put_n)
PyG_Netflix
##    [1]  -65.234232  -71.104228  -68.444224  -77.014231  -83.664225  -66.894236
##    [7]  -64.564219  -63.164225  -59.424235  -68.284220  -69.024241  -74.734232
##   [13]  -76.864237  -80.564219  -69.674235  -63.174235  -56.774241  -55.084239
##   [19]  -51.084239  -49.254221  -59.994242  -58.094218  -50.274241  -52.974223
##   [25]  -45.694224  -44.864237  -38.574229  -39.744242  -44.134226  -40.364237
##   [31]  -39.294230  -40.794230  -47.044230  -53.694224  -54.304240  -57.854228
##   [37]  -95.084239 -105.194224 -109.674235 -112.994242 -102.354228  -93.834239
##   [43]  -84.514231  -87.594218  -94.364237  -97.304240 -100.794230 -101.464243
##   [49] -112.664225 -110.194224 -116.004221 -104.394236 -111.364237 -109.464243
##   [55] -108.014231 -121.184245 -124.534220 -117.494242 -110.914225 -121.304240
##   [61] -122.484232 -123.364237 -128.854228 -125.314219 -129.264231 -128.524241
##   [67] -123.514231 -126.544230 -131.004221 -128.774241 -127.044230 -130.124217
##   [73] -125.954234 -132.304240 -132.024241 -131.434245 -126.144236 -126.004221
##   [79] -121.694224 -128.734232 -133.694224 -149.544230 -154.374217 -165.704234
##   [85] -155.544230 -156.984232 -157.214243 -152.674235 -150.714243 -152.264231
##   [91] -152.144236 -147.504221 -145.834239 -149.574229 -152.764231 -139.814219
##   [97] -137.364237 -134.764231 -136.044230 -134.014231 -126.944224 -144.994242
##  [103] -142.244242 -153.604228 -149.024241 -148.794230 -143.474223 -138.434245
##  [109] -139.084239 -128.844218 -132.884226 -133.484232 -127.434245 -132.264231
##  [115] -131.704234 -130.724223 -128.724223 -126.114237 -128.284220 -137.184245
##  [121] -130.674235 -125.264231 -117.724223 -117.694224 -115.134226 -108.604228
##  [127] -109.814219 -104.744242 -107.804240 -104.364237 -105.634226 -110.304240
##  [133] -114.134226 -115.974223 -117.434245 -112.944224 -117.794230 -127.174235
##  [139] -121.364237 -121.854228 -121.794230 -116.084239 -104.814219  -99.494242
##  [145]  -88.074229  -83.394236  -87.194224  -87.094218  -87.664225  -91.204234
##  [151]  -96.984232  -96.724223  -90.484232  -94.394236  -84.464243  -89.544230
##  [157]  -81.034220  -84.634226  -91.244242  -81.374217  -81.604228  -81.224223
##  [163]  -81.674235  -80.624217  -82.184245  -94.294230  -70.694224  -67.134226
##  [169]  -77.414225  -71.774241  -77.134226  -72.554240  -75.204234  -62.294230
##  [175]  -51.284220  -50.624217  -53.344218  -53.524241  -49.224223  -46.604228
##  [181]  -40.284220  -38.894236  -39.894236  -32.514231  -34.104228  -34.294230
##  [187]  -40.224223  -51.594218  -60.204234  -41.054240  -48.584239  -51.264231
##  [193]  -39.244242  -51.524241  -36.504221  -47.514231  -51.324229  -73.804240
##  [199]  -56.164225  -70.374217 -105.044230  -83.994242 -121.454234 -100.544230
##  [205] -104.824229  -88.264231  -87.464243  -60.024241  -62.974223  -77.904215
##  [211]  -57.304240  -63.174235  -49.334239  -44.794230  -56.214243  -50.214243
##  [217]  -58.534220  -40.334239  -48.014231  -49.174235  -49.574229  -23.574229
##  [223]   -6.744242    6.455770   18.875783    2.665761   17.195760   13.535757
##  [229]    1.125783    6.405782    4.695760    1.085775  -16.464243   -8.404215
##  [235]   -0.444224   -5.024241    7.855764    4.385763   13.965780   16.235769
##  [241]   15.255758   20.225759   11.525777   17.975759   21.655782   33.895772
##  [247]   32.285757   30.745779   27.375783   15.955770    9.025777   -5.524241
##  [253]   -0.404215   -6.854228   -0.564219    5.625783    7.015768    1.675771
##  [259]   -5.964243   -0.694224   -0.804240   13.755758   14.185781    5.265768
##  [265]   -2.224223    5.205770   15.835775   27.475759   29.575765   33.425771
##  [271]   47.745779   45.965780   37.555776   45.615774   23.105764   26.945760
##  [277]   34.745779   65.345785   56.595785   73.515768   72.865774   82.485769
##  [283]   87.465780  128.435750  105.205770  104.585775  102.965780  107.095785
##  [289]   72.695760   82.115774   69.805776   69.525777   57.285757   60.155782
##  [295]   75.355764   68.215780   64.185781   65.505758   68.585775   78.325765
##  [301]   89.345785   81.815755   88.785757   74.435781   63.085775   46.635763
##  [307]   55.175771   61.035757   62.385763   62.055776   71.575765   64.235769
##  [313]   77.605764   72.015768   68.515768   70.285757  127.235799  105.975790
##  [319]  103.595785  109.265768  136.255758  132.545797  105.455770   95.755758
##  [325]   86.725759   79.895772   60.375783   61.735769   55.965780   75.695760
##  [331]   63.565755   49.905782   49.665761   67.055776   70.875783   50.315755
##  [337]   52.785757   62.585775   70.355764   73.185781   79.735769  107.215780
##  [343]   82.765768  100.355794   85.575765  114.365743  111.495748  119.145772
##  [349]  119.515768  133.795797  121.155782  121.645772  110.495748  110.425741
##  [355]  105.125753   68.755758   64.935781   67.985769   67.945760   68.635763
##  [361]   65.945760   83.915761   55.445760   63.825765   66.925771   76.655782
##  [367]   93.465780   94.435750   50.205770   59.945760   70.465780   66.475759
##  [373]   62.545766   58.805776   60.335775   61.495779   64.375783   67.945760
##  [379]   56.325765   62.585775   64.705770   71.065755   70.405782   84.285757
##  [385]   83.085775   77.225759   78.015768   95.485799   92.365743   73.305776
##  [391]   80.795766   82.925771  102.125753   99.485799  104.535787  112.605794
##  [397]  114.155782  108.615743  107.035787   94.185750   93.675741   98.825765
##  [403]  110.575765  104.295797  120.435750  102.565755  100.505758   80.195760
##  [409]   88.595785   90.105764   78.805776   73.955770   87.495779   80.565755
##  [415]   77.685781   81.475759  166.045797  159.545797  144.875753  