Packages and Data Preparation

Below are the packages necessary for the analysis.

# Load all the necessary packages 
library(estimatr)
library(huxtable)
library(jtools)
library(car)
library(broom.mixed)
library(modelsummary)
library(ggplot2)
library(gridExtra)
library(dplyr)
library(grid)
library(stargazer)
# Load the dataset
load('all_data_may24.rda')
# Subset by country
US_data <- all_data[all_data$country == "US",]
GB_data <- all_data[all_data$country == "GB",]
FR_data <- all_data[all_data$country == "FR",]
PL_data <- all_data[all_data$country == "PL",]

Specify Models

Populism Models

PopUS_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=US_data)
PopPL_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=PL_data)
PopFR_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=FR_data)
PopGB_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=GB_data)
PopUS_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std 
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=US_data)
PopPL_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std 
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=PL_data)
PopFR_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=FR_data)
PopGB_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=GB_data)

Conspiracy Models

ConspUS_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=US_data)
ConspPL_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=PL_data)
ConspFR_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=FR_data)
ConspGB_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=GB_data)
ConspUS_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std 
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=US_data)
ConspPL_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std 
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=PL_data)
ConspFR_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=FR_data)
ConspGB_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=GB_data)

Correlation Matrices

#install.packages("corrplot")
library(corrplot)
## corrplot 0.92 loaded

All Countries

all_data_numeric_only = subset(all_data, select = c(devalued_std, populism_rw_std, populism_main_std, conspiratorial_orientation_std, big5_openness_std, big5_conscientiousness_std, big5_extraversion_std, big5_agreeableness_std, big5_stability_std, rwa_std, sdo_std, ethnic_majority, income_num_std, gender, age_std, ideology_std))

correlation_matrix_allcountries= cor(all_data_numeric_only, method="pearson", use="pairwise.complete.obs")

corrplot(correlation_matrix_allcountries, method="color", order="alphabet", tl.col = 'steelblue4', tl.pos="lt", tl.cex=0.7, tl.srt=45, number.cex=0.7, addgrid.col = 'white', addCoef.col = 'black')

US only

US_data_numeric_only = subset(US_data, select = c(devalued_std, populism_rw_std, populism_main_std, conspiratorial_orientation_std, big5_openness_std, big5_conscientiousness_std, big5_extraversion_std, big5_agreeableness_std, big5_stability_std, rwa_std, sdo_std, ethnic_majority, income_num_std, gender, age_std, ideology_std))

correlation_matrix_US= cor(US_data_numeric_only, method="pearson", use="pairwise.complete.obs")

corrplot(correlation_matrix_US, method="color", order="alphabet", tl.col = 'steelblue4', tl.pos="lt", tl.cex=0.7, tl.srt=45, number.cex=0.7, addgrid.col = 'white', addCoef.col = 'black')

Poland only

PL_data_numeric_only = subset(PL_data, select = c(devalued_std, populism_rw_std, populism_main_std, conspiratorial_orientation_std, big5_openness_std, big5_conscientiousness_std, big5_extraversion_std, big5_agreeableness_std, big5_stability_std, rwa_std, sdo_std, ethnic_majority, income_num_std, gender, age_std, ideology_std))

correlation_matrix_PL= cor(PL_data_numeric_only, method="pearson", use="pairwise.complete.obs")

corrplot(correlation_matrix_PL, method="color", order="alphabet", tl.col = 'steelblue4', tl.pos="lt", tl.cex=0.7, tl.srt=45, number.cex=0.7, addgrid.col = 'white', addCoef.col = 'black')

France only

FR_data_numeric_only = subset(FR_data, select = c(devalued_std, populism_rw_std, populism_main_std, conspiratorial_orientation_std, big5_openness_std, big5_conscientiousness_std, big5_extraversion_std, big5_agreeableness_std, big5_stability_std, rwa_std, sdo_std, ethnic_majority, income_num_std, gender, age_std, ideology_std))

correlation_matrix_FR= cor(FR_data_numeric_only, method="pearson", use="pairwise.complete.obs")

corrplot(correlation_matrix_FR, method="color", order="alphabet", tl.col = 'steelblue4', tl.pos="lt", tl.cex=0.7, tl.srt=45, number.cex=0.7, addgrid.col = 'white', addCoef.col = 'black')

United Kingdom only

GB_data_numeric_only = subset(GB_data, select = c(devalued_std, populism_rw_std, populism_main_std, conspiratorial_orientation_std, big5_openness_std, big5_conscientiousness_std, big5_extraversion_std, big5_agreeableness_std, big5_stability_std, rwa_std, sdo_std, ethnic_majority, income_num_std, gender, age_std, ideology_std))

correlation_matrix_GB= cor(GB_data_numeric_only, method="pearson", use="pairwise.complete.obs")

corrplot(correlation_matrix_GB, method="color", order="alphabet", tl.col = 'steelblue4', tl.pos="lt", tl.cex=0.7, tl.srt=45, number.cex=0.7, addgrid.col = 'white', addCoef.col = 'black')

Paper plots

All respondents

# Load the dataset
load('all_data_dum_may24.rda')
All_Pop_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                        +country.GB
                        +country.PL
                        +country.US,  
                              data=all_data_dum)


All_Pop_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                        +country.GB
                        +country.PL
                        +country.US,  
                              data=all_data_dum)

All_Cons_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                        +country.GB
                        +country.PL
                        +country.US,  
                              data=all_data_dum)


All_Cons_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                        +country.GB
                        +country.PL
                        +country.US,  
                              data=all_data_dum)

# Extracting coefficients and creating a tidy data frame with confidence intervals
df1 <- tidy(All_Pop_full, conf.int = TRUE) %>% mutate(Model = "Full Model")
df3 <- tidy(All_Pop_Main, conf.int = TRUE) %>% mutate(Model = "Main Effects")



# Extracting 99% confidence intervals
ci99_df1 <- confint(All_Pop_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Model = "Full Model")
ci99_df3 <- confint(All_Pop_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Model = "Main Effects")


# Renaming columns to match
colnames(ci99_df1)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df3)[1:2] <- c("conf.low2", "conf.high2")

# Combining the 99% CIs into one data frame
ci99_df <- bind_rows(ci99_df1, ci99_df3)


# Preparing the combined dataframe
coefficients_df <- bind_rows(df1, df3)
coefficients_df <- coefficients_df %>%
  left_join(ci99_df, by = c("term", "Model"))

# Filter out the intercept, country variables, and other unwanted coefficients
coefficients_df <- coefficients_df %>%
  filter(term != "(Intercept)" & 
         term != "country.US" & 
         term != "country.PL" & 
         term != "country.GB")

