# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
from 2012-12-31 to 2017-12-31
# Choose stocks
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
# Using tq_get() ----
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2020-12-31",
to = "2023-12-31")
asset_returns_tbl <- prices %>%
# Calculate monthly returns
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
# remane
set_names(c("asset", "date", "returns"))
# period_returns = c("yearly", "quarterly", "monthly", "weekly")
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
w <- c(0.25,
0.25,
0.20,
0.20,
0.10)
w_tbl <- tibble(symbols, w)
portfolio_returns_rebalanced_monthly_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
col_rename = "returns",
rebalance_on = "months")
portfolio_returns_rebalanced_monthly_tbl
## # A tibble: 36 × 2
## date returns
## <date> <dbl>
## 1 2021-01-29 0.0155
## 2 2021-02-26 0.0258
## 3 2021-03-31 0.0156
## 4 2021-04-30 0.0191
## 5 2021-05-28 0.0197
## 6 2021-06-30 0.00304
## 7 2021-07-30 -0.0188
## 8 2021-08-31 0.0128
## 9 2021-09-30 -0.0265
## 10 2021-10-29 0.0213
## # ℹ 26 more rows
# write_rds(portfolio_returns_rebalanced_monthly_tbl,
# "00_data/Ch03_portfolio_returns_rebalanced_monthly_tbl.rds")
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_rebalanced_monthly_tbl %>%
tq_performance(Ra = returns,
Rb = NULL,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4))
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.0408 0.0408
# Mean of portfolio returns
portfolio_mean_tidyquant_builtin_percent <-
mean(portfolio_returns_rebalanced_monthly_tbl)
portfolio_mean_tidyquant_builtin_percent
## [1] NA
#Expected Return vs Risk
sd_mean_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
# Add portfolio sd
add_row(tibble(asset = "Portfolio",
Mean = portfolio_mean_tidyquant_builtin_percent,
Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))
sd_mean_tbl
## # A tibble: 6 × 3
## asset Mean Stdev
## <chr> <dbl> <dbl>
## 1 AGG -0.0028 0.0211
## 2 EEM -0.005 0.0509
## 3 EFA 0.0034 0.05
## 4 IJS 0.0079 0.0649
## 5 SPY 0.0079 0.0508
## 6 Portfolio NA 0.0408
sd_mean_tbl %>%
ggplot(aes(x = Stdev, y = Mean, color = asset)) +
geom_point()
rolling_sd_tbl <- portfolio_returns_rebalanced_monthly_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = 24,
FUN = sd,
col_rename = "rolling_sd") %>%
na.omit() %>%
select(date, rolling_sd)
rolling_sd_tbl
## # A tibble: 13 × 2
## date rolling_sd
## <date> <dbl>
## 1 2022-12-30 0.0387
## 2 2023-01-31 0.0419
## 3 2023-02-28 0.0421
## 4 2023-03-31 0.0421
## 5 2023-04-28 0.0418
## 6 2023-05-31 0.0417
## 7 2023-06-30 0.0427
## 8 2023-07-31 0.0434
## 9 2023-08-31 0.0439
## 10 2023-09-29 0.0442
## 11 2023-10-31 0.0442
## 12 2023-11-30 0.0469
## 13 2023-12-29 0.0482
rolling_sd_tbl %>%
ggplot(aes(x = date, y = rolling_sd)) +
geom_line(color = "cornflowerblue") +
# Formatting
scale_y_continuous(labels = scales::percent_format()) +
# Labeling
labs(x = NULL,
y = NULL,
title = "24-Month Rolling Volatility") +
theme(plot.title = element_text(hjust = 0.5))