136.485799
##  [421]  141.635763  102.985799  118.305746  112.095785  118.745748  127.865743
##  [427]  119.155782  131.865743  130.495748  127.625753  138.775777  143.295797
##  [433]  137.295797  136.225790  136.985799  131.045797  127.925741  119.925741
##  [439]  113.485799  125.855794  133.115743  126.405782  118.555746  130.345785
##  [445]  127.525777  100.405782   90.995779   96.095785   73.035757   86.145772
##  [451]   84.245779  102.765768   97.725790   99.955770  103.735799  104.145772
##  [457]   84.495779   91.885763  102.815755  114.795797  100.515768   82.565755
##  [463]   87.755758   93.655782   93.095785  101.365743  119.125753  120.375753
##  [469]  124.235799  126.695760  134.285787  135.015768  132.485799  133.435750
##  [475]  119.725790  128.925741  126.245748  134.145772  129.275777   88.605764
##  [481]   88.485769   85.255758   90.005758   85.255758   86.225759   88.705770
##  [487]   93.175741   88.815755   82.885763   75.785757   79.255758   83.545766
##  [493]   66.395772   74.785757   64.685781   66.365774   73.075765   68.645772
##  [499]   65.985769   67.405782   81.375783   77.595785   82.605764   81.045766
##  [505]   82.065755   83.565755   82.515768   78.785757   78.945760   69.135763
##  [511]   74.445760   74.365774   72.095785   65.515768   66.975759   68.475759
##  [517]   79.595785   71.605764   72.115774   78.045766   80.475759   76.705770
##  [523]   88.525777   92.445760   97.765768  106.775777  112.735799  113.205770
##  [529]  107.915792  113.245748  113.685750  121.345785  115.665792  110.465780
##  [535]  115.685750  117.015768  120.385763  127.655782  122.655782  110.015768
##  [541]  111.985799  110.755758   93.335775   91.475759   95.115743   96.195760
##  [547]   98.615743   99.005758   93.955770   97.275777   94.855794   90.525777
##  [553]   97.055746  104.595785  100.255758   99.675741   95.545797   92.105794
##  [559]   90.425771   95.625753   97.625753   98.615743  101.575765  123.415792
##  [565]  126.585775  133.035787  133.115743  127.285787  129.825765  138.625753
##  [571]  145.885763  148.895772  161.775777  168.255758  170.235799  186.415792
##  [577]  185.755758  177.245748  178.425741  168.995748  157.465780  162.575765
##  [583]  166.205770  169.055746  155.135763  152.845785  170.355794  172.965780
##  [589]  172.095785  172.345785  163.555746  178.765768  190.045797  192.855794
##  [595]  183.055746  214.515768  218.805746  211.555746  212.365743  206.745748
##  [601]  204.645772  209.465780  213.505758  207.995748  217.675741  218.705770
##  [607]  204.845785  232.865743  244.485799  251.365743  248.225790  242.625753
##  [613]  253.755758  270.015768  260.875753  257.425741  267.995748  248.105794
##  [619]  225.425741  231.155782  235.695760  226.615743  237.285787  262.315755
##  [625]  259.035787  267.105794  271.395772  261.725790  258.505758  238.905782
##  [631]  233.765768  237.995748  245.345785  243.545797  221.605794  197.475790
##  [637]  196.175741  181.835775  192.395772  205.285787  207.785787  190.705770
##  [643]  191.365743  184.265768  177.695760  184.745748  170.765768  166.435750
##  [649]  173.445760  184.625753  193.945760  193.795797  192.825765  190.415792
##  [655]  190.245748  191.795797  182.145772  177.075765  170.855794  147.225790
##  [661]  132.995748  120.765768  119.555746  120.545797  116.925741   98.905782
##  [667]  105.395772   90.505758   95.565755   87.955770  -22.794230  -33.144236
##  [673]  -53.874217  -60.594218  -33.594218  -35.934245    6.845785   36.835775
##  [679]    9.185781  -14.694224  -10.124217  -18.194224  -16.764231   -7.404215
##  [685]  -14.024241  -28.984232  -23.724223  -12.834239  -22.214243  -33.624217
##  [691]  -29.004221  -42.914225  -52.834239  -30.264231  -29.494242  -25.774241
##  [697]  -34.054240  -40.264231  -52.224223  -58.564219  -70.034220  -78.534220
##  [703]  -61.504221  -63.524241  -79.974223  -89.284220  -76.544230  -62.764231
##  [709]  -48.894236  -39.694224  -45.704234  -37.374217  -45.804240  -44.584239
##  [715]  -46.444224  -41.784220  -28.474223  -38.824229  -45.704234  -46.824229
##  [721]  -28.794230  -40.144236  -51.944224  -58.144236  -64.414225  -72.294230
##  [727]  -76.194224  -69.864237  -79.164225  -82.434245  -71.684245 -194.104228
##  [733] -202.074229 -204.774226 -210.384226 -221.894236 -231.754237 -220.774226
##  [739] -229.934229 -220.834223 -220.424235 -216.284235 -231.974223 -239.324229
##  [745] -247.194224 -242.634226 -253.924235 -245.984232 -232.654231 -233.784235
##  [751] -229.734232 -243.104228 -236.814234 -233.944224 -232.854228 -239.954234
##  [757] -232.464228 -228.894236 -225.104228 -222.854228 -227.384226 -215.204234
##  [763] -221.314234 -223.154231 -221.684229 -217.464228 -227.524226 -237.354228
##  [769] -250.604228 -252.754237 -240.184229 -246.944224 -244.784235 -249.384226
##  [775] -241.404231 -238.584223 -229.444224 -231.154231 -240.694224 -241.934229
##  [781] -245.424235 -240.344233 -234.414225 -236.234232 -231.024226 -233.314234
##  [787] -242.954234 -245.844233 -243.734232 -245.514231 -231.184229 -229.374232
##  [793] -218.664225 -203.854228 -196.414225 -199.854228 -201.784235 -206.384226
##  [799] -193.544230 -194.274226 -195.394236 -194.084223 -198.874232 -193.564234
##  [805] -190.384226 -193.514231 -186.804225 -190.354228 -176.184229 -177.594233
##  [811] -170.994227 -171.184229 -174.604228 -179.144236 -175.124232 -179.134226
##  [817] -193.754237 -195.744227 -190.684229 -186.314234 -197.014231 -195.724223
##  [823] -199.644236 -196.734232 -190.254237 -194.184229 -201.904231 -191.334223
##  [829] -192.854228 -186.724223 -183.764231 -202.164225 -196.174235 -184.914225
##  [835] -180.164225 -176.664225 -177.444224 -183.424235 -183.244227 -193.884226
##  [841] -196.224223 -195.934229 -175.094233 -180.584223 -184.854228 -181.254237
##  [847] -179.554225 -183.564234 -180.274226 -195.544230 -190.314234 -206.004237
##  [853] -199.424235 -187.784235 -190.294230 -175.194224 -179.434229 -147.914225
##  [859] -152.134226 -130.724223 -137.844218 -129.274241 -121.674235 -123.354228
##  [865] -124.574229 -128.414225 -133.544230 -147.294230 -151.234232 -159.504221
##  [871] -161.694224 -156.834239 -165.634226 -145.324229 -130.164225 -121.024241
##  [877] -110.094218 -114.274241 -125.014231 -132.314219 -135.244242 -133.604228
##  [883] -128.794230 -134.754221 -139.124217 -139.334239 -114.764231 -103.344218
##  [889]  -99.884226 -107.704234 -114.734232 -111.874217 -110.034220 -100.284220
##  [895] -105.114237  -99.954234 -102.464243 -129.884226 -129.584239 -131.994242
##  [901] -132.104228 -122.334239 -122.544230 -125.334239 -136.124217 -143.414225
##  [907] -129.174235 -125.414225 -125.344218 -110.884226 -110.594218 -104.744242
##  [913] -105.124217  -92.754221  -93.034220  -90.164225  -87.474223  -94.074229
##  [919]  -93.964243 -104.514231  -77.794230  -62.874217  -56.464243  -52.334239
##  [925]  -55.424235  -59.524241  -67.184245  -66.434245  -58.304240  -53.404215
##  [931]  -54.394236  -58.814219  -57.344218  -53.464243  -57.794230  -72.934245
##  [937]  -61.724223  -60.334239  -58.874217  -69.584239  -72.334239  -82.794230
##  [943]  -85.414225  -96.644236 -103.144236  -97.264231  -98.164225 -106.814219
##  [949] -108.414225 -105.114237 -108.264231 -111.824229 -108.504221 -122.514231
##  [955] -127.534220 -126.784220 -125.354228 -116.504221 -110.234232 -116.794230
##  [961] -115.164225 -114.504221 -126.394236  -99.924235  -91.904215  -92.634226
##  [967]  -96.774241  -88.264231  -81.864237  -74.814219  -72.014231  -73.544230
##  [973]  -77.944224  -80.964243  -81.304240  -82.084239  -89.264231  -74.104228
##  [979]  -81.664225  -87.574229  -86.594218  -97.174235  -94.944224  -92.314219
##  [985]  -91.274241  -97.744242  -99.144236  -94.444224  -90.364237  -96.174235
##  [991] -102.744242 -100.994242  -99.514231  -97.534220  -89.084239  -88.154215
##  [997]  -84.874217  -75.534220  -80.404215  -84.404215  -86.544230  -80.334239
## [1003]  -49.004221  -54.934245  -57.284220  -64.304240  -55.444224  -61.294230
## [1009]  -41.414225  -27.314219  -25.064219  -17.164225  -19.824229  -16.754221
## [1015]  -21.004221  -20.524241  -10.924235   -0.274241    3.675771   15.435781
## [1021]   20.565755   24.975759   11.665761   14.405782    4.155782    2.185781
## [1027]    3.725759   -4.354228   -3.214243    9.545766    7.945760   20.195760
## [1033]   21.145772   25.605764   18.545766   17.805776   21.415761   19.915761
## [1039]   23.755758   30.085775   21.615774   29.755758   54.505758   57.295766
## [1045]   17.125783    7.205770    8.075765    7.405782    2.375783   -7.124217
## [1051]    5.485769   18.675771   18.325765    9.405782   10.705770   11.305776
## [1057]   20.465780   18.005758    8.605764    9.685781    1.365774    7.485769
## [1063]    3.405782   -4.844218  -17.294230  -15.764231  -12.004221   -7.124217
## [1069]    7.255758  -13.364237   -4.264231   -2.234232    9.695760   14.375783
## [1075]   13.385763   19.585775   28.385763   25.465780   22.845785   22.505758
## [1081]   25.065755   14.395772   -8.054240  -19.804240  -23.354228  -25.894236
## [1087]  -24.094218  -33.994242  -36.144236  -40.484232  -35.494242  -41.044230
## [1093]  -42.704234  -43.934245  -42.694224  -39.964243  -43.544230  -43.394236
## [1099]  -47.704234  -38.784220  -34.344218  -46.974223  -54.364237  -59.094218
## [1105]  -64.614237  -59.474223  -64.574229  -74.104228  -18.524241  -19.334239
## [1111]  -13.454234   -6.564219   -9.044230  -16.754221  -22.424235  -10.214243
## [1117]   -8.604228   -0.104228    4.415761   12.065755   14.445760   14.315755
## [1123]   16.355764   14.855764   26.945760   24.325765   28.355764   41.645772
## [1129]   46.655782   45.615774   54.175771   54.655782   57.705770   59.265768
## [1135]   58.875783   58.705770   56.895772   53.675771   45.445760   33.605764
## [1141]   34.855764   26.435781   31.705770   33.465780   39.595785   42.705770
## [1147]   59.685781   49.535757   51.765768   65.825765   74.725759   68.975759
## [1153]   71.315755   66.465780   70.895772   71.495779   70.215780   66.585775
## [1159]   48.205770   49.965780   54.375783   53.765768   64.735769   61.795766
## [1165]   58.035757   71.935781   71.865774   60.945760   60.035757   65.015768
## [1171]   62.655782   65.415761   71.895772  124.575765  141.705770  150.125753
## [1177]  155.495748  142.555746  143.815755  147.215780  144.345785  141.765768
## [1183]  135.585775  139.005758  138.235799  141.025777  137.555746  134.225790
## [1189]  159.035787  173.165792  163.655782  154.835775  153.055746  168.175741
## [1195]  163.265768  167.355794  181.375753  176.185750  182.625753  199.045797
## [1201]  195.535787  178.205770  177.395772  188.215780  184.525777  180.635763
## [1207]  190.785787  189.155782  192.715780  185.585775  198.095785  200.445760
## [1213]  207.395772  202.415792  207.715780  207.165792  208.945760  193.235799
## [1219]  187.035787  194.015768  193.915792  209.785787  196.845785  215.885763
## [1225]  208.115743  197.905782  198.285787  208.485799  202.535787  186.855794
## [1231]  197.225790  193.395772  190.265768  134.745748  134.305746  157.455770
## [1237]  134.825765  144.505758  140.935750  139.195760  130.345785  131.415792
## [1243]  144.855794  159.045797  176.675741  185.705770  189.175741  191.795797
## [1249]  190.575765  196.295797  193.365743  193.225790  190.225790  200.805746
## [1255]  220.525777  230.315755  220.175741  215.375753  226.455770