# Rename terms for readability
coefficients_df <- coefficients_df %>%
  mutate(term = case_when(
    term == "rwa_std" ~ "Right-Wing Authoritarianism",
    term == "sdo_std" ~ "Social Dominance Orientation",
    term == "devalued_std" ~ "Feelings of Being Devalued",
    term == "ethnocentrism_std" ~ "Ethnocentrism",
    term == "ideology_std" ~ "Ideology",
    term == "ethnic_majority" ~ "Ethnic Majority",
    term == "age_std" ~ "Age",
    term == "church_attendance_std" ~ "Religiosity",
    term == "income_num_std" ~ "Income",
    term == "Q1_interest_in_politics_std" ~ "Political Interest",
    term == "marital_status" ~ "Marital Status",
    term == "education_collapse" ~ "Education",
    term == "country.PL" ~ "Country: Poland",
    term == "country.US" ~ "Country: United States",
    term == "country.GB" ~ "Country: United Kingdom",
    TRUE ~ term
  ))

# Define the desired order for facets
facet_order <- c("Age", "Income", "Marital Status", "Education", "Political Interest", "Religiosity", "Ethnocentrism", "Ideology", "Ethnic Majority",
                 "Right-Wing Authoritarianism", "Social Dominance Orientation","Feelings of Being Devalued")

# Relevel the 'term' factor according to the desired facet order
coefficients_df <- coefficients_df %>%
  mutate(term = factor(term, levels = facet_order))

# Now redefine the Model factor to specify the order of the models
coefficients_df <- coefficients_df %>%
  mutate(Model = factor(Model, levels = c("Full Model", "Main Effects")))

# Creating the plot with multi-level confidence intervals
plotall1 <- ggplot(coefficients_df, aes(x = estimate, y = Model, color = Model)) +
    facet_wrap(~ term, scales = "free_y", ncol = 1) +
    geom_point(size = 2, shape = 16) +
    geom_linerange(aes(xmin = conf.low2, xmax = conf.high2), height = 0.2, color = "gray70", size = 0.25) + # Wider CI in lighter gray
    geom_linerange(aes(xmin = conf.low, xmax = conf.high), height = 0.2, color = "gray20", size = 0.25) + # Narrower CI in darker gray
    geom_vline(xintercept = 0, color = "black", size = .5, linetype = "solid") +  # Add vertical line for intercept
    scale_color_manual(values = c("Full Model" = "black", "Main Effects" = "black")) +
    labs(x = "Point estimates", y = NULL, title = "DV: Populist Attitudes") +
    theme_minimal() +
    theme(
        legend.position = "none",
        axis.text.y = element_text(size = 12),
        axis.title.x = element_text(size = 12),
        plot.title = element_text(hjust = 0.5, size = 14),
        strip.text = element_text(size = 12),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_line(size = .5, color = "gray", linetype = "dotted")
    )

# Extracting coefficients and creating a tidy data frame with confidence intervals
df1 <- tidy(All_Cons_full, conf.int = TRUE) %>% mutate(Model = "Full Model")
df3 <- tidy(All_Cons_Main, conf.int = TRUE) %>% mutate(Model = "Main Effects")



# Extracting 99% confidence intervals
ci99_df1 <- confint(All_Cons_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Model = "Full Model")
ci99_df3 <- confint(All_Cons_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Model = "Main Effects")


# Renaming columns to match
colnames(ci99_df1)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df3)[1:2] <- c("conf.low2", "conf.high2")

# Combining the 99% CIs into one data frame
ci99_df <- bind_rows(ci99_df1, ci99_df3)


# Preparing the combined dataframe
coefficients_df <- bind_rows(df1, df3)
coefficients_df <- coefficients_df %>%
  left_join(ci99_df, by = c("term", "Model"))

# Filter out the intercept, country variables, and other unwanted coefficients
coefficients_df <- coefficients_df %>%
  filter(term != "(Intercept)" & 
         term != "country.US" & 
         term != "country.PL" & 
         term != "country.GB")

# Rename terms for readability
coefficients_df <- coefficients_df %>%
  mutate(term = case_when(
    term == "rwa_std" ~ "Right-Wing Authoritarianism",
    term == "sdo_std" ~ "Social Dominance Orientation",
    term == "devalued_std" ~ "Feelings of Being Devalued",
    term == "ethnocentrism_std" ~ "Ethnocentrism",
    term == "ideology_std" ~ "Ideology",
    term == "ethnic_majority" ~ "Ethnic Majority",
    term == "age_std" ~ "Age",
    term == "church_attendance_std" ~ "Religiosity",
    term == "income_num_std" ~ "Income",
    term == "Q1_interest_in_politics_std" ~ "Political Interest",
    term == "marital_status" ~ "Marital Status",
    term == "education_collapse" ~ "Education",
    term == "country.PL" ~ "Country: Poland",
    term == "country.US" ~ "Country: United States",
    term == "country.GB" ~ "Country: United Kingdom",
    TRUE ~ term
  ))

# Define the desired order for facets
facet_order <- c("Age", "Income", "Marital Status", "Education", "Political Interest", "Religiosity", "Ethnocentrism", "Ideology", "Ethnic Majority",
                 "Right-Wing Authoritarianism", "Social Dominance Orientation", "Feelings of Being Devalued")

# Relevel the 'term' factor according to the desired facet order
coefficients_df <- coefficients_df %>%
  mutate(term = factor(term, levels = facet_order))

# Now redefine the Model factor to specify the order of the models
coefficients_df <- coefficients_df %>%
  mutate(Model = factor(Model, levels = c("Full Model", "Main Effects")))

# Creating the plot with multi-level confidence intervals
plotall2 <- ggplot(coefficients_df, aes(x = estimate, y = Model, color = Model)) +
    facet_wrap(~ term, scales = "free_y", ncol = 1) +
    geom_point(size = 2, shape = 16) +
    geom_linerange(aes(xmin = conf.low2, xmax = conf.high2), height = 0.2, color = "gray50", size = 0.25) + # Wider CI in gray
    geom_linerange(aes(xmin = conf.low, xmax = conf.high), height = 0.2, color = "black", size = 0.25) + # Narrower CI in black
    geom_vline(xintercept = 0, color = "black", size = .5, linetype = "solid") +  # Add vertical line for intercept
    scale_color_manual(values = c("Full Model" = "black", "Main Effects" = "black")) +
    labs(x = "Point estimates", y = NULL, title = "DV: Conspiratorial Attitudes") +
    theme_minimal() +
    theme(
        legend.position = "none",
        axis.text.y = element_text(size = 12),
        axis.title.x = element_text(size = 12),
        plot.title = element_text(hjust = 0.5, size = 14),
        strip.text = element_text(size = 12),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_line(size = .5, color = "gray", linetype = "dotted")
    )

# Create the first line of the bottom annotation
bottom_annotation_line1 <- textGrob(
  bquote(
    "\nAdjusted R"^2 ~ " is 0.064 for " ~ bold("Populism Main Effects") ~ " vs. 0.225 for " ~ bold("Populism Full Model,") ~
    " and 0.123 for " ~ bold("Conspiracy Main Effects") ~ " vs. 0.245 for " ~ bold("Conspiracy Full Model.")
  ),
  gp = gpar(fontsize = 12),
  just = "center" # Centering the text in the grob
)

# Create the second line of the bottom annotation
bottom_annotation_line2 <- textGrob(
  "Reference category is France. None of the country variables are significant.",
  gp = gpar(fontsize = 12),
  just = "center" # Centering the text in the grob
)

# Combine both lines into one grob with adjusted padding
bottom_annotation <- arrangeGrob(
  bottom_annotation_line1,
  bottom_annotation_line2,
  ncol = 1, # Stack vertically
  padding = unit(4) # Adjust the spacing between lines (smaller value reduces space)
)

# Create the combined plot object with the annotations
combined_plot <- arrangeGrob(
  plotall1, plotall2,
  padding = unit(2.3, "lines"),
  ncol = 2, # Specify the number of columns for the plots
  top = textGrob(
    "Figure 2: Effect of Including FBD by Independent Variable\n", 
    gp = gpar(fontface = "bold", fontsize = 20), 
    vjust = 1
  ),
  bottom = bottom_annotation
)

# Printing the combined plot with annotations
grid.draw(combined_plot)

Country specific

# Extracting coefficients and creating a tidy data frame with confidence intervals
df1 <- tidy(ConspUS_full, conf.int = TRUE) %>% mutate(Country = "United States")
df2 <- tidy(ConspFR_full, conf.int = TRUE) %>% mutate(Country = "France")
df3 <- tidy(ConspPL_full, conf.int = TRUE) %>% mutate(Country = "Poland")
df4 <- tidy(ConspGB_full, conf.int = TRUE) %>% mutate(Country = "United Kingdom")


# Extracting 99% confidence intervals
ci99_df1 <- confint(ConspUS_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "United States")
ci99_df2 <- confint(ConspFR_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "France")
ci99_df3 <- confint(ConspPL_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "Poland")
ci99_df4 <- confint(ConspGB_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "United Kingdom")

# Renaming columns to match
colnames(ci99_df1)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df2)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df3)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df4)[1:2] <- c("conf.low2", "conf.high2")

# Combining the 99% CIs into one data frame
ci99_df <- bind_rows(ci99_df1, ci99_df2, ci99_df3, ci99_df4)


# Preparing the combined dataframe
coefficients_df <- bind_rows(df1, df2, df3, df4)
coefficients_df <- coefficients_df %>%
  left_join(ci99_df, by = c("term", "Country"))

# Filter out the intercept and other unwanted coefficients
coefficients_df <- coefficients_df %>%
  filter(term != "(Intercept)")

# Rename terms for readability
coefficients_df <- coefficients_df %>%
  mutate(term = case_when(
    term == "rwa_std" ~ "Right-Wing Authoritarianism",
    term == "sdo_std" ~ "Social Dominance Orientation",
    term == "devalued_std" ~ "Feelings of Being Devalued",
    term == "ethnocentrism_std" ~ "Ethnocentrism",
    term == "ideology_std" ~ "Ideology",
    term == "ethnic_majority" ~ "Ethnic Majority",
    term == "age_std" ~ "Age",
    term == "church_attendance_std" ~ "Religiosity",
    term == "income_num_std" ~ "Income",
    term == "Q1_interest_in_politics_std" ~ "Political Interest",
    term == "marital_status" ~ "Marital Status",
    term == "education_collapse" ~ "Education",
    TRUE ~ term
  ))

# Define the desired order for facets
facet_order <- c("Age", "Income", "Marital Status", "Education", "Political Interest", "Religiosity", "Ethnocentrism", "Ideology", "Ethnic Majority",
                 "Right-Wing Authoritarianism", "Social Dominance Orientation", "Feelings of Being Devalued")


# Relevel the 'term' factor according to the desired facet order
coefficients_df <- coefficients_df %>%
  mutate(term = factor(term, levels = facet_order))

# Creating the plot with multi-level confidence intervals
plot1 <- ggplot(coefficients_df, aes(x = estimate, y = Country, color = Country)) +
    facet_wrap(~ term, scales = "free_y", ncol = 1) +
    geom_point(size = 2, shape = 16) +
    geom_linerange(aes(xmin = conf.low2, xmax = conf.high2), height = 0.2, color = "gray70", size = 0.25) + # Wider CI in lighter gray
    geom_linerange(aes(xmin = conf.low, xmax = conf.high), height = 0.2, color = "gray20", size = 0.25) + # Narrower CI in darker gray
    geom_vline(xintercept = 0, color = "black", size = .5, linetype = "solid") +  # Add vertical line for intercept
    scale_color_manual(values = c("United States" = "black", "France" = "black", "Poland" = "black", "United Kingdom" = "black")) +
    labs(x = "Point estimates", y = NULL, title = "DV: Conspiratorial Orientation") +
    theme_minimal() +
    theme(
        legend.position = "none",
        axis.text.y = element_text(size = 12),
        axis.title.x = element_text(size = 12),
        plot.title = element_text(hjust = 0.5, size = 14),
        strip.text = element_text(size = 12),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_line(size = .5, color = "gray", linetype = "dotted")
    )
# Extracting coefficients and creating a tidy data frame with confidence intervals
df1 <- tidy(PopUS_full, conf.int = TRUE) %>% mutate(Country = "United States")
df2 <- tidy(PopFR_full, conf.int = TRUE) %>% mutate(Country = "France")
df3 <- tidy(PopPL_full, conf.int = TRUE) %>% mutate(Country = "Poland")
df4 <- tidy(PopGB_full, conf.int = TRUE) %>% mutate(Country = "United Kingdom")


# Extracting 99% confidence intervals
ci99_df1 <- confint(PopUS_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "United States")
ci99_df2 <- confint(PopFR_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "France")
ci99_df3 <- confint(PopPL_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "Poland")
ci99_df4 <- confint(PopGB_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "United Kingdom")

# Renaming columns to match
colnames(ci99_df1)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df2)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df3)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df4)[1:2] <- c("conf.low2", "conf.high2")

# Combining the 99% CIs into one data frame
ci99_df <- bind_rows(ci99_df1, ci99_df2, ci99_df3, ci99_df4)

# Preparing the combined dataframe
coefficients_df <- bind_rows(df1, df2, df3, df4)
coefficients_df <- coefficients_df %>%
  left_join(ci99_df, by = c("term", "Country"))

# Filter out the intercept and other unwanted coefficients
coefficients_df <- coefficients_df %>%
  filter(term != "(Intercept)")