Ebay

PyG_Ebay <- bsm$EBAY + (largo_accion_e + largo_call_e + corto_put_e)
PyG_Ebay
##    [1] -31.491269 -31.601624 -31.213879 -31.629322 -31.915532 -31.066163
##    [7] -31.047699 -30.816903 -30.170647 -29.607480 -29.505921 -28.776577
##   [13] -28.795044 -28.878136 -28.785809 -28.176484 -27.751801 -27.945687
##   [19] -27.825665 -28.139561 -28.776577 -28.610398 -28.527310 -28.333432
##   [25] -27.973381 -27.797970 -27.964146 -28.056473 -28.296505 -27.927220
##   [31] -27.862584 -28.241112 -27.816422 -27.622551 -27.945687 -28.767350
##   [37] -28.084153 -27.677948 -27.253258 -26.920906 -26.920906 -27.124016
##   [43] -26.736260 -26.422375 -26.597786 -26.773186 -26.856286 -27.336346
##   [49] -28.970444 -28.158013 -28.130326 -26.717797 -27.585625 -28.111866
##   [55] -26.967068 -28.204182 -28.388825 -27.853348 -27.511765 -27.844120
##   [61] -27.521008 -27.871819 -29.072007 -28.425755 -28.795044 -27.788735
##   [67] -27.382515 -27.475155 -27.984688 -28.077328 -27.002682 -27.401047
##   [73] -26.446835 -27.493687 -27.836461 -27.475155 -27.401047 -27.465901
##   [79] -27.252819 -27.410302 -27.373257 -27.410302 -27.521477 -28.151444
##   [85] -28.447903 -28.744358 -29.253888 -28.688767 -29.096390 -29.439179
##   [91] -29.642983 -29.309468 -29.763413 -30.226628 -29.735627 -29.661503
##   [97] -29.087132 -29.263150 -28.781411 -28.744358 -28.586873 -28.836998
##  [103] -28.429379 -28.725827 -28.484951 -31.801552 -31.597718 -31.505078
##  [109] -31.347596 -31.579197 -32.144322 -32.144322 -31.996087 -31.931240
##  [115] -31.912713 -32.477826 -32.246224 -32.144322 -32.311066 -32.709431
##  [121] -32.412980 -32.125786 -32.283284 -32.320332 -32.505616 -32.431504
##  [127] -32.264744 -31.588456 -31.681107 -31.588456 -31.765164 -32.341809
##  [133] -32.481316 -32.276703 -32.444107 -32.379006 -32.648724 -32.509217
##  [139] -32.323204 -31.960484 -31.802376 -31.876778 -31.411751 -31.653565
##  [145] -31.281552 -31.142033 -31.123436 -31.123436 -31.086232 -31.253643
##  [151] -31.504757 -31.216435 -31.039730 -31.355957 -31.523365 -31.672173
##  [157] -31.690777 -32.081379 -32.351105 -32.499913 -31.923291 -31.941883
##  [163] -31.393151 -31.486149 -31.579163 -31.421055 -31.681454 -31.913975
##  [169] -31.802376 -31.123436 -32.639420 -32.192986 -33.588076 -32.816138
##  [175] -30.007374 -30.267785 -29.458641 -31.132733 -31.300145 -30.909527
##  [181] -30.249188 -30.211991 -29.328431 -29.579552 -29.895768 -29.746952
##  [187] -29.272633 -30.146878 -30.890919 -30.677018 -32.211602 -32.435830
##  [193] -31.202530 -30.492451 -28.838707 -30.025288 -30.800778 -31.613633
##  [199] -31.127789 -32.258309 -33.940089 -33.043139 -34.678194 -33.706513
##  [205] -35.556454 -37.144797 -39.032118 -40.190672 -38.948031 -38.294009
##  [211] -36.621579 -36.602894 -35.659232 -36.715012 -37.910939 -37.527867
##  [217] -37.322312 -35.668572 -35.257475 -33.958777 -33.192627 -32.323719
##  [223] -31.408078 -30.987641 -30.025288 -29.801056 -29.632882 -29.660916
##  [229] -29.062951 -29.380612 -28.035195 -27.773587 -28.287457 -28.334179
##  [235] -27.586728 -28.128624 -27.586728 -27.128907 -26.540280 -26.147870
##  [241] -25.419102 -25.437790 -25.559258 -25.951657 -25.521885 -25.456482
##  [247] -25.092087 -25.185521 -24.895890 -25.120125 -24.204495 -24.288582
##  [253] -23.550465 -23.475731 -22.097287 -22.416104 -21.684700 -21.243973
##  [259] -18.515236 -19.021599 -19.115376 -18.149529 -18.618386 -19.846783
##  [265] -20.109345 -19.893670 -19.678002 -19.387303 -19.377938 -19.518586
##  [271] -18.702782 -18.102646 -19.068489 -18.477726 -17.080536 -16.686699
##  [277] -15.617711 -15.139485 -13.826680 -12.129433 -11.351128 -10.160233
##  [283]  -9.269413  -9.222527 -10.132111  -9.400692 -10.047722  -9.803910
##  [289] -10.291523  -9.972702 -11.735596 -11.970021 -13.085896 -13.114033
##  [295] -11.135460 -11.960644 -13.667271 -13.489109 -12.964001 -11.754345
##  [301] -11.979393 -11.669945 -13.151524 -13.029637 -13.817311 -13.892327
##  [307] -12.767071 -12.026280 -12.016907 -11.022938 -11.322995 -10.685357
##  [313] -10.732247 -10.216500  -9.682007 -10.366536  -9.869545 -11.998150
##  [319] -13.911084 -13.280957 -14.343697 -12.989407 -14.804543 -15.387635
##  [325] -16.337521 -14.541199 -15.594540 -15.171318 -15.613358 -16.102410
##  [331] -17.381459 -19.055516 -19.083737 -17.644803 -16.911221 -17.136940
##  [337] -16.102410 -15.444073 -13.976918 -15.284180 -15.801449 -15.538113
##  [343] -16.196446 -16.111813 -18.096230 -16.892422 -15.820263 -12.650837
##  [349] -12.716664 -10.638203 -11.700951 -12.697853 -12.293450 -13.713574
##  [355] -13.826439 -15.124302 -15.622757 -14.212033 -14.635247 -14.437752
##  [361] -14.719895 -18.453618 -20.005406 -19.779702 -18.792187 -19.826714
##  [367] -18.331345 -17.127533 -19.356465 -21.030526 -19.930169 -20.983517
##  [373] -19.027314 -19.140164 -19.347073 -19.158974 -17.983372 -18.726349
##  [379] -17.870507 -17.278016 -17.353245 -16.516209 -17.223782 -17.138874
##  [385] -16.355835 -17.355862 -16.714333 -17.601159 -17.733239 -18.101170
##  [391] -18.006829 -18.450234 -18.035126 -15.667141 -14.185959 -14.752018
##  [397] -14.742581 -16.148289 -16.101109 -16.563385 -17.516243 -17.403038
##  [403] -16.818112 -17.110581 -17.393601 -16.214322 -15.714306 -14.591629
##  [409] -14.742581 -13.402916 -13.921803 -11.931183 -12.242520 -12.657608
##  [415] -12.516110 -11.044365 -11.808533 -11.591546 -11.534943 -10.789639
##  [421]  -8.978268  -9.751873 -11.553814 -11.487770  -9.638665 -10.714158
##  [427] -10.044335  -7.138592  -6.091393  -4.572476  -6.091393  -6.006485
##  [433]  -6.015919  -5.355519  -5.487603  -5.317780  -5.553643  -6.327244
##  [439]  -6.723469  -6.902741  -8.780144 -11.044365 -11.404000  -9.454396
##  [445] -10.864544 -13.126477 -14.318951 -13.921456 -14.176991 -11.640606
##  [451] -12.426133 -11.574349 -11.990780 -10.220986 -10.457589  -8.962254
##  [457]  -9.056900  -8.271374  -7.741379  -7.722454 -10.249382  -9.823491
##  [463]  -7.230320  -8.157807  -7.712990  -6.842286  -5.072499  -4.523587
##  [469]  -5.630890  -6.350155  -5.943200  -5.678200  -5.517308  -4.400544
##  [475]  -5.375351  -3.889481  -3.350026  -4.428933  -6.321759  -6.331231
##  [481]  -7.315495  -7.154602  -6.520516  -6.406937  -5.820168 -11.735245
##  [487] -12.000233  -9.766701 -10.202065  -9.681527  -9.132603  -8.224060
##  [493]  -6.653012  -7.608883  -9.643670  -9.208321  -7.201928  -6.416409
##  [499]  -6.794972  -8.214585  -8.517441  -7.050503  -7.097821  -6.785508
##  [505]  -6.653012  -8.479584  -7.008198  -6.543045  -4.606507  -3.979985
##  [511]  -2.878800  -2.669964  -2.337716  -2.185833  -1.435887  -1.075169
##  [517]  -2.252274  -2.185833  -2.062420  -2.783871  -4.748898  -3.666706
##  [523]  -3.201558  -2.812348  -1.606770  -0.344212   0.529117   2.114421
##  [529]   1.848636   1.459415   1.725208   0.718975   1.715725   0.367748
##  [535]   1.136653   0.671520   0.453167  -0.220814  -0.116391  -0.078419
##  [541]   0.253826   1.241085   1.516384   3.604778   5.009739   4.743938
##  [547]   3.823139   4.392711   4.886341  -0.049946   0.348766  -0.239788
##  [553]  -0.249302  -0.932778  -2.631997  -2.764897  -0.904293  -0.230313
##  [559]   0.595562   5.465396   6.633014   4.345234   4.335750   4.335750
##  [565]   4.838878   4.686992   4.345234   5.598301   7.003254   7.734195
##  [571]   8.816379   8.216930   7.655544   7.979061   8.017116   6.285404
##  [577]   5.543239   4.658351   4.239681   4.344348   3.126445   5.600330
##  [583]   6.275882   5.714504   4.534656   3.821025   4.858165   5.143611
##  [589]   4.648822   5.295841   3.002750   1.775333   1.489872   1.718242
##  [595]   0.348087   1.775333   3.269184   5.771602   6.608905   6.085582
##  [601]   6.247348   6.466175   6.256847   6.466175   5.847721   6.294902
##  [607]   7.484279   7.712650  11.880169  11.861148   9.891552   9.092304
##  [613]   4.096973   8.197902   7.798267   6.466175   6.989505   7.779247
##  [619]   7.103702   5.381488   5.571788   4.877178   4.943805   5.524211
##  [625]   5.809642   7.408161   