# Rename terms for readability
coefficients_df <- coefficients_df %>%
  mutate(term = case_when(
    term == "rwa_std" ~ "Right-Wing Authoritarianism",
    term == "sdo_std" ~ "Social Dominance Orientation",
    term == "devalued_std" ~ "Feelings of Being Devalued",
    term == "ethnocentrism_std" ~ "Ethnocentrism",
    term == "ideology_std" ~ "Ideology",
    term == "ethnic_majority" ~ "Ethnic Majority",
    term == "age_std" ~ "Age",
    term == "church_attendance_std" ~ "Religiosity",
    term == "income_num_std" ~ "Income",
    term == "Q1_interest_in_politics_std" ~ "Political Interest",
    term == "marital_status" ~ "Marital Status",
    term == "education_collapse" ~ "Education",
    TRUE ~ term
  ))

# Define the desired order for facets
facet_order <- c("Age", "Income", "Marital Status", "Education", "Political Interest", "Religiosity", "Ethnocentrism", "Ideology", "Ethnic Majority",
                 "Right-Wing Authoritarianism", "Social Dominance Orientation", "Feelings of Being Devalued")


# Relevel the 'term' factor according to the desired facet order
coefficients_df <- coefficients_df %>%
  mutate(term = factor(term, levels = facet_order))


# Creating the plot with multi-level confidence intervals
plot2 <- ggplot(coefficients_df, aes(x = estimate, y = Country, color = Country)) +
    facet_wrap(~ term, scales = "free_y", ncol = 1) +
    geom_point(size = 2, shape = 16) +
    geom_linerange(aes(xmin = conf.low2, xmax = conf.high2), height = 0.2, color = "gray70", size = 0.25) + # Wider CI in lighter gray
    geom_linerange(aes(xmin = conf.low, xmax = conf.high), height = 0.2, color = "gray20", size = 0.25) + # Narrower CI in darker gray
    geom_vline(xintercept = 0, color = "black", size = .5, linetype = "solid") +  # Add vertical line for intercept
    scale_color_manual(values = c("United States" = "black", "France" = "black", "Poland" = "black", "United Kingdom" = "black")) +
    labs(x = "Point estimates", y = NULL, title = "DV: Populist Attitudes") +
    theme_minimal() +
    theme(
        legend.position = "none",
        axis.text.y = element_text(size = 12),
        axis.title.x = element_text(size = 12),
        plot.title = element_text(hjust = 0.5, size = 14),
        strip.text = element_text(size = 12),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_line(size = .5, color = "gray", linetype = "dotted")
    )

if (!require(grid)) install.packages("grid")
library(grid)
# Creating the combined plot object with arrangeGrob
combined_plot <- arrangeGrob(
  plot2, plot1,
  ncol = 2,
  top = textGrob("Figure 3: By-Country Models\n", 
                 gp = gpar(fontface = "bold", fontsize = 20), vjust = 1)
)
# Printing the combined plot with annotations
grid.draw(combined_plot)

Table 1: Descriptives Populist Attitudes & Conspiratorial Orientation

# Load necessary libraries
library(knitr)
library(kableExtra)
## 
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
## 
##     group_rows
## The following object is masked from 'package:huxtable':
## 
##     add_footnote
# Manually create the data frame
descriptives_manual <- data.frame(
  Country = c("France", "UK", "Poland", "US", "F-Statistic", "Combined"),
  `Populist Attitudes mean (sd)` = c("4.46 (1.03)", "4.57 (0.85)", "4.83 (0.95)", "4.73 (1.01)", "F=57.6, p<.001", "4.65 (0.99)"),
  `Conspiracy Orientation mean (sd)` = c("3.96 (1.52)", "4.03 (1.40)", "4.51 (1.39)", "4.27 (1.58)", "F=57.0 (p<.001)", "4.19 (1.49)"),
  `Populism : Conspiracy Correlation Pearson R (p)` = c(".58 (<.0001)", ".56 (<.0001)", ".52 (<.0001)", ".60 (<.0001)", "", ".58 (<.0001)")
)

# Formatting the table using kable
kable(descriptives_manual, align = 'c', booktabs = TRUE, col.names = c("Country", "Populist Attitudes mean (sd)", "Conspiracy Orientation mean (sd)", "Populism : Conspiracy correlation Pearson R (šœŒ)")) %>%
  add_header_above(c("Table 1: Descriptives for Populist Attitudes and Conspiratorial Orientation" = 4), bold = TRUE) %>%
  kable_styling(full_width = FALSE, position = "center", font_size = 13) %>%
  column_spec(2, width = "9em") %>%  # Adjust the width of the second column
  column_spec(3, width = "11em") %>%  # Adjust the width of the third column
  column_spec(4, width = "12em") %>% # Adjust the width of the fourth column
  column_spec(1, width = "11em", bold = TRUE) %>%
  row_spec(0, extra_css = "border-bottom: 2px solid black;") %>%  # Black line after the header
  row_spec(5, extra_css = "border-bottom: 2px solid black;") %>%  # Black line after the F-Statistic row
  footnote(general = "Populist Attitudes and Conspiracy Orientation values have a range of 1-7.\nFrance, N=2004; UK N=2000; Poland N=2001; US N=2000.",
           general_title = "Notes:",
           footnote_as_chunk = TRUE, escape = FALSE)
Table 1: Descriptives for Populist Attitudes and Conspiratorial Orientation
Country Populist Attitudes mean (sd) Conspiracy Orientation mean (sd) Populism : Conspiracy correlation Pearson R (šœŒ)
France 4.46 (1.03) 3.96 (1.52) .58 (<.0001)
UK 4.57 (0.85) 4.03 (1.40) .56 (<.0001)
Poland 4.83 (0.95) 4.51 (1.39) .52 (<.0001)
US 4.73 (1.01) 4.27 (1.58) .60 (<.0001)
F-Statistic F=57.6, p<.001 F=57.0 (p<.001)
Combined 4.65 (0.99) 4.19 (1.49) .58 (<.0001)
Notes: Populist Attitudes and Conspiracy Orientation values have a range of 1-7. France, N=2004; UK N=2000; Poland N=2001; US N=2000.

Regression Tables

Table 2: Predicting Populist Attitudes and Conspiratorial Orientation (All Respondents)

# Format Regression Table
stargazer(All_Pop_Main, All_Pop_full, All_Cons_Main, All_Cons_full, report = "vc*", type = "html", star.char = c(".", "*", "**", "***"), star.cutoffs = c(0.1, 0.05, 0.01, 0.001), notes = c(". p<0.1; * p<0.05; ** p<0.01; *** p<0.001"), notes.append = FALSE, title = "Table 2: Predicting Populist Attitudes and Conspiratorial Orientation (All Respondents)", dep.var.labels = c("Populist Attitudes", "Conspiratorial Attitudes"), covariate.labels = c("Feelings of Being Devalued", "Ethnocentrism", "Right-Wing Authoritarianism", "Social Dominance Orientation", "Religiosity", "Ideology", "Ethnic Majority", "Age", "Education", "Political Interest", "Income", "Marital Status", "Country: United Kingdom", "Country: Poland", "Country: United States", "Constant"))
Table 2: Predicting Populist Attitudes and Conspiratorial Orientation (All Respondents)
Dependent variable:
Populist Attitudes Conspiratorial Attitudes
(1) (2) (3) (4)
Feelings of Being Devalued 0.418*** 0.362***
Ethnocentrism 0.151*** 0.091*** 0.145*** 0.094***
Right-Wing Authoritarianism -0.063*** -0.039** -0.010 0.011
Social Dominance Orientation -0.062*** -0.067*** 0.048*** 0.044***
Religiosity -0.099*** -0.072*** -0.091*** -0.067***
Ideology 0.107*** 0.101*** 0.126*** 0.120***
Ethnic Majority -0.077* -0.090** -0.120*** -0.131***
Age -0.055*** 0.019. -0.138*** -0.074***
Education -0.056*** -0.039*** -0.074*** -0.059***
Political Interest 0.100*** 0.094*** -0.016 -0.021*
Income -0.028* 0.008 -0.040*** -0.010
Marital Status 0.112*** 0.095*** 0.111*** 0.096***
Country: United Kingdom 0.019 0.014 0.021 0.016
Country: Poland -0.019 -0.012 -0.025 -0.019
Country: United States 0.018 0.011 0.018 0.011
Constant 0.162** 0.136** 0.255*** 0.233***
Observations 8,005 8,005 8,005 8,005
R2 0.065 0.227 0.124 0.246
Adjusted R2 0.064 0.225 0.123 0.245
Residual Std. Error 0.968 (df = 7990) 0.880 (df = 7989) 0.936 (df = 7990) 0.869 (df = 7989)
F Statistic 39.809*** (df = 14; 7990) 156.307*** (df = 15; 7989) 81.114*** (df = 14; 7990) 173.694*** (df = 15; 7989)
Note: . p<0.1; * p<0.05; ** p<0.01; *** p<0.001
# Format Regression Table
stargazer(PopFR_full, PopUS_full, PopGB_full, PopPL_full, report = "vc*", type = "html", star.char = c(".", "*", "**", "***"), star.cutoffs = c(0.1, 0.05, 0.01, 0.001), notes = c(". p<0.1; * p<0.05; ** p<0.01; *** p<0.001"), dep.var.labels = c("Populist Attitudes"), column.labels = c("France", "United States", "United Kingdom", "Poland"), notes.append = FALSE, title = "Populist Attitudes By Country (Full Models)", covariate.labels = c("Feelings of Being Devalued", "Ethnocentrism", "Right-Wing Authoritarianism", "Social Dominance Orientation", "Religiosity", "Ideology", "Ethnic Majority", "Age", "Education", "Political Interest", "Income", "Marital Status", "Constant"))
Populist Attitudes By Country (Full Models)
Dependent variable:
Populist Attitudes
France United States United Kingdom Poland
(1) (2) (3) (4)
Feelings of Being Devalued 0.419*** 0.412*** 0.452*** 0.356***
Ethnocentrism 0.179*** 0.019 0.130*** 0.084***
Right-Wing Authoritarianism -0.061** 0.053* 0.010 -0.136***
Social Dominance Orientation -0.071** -0.020 -0.077** -0.119***
Religiosity -0.089*** -0.051* -0.076*** -0.048*
Ideology 0.043* 0.248*** 0.052* 0.032
Ethnic Majority -0.083 0.050 -0.229*** -0.243*
Age -0.052* 0.022 -0.032 0.097***
Education -0.075*** -0.051** -0.020 -0.043*
Political Interest 0.043* 0.135*** 0.102*** 0.062**
Income 0.001 0.039. -0.005 0.011
Marital Status 0.048 0.068. 0.084* 0.134**
Constant 0.266** 0.088 0.216* 0.255*
Observations 2,004 2,000 2,000 2,001
R2 0.262 0.321 0.283 0.171
Adjusted R2 0.258 0.317 0.279 0.166
Residual Std. Error 0.862 (df = 1991) 0.826 (df = 1987) 0.849 (df = 1987) 0.913 (df = 1988)
F Statistic 58.982*** (df = 12; 1991) 78.438*** (df = 12; 1987) 65.347*** (df = 12; 1987) 34.136*** (df = 12; 1988)
Note: . p<0.1; * p<0.05; ** p<0.01; *** p<0.001
# Format Regression Table
stargazer(ConspFR_full, ConspUS_full, ConspGB_full, ConspPL_full, report = "vc*", type = "html", star.char = c(".", "*", "**", "***"), star.cutoffs = c(0.1, 0.05, 0.01, 0.001), notes = c(". p<0.1; * p<0.05; ** p<0.01; *** p<0.001"), dep.var.labels = c("Conspiratorial Attitudes"), column.labels = c("France", "United States", "United Kingdom", "Poland"), notes.append = FALSE, title = "Cosnpiratorial Attitudes By Country (Full Models)", covariate.labels = c("Feelings of Being Devalued", "Ethnocentrism", "Right-Wing Authoritarianism", "Social Dominance Orientation", "Religiosity", "Ideology", "Ethnic Majority", "Age", "Education", "Political Interest", "Income", "Marital Status", "Constant"))
Cosnpiratorial Attitudes By Country (Full Models)
Dependent variable:
Conspiratorial Attitudes
France United States United Kingdom Poland
(1) (2) (3) (4)
Feelings of Being Devalued 0.334*** 0.363*** 0.391*** 0.323***
Ethnocentrism 0.145*** 0.020 0.083** 0.121***
Right-Wing Authoritarianism -0.026 0.071*** 0.003 0.019
Social Dominance Orientation 0.024 0.106*** 0.081** -0.015
Religiosity -0.070*** -0.029 -0.079*** -0.052*
Ideology 0.118*** 0.271*** 0.034 0.035
Ethnic Majority -0.184* -0.028 -0.245*** -0.188.
Age -0.105*** -0.127*** -0.083*** 0.010
Education -0.084*** -0.076*** -0.066*** -0.025
Political Interest -0.068*** 0.012 0.002 -0.056*
Income -0.052* 0.014 0.010 -0.004
Marital Status 0.063 0.093* 0.129** 0.073
Constant 0.377*** 0.217** 0.352*** 0.196.
Observations 2,004 2,000 2,000 2,001
R2 0.261 0.391 0.265 0.156
Adjusted R2 0.256 0.387 0.260 0.151
Residual Std. Error 0.862 (df = 1991) 0.783 (df = 1987) 0.860 (df = 1987) 0.922 (df = 1988)
F Statistic 58.498*** (df = 12; 1991) 106.370*** (df = 12; 1987) 59.597*** (df = 12; 1987) 30.543*** (df = 12; 1988)
Note: . p<0.1; * p<0.05; ** p<0.01; *** p<0.001
# Format Regression Table
stargazer(PopFR_Main, PopUS_Main, PopGB_Main, PopPL_Main, report = "vc*", type = "html", star.char = c(".", "*", "**", "***"), star.cutoffs = c(0.1, 0.05, 0.01, 0.001), notes = c(". p<0.1; * p<0.05; ** p<0.01; *** p<0.001"), dep.var.labels = c("Populist Attitudes"), column.labels = c("France", "United States", "United Kingdom", "Poland"), notes.append = FALSE, title = "Populist Attitudes By Country (Main Effects Models)", covariate.labels = c("Ethnocentrism", "Right-Wing Authoritarianism", "Social Dominance Orientation", "Religiosity", "Ideology", "Ethnic Majority", "Age", "Education", "Political Interest", "Income", "Marital Status", "Constant"))
Populist Attitudes By Country (Main Effects Models)
Dependent variable:
Populist Attitudes
France United States United Kingdom Poland
(1) (2) (3) (4)
Ethnocentrism 0.248*** 0.057* 0.205*** 0.128***
Right-Wing Authoritarianism -0.100*** 0.028 -0.001 -0.136***
Social Dominance Orientation -0.063** 0.001 -0.105*** -0.108***
Religiosity -0.125*** -0.069** -0.111*** -0.055*
Ideology 0.058* 0.285*** 0.041. 0.022
Ethnic Majority -0.097 0.049 -0.172* -0.210.
Age -0.092*** -0.087*** -0.150*** 0.060**
Education -0.106*** -0.053* -0.027 -0.049*
Political Interest 0.019 0.159*** 0.117*** 0.063**
Income -0.042 0.014 -0.066** -0.014
Marital Status 0.081 0.070 0.116* 0.142**
Constant 0.352*** 0.093 0.170. 0.234.
Observations 2,004 2,000 2,000 2,001
R2 0.100 0.172 0.101 0.049
Adjusted R2 0.095 0.168 0.096 0.044
Residual Std. Error 0.951 (df = 1992) 0.912 (df = 1988) 0.951 (df = 1988) 0.978 (df = 1989)
F Statistic 20.156*** (df = 11; 1992) 37.633*** (df = 11; 1988) 20.260*** (df = 11; 1988) 9.315*** (df = 11; 1989)
Note: . p<0.1; * p<0.05; ** p<0.01; *** p<0.001
# Format Regression Table
stargazer(ConspFR_Main, ConspUS_Main, ConspGB_Main, ConspPL_Main, report = "vc*", type = "html", star.char = c(".", "*", "**", "***"), star.cutoffs = c(0.1, 0.05, 0.01, 0.001), notes = c(". p<0.1; * p<0.05; ** p<0.01; *** p<0.001"), dep.var.labels = c("Conspiratorial Attitudes"), column.labels = c("France", "United States", "United Kingdom", "Poland"), notes.append = FALSE, title = "Cosnpiratorial Attitudes By Country (Main Effects Models)", covariate.labels = c("Ethnocentrism", "Right-Wing Authoritarianism", "Social Dominance Orientation", "Religiosity", "Ideology", "Ethnic Majority", "Age", "Education", "Political Interest", "Income", "Marital Status", "Constant"))
Cosnpiratorial Attitudes By Country (Main Effects Models)
Dependent variable:
Conspiratorial Attitudes
France United States United Kingdom Poland
(1) (2) (3) (4)
Ethnocentrism 0.199*** 0.053* 0.149*** 0.161***
Right-Wing Authoritarianism -0.057* 0.049* -0.007 0.019
Social Dominance Orientation 0.030 0.125*** 0.058* -0.006
Religiosity -0.098*** -0.044* -0.109*** -0.059*
Ideology 0.130*** 0.304*** 0.024 0.027
Ethnic Majority -0.195* -0.029 -0.196** -0.158
Age -0.137*** -0.223*** -0.185*** -0.023
Education -0.109*** -0.078*** -0.072*** -0.030
Political Interest -0.086*** 0.033 0.015 -0.055*
Income -0.086*** -0.008 -0.043. -0.026
Marital Status 0.089. 0.094* 0.156*** 0.080.
Constant 0.445*** 0.222** 0.312*** 0.176
Observations 2,004 2,000 2,000 2,001
R2 0.158 0.276 0.128 0.055
Adjusted R2 0.153 0.272 0.123 0.050
Residual Std. Error 0.920 (df = 1992) 0.853 (df = 1988) 0.936 (df = 1988) 0.975 (df = 1989)
F Statistic 33.932*** (df = 11; 1992) 68.798*** (df = 11; 1988) 26.561*** (df = 11; 1988) 10.614*** (df = 11; 1989)
Note: . p<0.1; * p<0.05; ** p<0.01; *** p<0.001