5.019908   6.294902   6.209270   5.200702
##  [631]   3.373828   4.334835   4.154064   2.327190  -0.448750  -1.068791
##  [637]  -0.429646  -0.839844  -1.774697  -0.668133  -0.734913  -1.269108
##  [643]  -0.992478  -1.183255  -1.984562  -2.213501  -3.711163  -3.720700
##  [649]  -3.949639  -4.025959  -3.806557  -2.900319  -2.165802  -1.765156
##  [655]  -1.402657  -1.097405  -1.364506  -1.078328  -2.661847  -3.281899
##  [661]  -1.068791  -1.536210  -3.205582  -1.431279  -3.444066  -4.436146
##  [667]  -4.273980  -6.029206  -5.380532  -6.887742  -8.003834  -7.889367
##  [673]  -9.301171  -9.749520 -10.712983  -9.911683  -7.498246  -7.107140
##  [679]  -8.957756 -10.245564  -8.242314  -8.805127  -7.822590  -6.983136
##  [685]  -8.700200  -9.110386  -9.301171  -7.631798  -9.806755 -11.609677
##  [691] -11.895855 -12.191567 -12.725766 -11.914936 -12.716233 -12.725766
##  [697] -12.954716 -12.248803 -12.887936 -11.705067 -12.477749 -13.946793
##  [703] -13.975529 -14.646050 -16.849171 -14.904671 -13.132599 -12.337555
##  [709] -11.475464 -11.140210 -11.810723 -11.398835 -11.542515  -9.981179
##  [715]  -9.799183  -8.496464  -7.126694  -7.940888  -9.952439  -9.521393
##  [721] -10.460114 -10.776211 -12.960186 -12.711132 -12.088513 -12.222615
##  [727] -12.845234 -12.002297 -12.931446 -12.538716 -11.954411 -12.251347
##  [733] -12.337555 -13.870163 -13.429535 -13.937214 -14.933411 -13.295437
##  [739] -15.067517 -13.889317 -13.592385 -12.672818 -18.784085 -18.046517
##  [745] -17.615475 -18.257256 -20.182587 -20.584900 -20.115540 -21.609822
##  [751] -19.856915 -21.753510 -22.060036 -22.356972 -21.514046 -22.481503
##  [757] -21.878037 -20.287949 -18.036950 -17.969586 -19.605351 -18.835583
##  [763] -19.489888 -18.931797 -19.085762 -18.922177 -19.874775 -22.193718
##  [769] -23.492699 -23.829476 -22.934620 -25.272801 -24.185494 -24.108517
##  [775] -23.300251 -23.454213 -20.856228 -22.097489 -23.762124 -23.742875
##  [781] -24.705094 -23.531193 -22.530484 -22.732548 -22.636330 -23.290638
##  [787] -23.588917 -23.232903 -23.916073 -24.358696 -22.838398 -22.857636
##  [793] -21.135273 -20.355885 -19.913258 -19.884396 -19.999859 -20.865857
##  [799] -19.403286 -18.412205 -18.008072 -17.709786 -18.200516 -16.227974
##  [805] -18.739361 -19.307072 -18.989537 -18.614270 -18.133164 -18.065804
##  [811] -17.228680 -17.959958 -17.170948 -18.065804 -18.094670 -19.509129
##  [817] -21.125653 -21.087159 -20.990941 -19.970986 -21.953152 -22.020512
##  [823] -22.030129 -22.126831 -21.507950 -22.146176 -23.180867 -21.614327
##  [829] -22.010796 -21.188843 -20.782704 -23.422615 -23.635361 -23.548325
##  [835] -24.186551 -24.815094 -26.217247 -27.155240 -27.764454 -27.870827
##  [841] -27.928841 -28.470364 -27.464680 -28.354325 -29.205285 -28.808812
##  [847] -27.406666 -26.971512 -27.193924 -28.489705 -28.480034 -29.069909
##  [853] -28.895840 -28.093232 -28.944195 -28.199608 -27.571057 -28.238282
##  [859] -28.422017 -27.658081 -27.396988 -27.116558 -26.536366 -26.265603
##  [865] -25.811112 -26.275273 -26.304284 -27.996529 -27.261612 -26.052861
##  [871] -25.559685 -24.573353 -25.569359 -21.614327 -19.825375 -20.405564
##  [877] -19.332200 -20.811711 -20.831055 -20.627980 -21.546635 -21.159832
##  [883] -21.063134 -21.246861 -21.933434 -22.474957 -20.638089 -20.910218
##  [889] -20.871342 -22.095921 -22.669331 -22.853993 -22.154232 -22.387482
##  [895] -22.309731 -22.309731 -22.280583 -23.699532 -24.953263 -24.622818
##  [901] -24.982422 -24.681137 -25.808533 -25.759930 -25.847401 -26.002903
##  [907] -24.156319 -24.496476 -23.835595 -22.922020 -22.912304 -20.958809
##  [913] -22.504109 -20.978249 -19.500981 -19.675919 -19.841141 -19.345475
##  [919] -20.113274 -20.540898 -19.452393 -18.480500 -19.423230 -17.246209
##  [925] -17.022671 -17.178173 -17.285084 -16.692227 -15.817528 -14.592953
##  [931] -15.564839 -16.225727 -16.041069 -17.022671 -17.771019 -18.072304
##  [937] -17.246209 -17.372551 -16.546448 -17.508618 -17.916802 -18.256966
##  [943] -18.295842 -20.725560 -20.997689 -20.288212 -20.191018 -20.336800
##  [949] -20.502022 -20.054959 -21.308686 -22.057045 -21.784913 -22.820965
##  [955] -23.710411 -24.638943 -24.570527 -24.912617 -24.287075 -23.690857
##  [961] -22.732998 -22.039044 -22.908928 -23.309670 -23.104416 -23.163060
##  [967] -22.899159 -22.156334 -21.882660 -21.433049 -21.521019 -21.472142
##  [973] -21.941296 -22.214970 -22.381134 -22.283390 -22.987130 -22.175881
##  [979] -22.254071 -22.009716 -21.755593 -22.078133 -22.400681 -22.664582
##  [985] -21.931523 -21.784913 -22.420224 -20.269932 -19.419587 -20.172192
##  [991] -20.699997 -21.042084 -21.423272 -20.201512 -19.634621 -20.025578
##  [997] -20.015809 -20.054905 -20.905251 -20.690216 -22.742775 -21.911976
## [1003] -21.677403 -22.302945 -21.677403 -22.009716 -22.478875 -22.166108
## [1009] -21.442818 -22.166108 -22.982026 -22.274239 -21.163403 -20.278660
## [1015] -20.386799 -20.504761 -19.964093 -19.767479 -20.445782 -20.052563
## [1021] -20.494931 -19.954262 -20.504761 -20.721028 -21.448483 -21.674580
## [1027] -22.166104 -22.077630 -21.084755 -20.721028 -20.956967 -20.868489
## [1033] -20.337647 -20.534253 -21.694241 -21.291195 -19.905106 -18.695965
## [1039] -19.177658 -19.452904 -19.089180 -18.410889 -17.585133 -16.602089
## [1045] -16.788868 -17.280388 -16.690564 -17.309876 -16.828190 -21.881020
## [1051] -20.553917 -21.045437 -21.979325 -21.782719 -21.930176 -22.480675
## [1057] -21.694241 -22.018643 -21.871190 -22.244744 -21.055264 -21.517292
## [1063] -21.959664 -22.598641 -22.578980 -22.539658 -22.490502 -22.264405
## [1069] -21.645089 -22.392205 -21.949833 -21.674580 -21.232212 -20.809506
## [1075] -20.532711 -20.216370 -21.017106 -21.185162 -22.173726 -21.867272
## [1081] -21.788186 -21.788186 -21.590474 -20.947903 -20.750191 -21.392758
## [1087] -21.679444 -21.610245 -21.382878 -22.163838 -21.481732 -21.807957
## [1093] -22.401093 -21.649784 -21.214817 -21.748642 -22.776753 -22.351670
## [1099] -22.677891 -22.282471 -21.946354 -21.778298 -22.242924 -22.658120
## [1105] -23.488514 -22.816292 -22.727318 -23.389656 -24.131081 -24.506737
## [1111] -25.089989 -24.279366 -25.950039 -26.879288 -27.245060 -26.602494
## [1117] -26.019242 -26.533295 -26.256493 -24.724221 -24.902161 -24.496849
## [1123] -25.307473 -25.327244 -25.406331 -26.513524 -24.921933 -24.645134
## [1129] -25.080105 -25.119645 -25.801758 -24.872506 -23.636799 -23.794972
## [1135] -23.923485 -24.140965 -24.625363 -24.008664 -23.292489 -23.401905
## [1141] -23.541161 -23.551106 -23.541161 -23.730149 -23.262650 -23.909192
## [1147] -23.063713 -22.377381 -23.272595 -22.506691 -21.362805 -22.049138
## [1153] -21.303124 -21.213604 -21.551796 -21.651261 -21.561741 -21.412541
## [1159] -21.163868 -21.482167 -22.496746 -22.238125 -22.188393 -22.884671
## [1165] -22.466900 -23.153237 -23.809727 -24.317013 -24.346856 -24.227490
## [1171] -23.889298 -23.958928 -23.610787 -23.411850 -22.864777 -22.337597
## [1177] -22.407223 -23.073658 -23.948983 -23.322331 -23.083607 -23.690361
## [1183] -22.367436 -22.685734 -23.004033 -22.596211 -21.541848 -23.889298
## [1189] -22.844883 -22.407223 -21.581635 -21.442379 -21.233498 -20.756051
## [1195] -21.024613 -21.153920 -20.646634 -17.165242 -17.772000 -17.006092
## [1201] -16.150666 -14.976941 -14.529332 -14.290612 -14.430611 -13.250611
## [1207] -13.890610 -12.390610 -12.550610 -12.600609 -13.450612 -12.980610
## [1213] -12.830609 -12.800610 -13.380612 -13.570610 -13.720608 -12.880612
## [1219] -12.020611 -12.530610 -12.940609 -12.950612 -13.400608 -12.740609
## [1225] -13.220608 -12.840611 -12.340611 -12.910611 -13.490609 -13.910611
## [1231] -14.550610 -15.350609 -14.850609 -14.410611 -13.860611 -13.550610
## [1237] -13.620610 -13.460610 -12.780610 -12.050610 -13.260609 -13.740609
## [1243] -15.410611 -15.150608 -15.420609 -14.730610 -15.110611 -14.460610
## [1249] -13.800610 -12.810608 -12.700612 -12.380612 -12.100609 -13.320610
## [1255] -13.560608 -12.630612 -12.000611 -11.990609 -10.390610