Big Five and FBD

All_Pop_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std 
                        +country.GB
                        +country.PL
                        +country.US,  
                              data=all_data_dum)


All_Pop_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std 
                        +country.GB
                        +country.PL
                        +country.US,  
                              data=all_data_dum)

All_Cons_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std 
                        +country.GB
                        +country.PL
                        +country.US,  
                              data=all_data_dum)


All_Cons_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std 
                        +country.GB
                        +country.PL
                        +country.US,  
                              data=all_data_dum)

# Extracting coefficients and creating a tidy data frame with confidence intervals
df1 <- tidy(All_Pop_full, conf.int = TRUE) %>% mutate(Model = "With FBD")
df3 <- tidy(All_Pop_Main, conf.int = TRUE) %>% mutate(Model = "Without FBD")



# Extracting 99% confidence intervals
ci99_df1 <- confint(All_Pop_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Model = "With FBD")
ci99_df3 <- confint(All_Pop_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Model = "Without FBD")


# Renaming columns to match
colnames(ci99_df1)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df3)[1:2] <- c("conf.low2", "conf.high2")

# Combining the 99% CIs into one data frame
ci99_df <- bind_rows(ci99_df1, ci99_df3)


# Preparing the combined dataframe
coefficients_df <- bind_rows(df1, df3)
coefficients_df <- coefficients_df %>%
  left_join(ci99_df, by = c("term", "Model"))

# Filter out the intercept and other unwanted coefficients
coefficients_df <- coefficients_df %>%
  filter(term != "(Intercept)"  & term != "rwa_std"  & term != "sdo_std"  & term != "ethnocentrism_std" & term != "age_std"  & term != "ideology_std"  & term != "ethnic_majority"  & term != "income_num_std"  & term != "country.PL"  & term != "country.US"  & term != "country.GB" & term != "education_collapse" & term != "church_attendance_std" & term != "Q1_interest_in_politics_std" & term != "marital_status" & term != "devalued_std")

# Rename terms for readability
coefficients_df <- coefficients_df %>%
  mutate(term = case_when(
        term == "big5_openness_std" ~ "Openness to Experience",
    term == "big5_agreeableness_std" ~ "Agreeableness",
    term == "big5_stability_std" ~ "Emotional Stability",
    term == "big5_conscientiousness_std" ~ "Conscientiousness",
    term == "big5_extraversion_std" ~ "Extraversion",
    TRUE ~ term
  ))

# Define the desired order for facets
facet_order <- c("Openness to Experience", "Conscientiousness", "Extraversion",
                 "Agreeableness", "Emotional Stability")

# Relevel the 'term' factor according to the desired facet order
coefficients_df <- coefficients_df %>%
  mutate(term = factor(term, levels = facet_order))

# Now redefine the Model factor to specify the order of the models
coefficients_df <- coefficients_df %>%
  mutate(Model = factor(Model, levels = c("With FBD", "Without FBD")))

# Creating the plot with multi-level confidence intervals
plotall1 <- ggplot(coefficients_df, aes(x = estimate, y = Model, color = Model)) +
    facet_wrap(~ term, scales = "free_y", ncol = 1) +
    geom_point(size = 2, shape = 16) +
    geom_linerange(aes(xmin = conf.low2, xmax = conf.high2), height = 0.2, color = "gray70", size = 0.25) + # Wider CI in lighter gray
    geom_linerange(aes(xmin = conf.low, xmax = conf.high), height = 0.2, color = "gray20", size = 0.25) + # Narrower CI in darker gray
    geom_vline(xintercept = 0, color = "black", size = .5, linetype = "solid") +  # Add vertical line for intercept
    scale_color_manual(values = c("With FBD" = "black", "Without FBD" = "black")) +
    labs(x = "Point estimates", y = NULL, title = "DV: Populist Attitudes") +
    theme_minimal() +
    theme(
        legend.position = "none",
        axis.text.y = element_text(size = 10),
        axis.title.x = element_text(size = 12),
        plot.title = element_text(hjust = 0.5, size = 14),
        strip.text = element_text(size = 12),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_line(size = .5, color = "gray", linetype = "dotted")
    )

# Extracting coefficients and creating a tidy data frame with confidence intervals
df1 <- tidy(All_Cons_full, conf.int = TRUE) %>% mutate(Model = "With FBD")
df3 <- tidy(All_Cons_Main, conf.int = TRUE) %>% mutate(Model = "Without FBD")



# Extracting 99% confidence intervals
ci99_df1 <- confint(All_Cons_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Model = "With FBD")
ci99_df3 <- confint(All_Cons_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Model = "Without FBD")


# Renaming columns to match
colnames(ci99_df1)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df3)[1:2] <- c("conf.low2", "conf.high2")

# Combining the 99% CIs into one data frame
ci99_df <- bind_rows(ci99_df1, ci99_df3)


# Preparing the combined dataframe
coefficients_df <- bind_rows(df1, df3)
coefficients_df <- coefficients_df %>%
  left_join(ci99_df, by = c("term", "Model"))

# Filter out the intercept and other unwanted coefficients
coefficients_df <- coefficients_df %>%
  filter(term != "(Intercept)"  & term != "rwa_std"  & term != "sdo_std"  & term != "ethnocentrism_std" & term != "age_std"  & term != "ideology_std"  & term != "ethnic_majority"  & term != "income_num_std"  & term != "country.PL"  & term != "country.US"  & term != "country.GB" & term != "education_collapse" & term != "church_attendance_std" & term != "Q1_interest_in_politics_std" & term != "marital_status" & term != "devalued_std")

# Rename terms for readability
coefficients_df <- coefficients_df %>%
  mutate(term = case_when(
        term == "big5_openness_std" ~ "Openness to Experience",
    term == "big5_agreeableness_std" ~ "Agreeableness",
    term == "big5_stability_std" ~ "Emotional Stability",
    term == "big5_conscientiousness_std" ~ "Conscientiousness",
    term == "big5_extraversion_std" ~ "Extraversion",
    TRUE ~ term
  ))

# Define the desired order for facets
facet_order <- c("Openness to Experience", "Conscientiousness", "Extraversion",
                 "Agreeableness", "Emotional Stability")

# Relevel the 'term' factor according to the desired facet order
coefficients_df <- coefficients_df %>%
  mutate(term = factor(term, levels = facet_order))

# Now redefine the Model factor to specify the order of the models
coefficients_df <- coefficients_df %>%
  mutate(Model = factor(Model, levels = c("With FBD", "Without FBD")))

# Creating the plot with multi-level confidence intervals
plotall2 <- ggplot(coefficients_df, aes(x = estimate, y = Model, color = Model)) +
    facet_wrap(~ term, scales = "free_y", ncol = 1) +
    geom_point(size = 2, shape = 16) +
    geom_linerange(aes(xmin = conf.low2, xmax = conf.high2), height = 0.2, color = "gray50", size = 0.25) + # Wider CI in gray
    geom_linerange(aes(xmin = conf.low, xmax = conf.high), height = 0.2, color = "black", size = 0.25) + # Narrower CI in black
    geom_vline(xintercept = 0, color = "black", size = .5, linetype = "solid") +  # Add vertical line for intercept
    scale_color_manual(values = c("With FBD" = "black", "Without FBD" = "black")) +
    labs(x = "Point estimates", y = NULL, title = "DV: Conspiratorial Attitudes") +
    theme_minimal() +
    theme(
        legend.position = "none",
        axis.text.y = element_text(size = 10),
        axis.title.x = element_text(size = 12),
        plot.title = element_text(hjust = 0.5, size = 14),
        strip.text = element_text(size = 12),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_line(size = .5, color = "gray", linetype = "dotted")
    )

# Creating the combined plot object with arrangeGrob
combined_plot <- arrangeGrob(
  plotall1, plotall2,
  padding = unit(4, "lines"),
  ncol = 2, # Specify the number of columns for the plots
  top = textGrob(
    "FBD and the Relationship of DVs With Big Five (All Respondents)\n", 
    gp = gpar(fontface = "bold", fontsize = 20), 
    vjust = 1
  ),
  bottom = textGrob(bquote(~ bold("Not displayed:") ~ "FBD, age, income, marital status, education, political interest, religiosity, ethnocentrism, ideology, ethnic majority, RWA, SDO, and country."),
    gp = gpar(fontsize = 10),
    just = "center" # Centering the text in the grob
  )
)
# Printing the combined plot with annotations
grid.draw(combined_plot)