Estrategias de inversión con SWAPS

options(warn = -1)
suppressPackageStartupMessages({
  library(tidyverse)
  library(lubridate)
})

Calcule por medio del modelo de Vasicek la tasas SORF para los próximos 5 años en pagos semestrales. Use información de mercado

# Parámetros del modelo de Vasicek
alpha <- 0.1  
b <- 0.03   
sigma <- 0.02 
r0 <- 0.01  

# Simular tasas de interés con el modelo de Vasicek
vasicek_sim <- function(alpha, b, sigma, r0, T, dt) {
  n <- T / dt
  rates <- numeric(n)
  rates[1] <- r0
  for (i in 2:n) {
    dr <- alpha * (b - rates[i-1]) * dt + sigma * sqrt(dt) * rnorm(1)
    rates[i] <- rates[i-1] + dr
  }
  return(rates)
}

# Simular tasas SORF para 5 años con pagos semestrales
T <- 5
dt <- 0.5
rates <- vasicek_sim(alpha, b, sigma, r0, T, dt)

dates <- seq.Date(Sys.Date(), by = "6 months", length.out = length(rates))
sorf_rates <- data.frame(Date = dates, SORF_Rate = rates)
print(sorf_rates)
##          Date    SORF_Rate
## 1  2024-06-02  0.010000000
## 2  2024-12-02  0.020455400
## 3  2025-06-02  0.046274764
## 4  2025-12-02 -0.003716682
## 5  2026-06-02  0.018470239
## 6  2026-12-02  0.017557822
## 7  2027-06-02  0.019530441
## 8  2027-12-02  0.028475169
## 9  2028-06-02  0.040300453
## 10 2028-12-02  0.053852269

Establezca el flujo de pagos de la tasa flotante y la tasa fija

# Contrato SWAP

principal <- 100000000
fixed_rate <- 0.0333
payment_dates <- seq.Date(Sys.Date(), by = "6 months", length.out = length(rates))

# Flujo de pagos de la tasa fija
fixed_payments <- rep(principal * fixed_rate / 2, length(rates))

# Flujo de pagos de la tasa flotante
floating_payments <- principal * sorf_rates$SORF_Rate / 2

payments <- data.frame(Date = payment_dates, Fixed_Payment = fixed_payments, Floating_Payment = floating_payments)
print(payments)
##          Date Fixed_Payment Floating_Payment
## 1  2024-06-02       1665000         500000.0
## 2  2024-12-02       1665000        1022770.0
## 3  2025-06-02       1665000        2313738.2
## 4  2025-12-02       1665000        -185834.1
## 5  2026-06-02       1665000         923511.9
## 6  2026-12-02       1665000         877891.1
## 7  2027-06-02       1665000         976522.0
## 8  2027-12-02       1665000        1423758.5
## 9  2028-06-02       1665000        2015022.7
## 10 2028-12-02       1665000        2692613.5

Valuación de los pagos

discount_rate <- 0.03

# Valor presente de los flujos de pagos
payments <- payments %>%
  mutate(
    Discount_Factor = exp(-discount_rate * as.numeric(difftime(Date, Sys.Date(), units = "days")) / 365),
    PV_Fixed_Payment = Fixed_Payment * Discount_Factor,
    PV_Floating_Payment = Floating_Payment * Discount_Factor
  )

print(payments)
##          Date Fixed_Payment Floating_Payment Discount_Factor PV_Fixed_Payment
## 1  2024-06-02       1665000         500000.0       1.0000000          1665000
## 2  2024-12-02       1665000        1022770.0       0.9850715          1640144
## 3  2025-06-02       1665000        2313738.2       0.9704455          1615792
## 4  2025-12-02       1665000        -185834.1       0.9559582          1591670
## 5  2026-06-02       1665000         923511.9       0.9417645          1568038
## 6  2026-12-02       1665000         877891.1       0.9277054          1544629
## 7  2027-06-02       1665000         976522.0       0.9139312          1521695
## 8  2027-12-02       1665000        1423758.5       0.9002875          1498979
## 9  2028-06-02       1665000        2015022.7       0.8868475          1476601
## 10 2028-12-02       1665000        2692613.5       0.8736082          1454558
##    PV_Floating_Payment
## 1             500000.0
## 2            1007501.5
## 3            2245356.9
## 4            -177649.6
## 5             869730.8
## 6             814424.3
## 7             892473.9
## 8            1281792.0
## 9            1787017.9
## 10           2352289.2

Flujos de diferencia

payments <- payments %>%
  mutate(Difference = PV_Floating_Payment - PV_Fixed_Payment)

# Sumar los valores presentes para cada tipo de pago
total_pv_fixed <- sum(payments$PV_Fixed_Payment)
total_pv_floating <- sum(payments$PV_Floating_Payment)
total_difference <- sum(payments$Difference)

# Imprimir resultados
print(payments)
##          Date Fixed_Payment Floating_Payment Discount_Factor PV_Fixed_Payment
## 1  2024-06-02       1665000         500000.0       1.0000000          1665000
## 2  2024-12-02       1665000        1022770.0       0.9850715          1640144
## 3  2025-06-02       1665000        2313738.2       0.9704455          1615792
## 4  2025-12-02       1665000        -185834.1       0.9559582          1591670
## 5  2026-06-02       1665000         923511.9       0.9417645          1568038
## 6  2026-12-02       1665000         877891.1       0.9277054          1544629
## 7  2027-06-02       1665000         976522.0       0.9139312          1521695
## 8  2027-12-02       1665000        1423758.5       0.9002875          1498979
## 9  2028-06-02       1665000        2015022.7       0.8868475          1476601
## 10 2028-12-02       1665000        2692613.5       0.8736082          1454558
##    PV_Floating_Payment Difference
## 1             500000.0 -1165000.0
## 2            1007501.5  -632642.4
## 3            2245356.9   629565.1
## 4            -177649.6 -1769320.0
## 5             869730.8  -698307.2
## 6             814424.3  -730205.2
## 7             892473.9  -629221.5
## 8            1281792.0  -217186.7
## 9            1787017.9   310416.7
## 10           2352289.2   897731.6
cat("Valor Presente Total de Pagos Fijos: ", total_pv_fixed, "\n")
## Valor Presente Total de Pagos Fijos:  15577107
cat("Valor Presente Total de Pagos Flotantes: ", total_pv_floating, "\n")
## Valor Presente Total de Pagos Flotantes:  11572937
cat("Diferencia Total: ", total_difference, "\n")
## Diferencia Total:  -4004170
# Análisis de la posición
if (total_difference > 0) {
  cat("La contraparte que paga la tasa fija obtiene ventaja.\n")
} else {
  cat("La contraparte que paga la tasa flotante obtiene ventaja.\n")
}
## La contraparte que paga la tasa flotante obtiene ventaja.