RWP vote

Models

RWPUS_full = lm(vote_trump~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std 
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=US_data)
RWPPL_full = lm(vote_prawo~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std 
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=PL_data)
RWPFR_full = lm(vote_lepen~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=FR_data)
# Extracting coefficients and creating a tidy data frame with confidence intervals
df1 <- tidy(RWPUS_full, conf.int = TRUE) %>% mutate(Country = "United States")
df2 <- tidy(RWPFR_full, conf.int = TRUE) %>% mutate(Country = "France")
df3 <- tidy(RWPPL_full, conf.int = TRUE) %>% mutate(Country = "Poland")


# Extracting 99% confidence intervals
ci99_df1 <- confint(RWPUS_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "United States")
ci99_df2 <- confint(RWPFR_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "France")
ci99_df3 <- confint(RWPPL_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "Poland")

# Renaming columns to match
colnames(ci99_df1)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df2)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df3)[1:2] <- c("conf.low2", "conf.high2")

# Combining the 99% CIs into one data frame
ci99_df <- bind_rows(ci99_df1, ci99_df2, ci99_df3)


# Preparing the combined dataframe
coefficients_df <- bind_rows(df1, df2, df3)
coefficients_df <- coefficients_df %>%
  left_join(ci99_df, by = c("term", "Country"))

# Filter out the intercept and other unwanted coefficients
coefficients_df <- coefficients_df %>%
  filter(term != "(Intercept)")

# Rename terms for readability
coefficients_df <- coefficients_df %>%
  mutate(term = case_when(
    term == "rwa_std" ~ "Right-Wing Authoritarianism",
    term == "sdo_std" ~ "Social Dominance Orientation",
    term == "devalued_std" ~ "Feelings of Being Devalued",
    term == "ethnocentrism_std" ~ "Ethnocentrism",
    term == "ideology_std" ~ "Ideology",
    term == "ethnic_majority" ~ "Ethnic Majority",
    term == "age_std" ~ "Age",
    term == "church_attendance_std" ~ "Religiosity",
    term == "income_num_std" ~ "Income",
    term == "Q1_interest_in_politics_std" ~ "Political Interest",
    term == "marital_status" ~ "Marital Status",
    term == "education_collapse" ~ "Education",
    TRUE ~ term
  ))

# Define the desired order for facets
facet_order <- c("Age", "Income", "Marital Status", "Education", "Political Interest", "Religiosity", "Ethnocentrism", "Ideology", "Ethnic Majority",
                 "Right-Wing Authoritarianism", "Social Dominance Orientation", "Feelings of Being Devalued")


# Relevel the 'term' factor according to the desired facet order
coefficients_df <- coefficients_df %>%
  mutate(term = factor(term, levels = facet_order))

# Creating the plot with multi-level confidence intervals
plot1 <- ggplot(coefficients_df, aes(x = estimate, y = Country, color = Country)) +
    facet_wrap(~ term, scales = "free_y", ncol = 2) +  # Set ncol = 2 for two columns
    geom_point(size = 2, shape = 16) +
    geom_linerange(aes(xmin = conf.low2, xmax = conf.high2), height = 0.2, color = "gray70", size = 0.25) + # Wider CI in lighter gray
    geom_linerange(aes(xmin = conf.low, xmax = conf.high), height = 0.2, color = "gray20", size = 0.25) + # Narrower CI in darker gray
    geom_vline(xintercept = 0, color = "black", size = .5, linetype = "solid") +  # Add vertical line for intercept
    scale_color_manual(values = c("United States" = "black", "France" = "black", "Poland" = "black")) +
    labs(x = "Point estimates", y = NULL, title = "DV: Conspiratorial Orientation") +
    theme_minimal() +
    theme(
        legend.position = "none",
        axis.text.y = element_text(size = 11),
        axis.title.x = element_text(size = 12),
        plot.title = element_text(hjust = 0.5, size = 14),
        strip.text = element_text(size = 12),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_line(size = .5, color = "gray", linetype = "dotted")
    )

plot1 + labs(title="Figure 4: Predicting Right-Wing Populist Vote in France, the US, and Poland") + 
    theme(plot.title = element_text(family = "sans", face = "bold"))

Big Five Per Country

Big Five and FBD

All_PopBig5PL_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,  
                              data=PL_data)


All_PopBig5PL_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,  
                              data=PL_data)

All_ConsBig5PL_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,
                              data=PL_data)


All_ConsBig5PL_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std, 
                              data=PL_data)

All_PopBig5US_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,  
                              data=US_data)


All_PopBig5US_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,  
                              data=US_data)

All_ConsBig5US_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,
                              data=US_data)


All_ConsBig5US_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std, 
                              data=US_data)

All_PopBig5FR_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,  
                              data=FR_data)


All_PopBig5FR_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,  
                              data=FR_data)

All_ConsBig5FR_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,
                              data=FR_data)


All_ConsBig5FR_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std, 
                              data=FR_data)

All_PopBig5GB_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,  
                              data=GB_data)


All_PopBig5GB_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,  
                              data=GB_data)

All_ConsBig5GB_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,
                              data=GB_data)


All_ConsBig5GB_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +ethnic_majority
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std, 
                              data=GB_data)

summary(All_PopBig5GB_Main)
## 
## Call:
## lm(formula = populism_rw_std ~ ethnocentrism_std + rwa_std + 
##     sdo_std + church_attendance_std + ideology_std + ethnic_majority + 
##     age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = GB_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7185 -0.6000 -0.0186  0.5997  2.8984 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.20551    0.09572   2.147  0.03191 *  
## ethnocentrism_std            0.20886    0.02871   7.276 4.94e-13 ***
## rwa_std                     -0.00366    0.02595  -0.141  0.88787    
## sdo_std                     -0.09169    0.02936  -3.123  0.00181 ** 
## church_attendance_std       -0.11165    0.02379  -4.693 2.87e-06 ***
## ideology_std                 0.05125    0.02483   2.064  0.03912 *  
## ethnic_majority             -0.20441    0.06912  -2.957  0.00314 ** 
## age_std                     -0.10612    0.02500  -4.245 2.28e-05 ***
## education_collapse          -0.02892    0.01892  -1.529  0.12643    
## Q1_interest_in_politics_std  0.11441    0.02317   4.937 8.60e-07 ***
## income_num_std              -0.05621    0.02437  -2.307  0.02118 *  
## marital_status               0.11634    0.04642   2.506  0.01228 *  
## big5_conscientiousness_std   0.02992    0.02544   1.176  0.23972    
## big5_agreeableness_std      -0.00901    0.02493  -0.361  0.71783    
## big5_extraversion_std        0.01972    0.02313   0.853  0.39390    
## big5_openness_std            0.07614    0.02392   3.183  0.00148 ** 
## big5_stability_std          -0.12833    0.02511  -5.112 3.50e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9437 on 1983 degrees of freedom
## Multiple R-squared:  0.1166, Adjusted R-squared:  0.1095 
## F-statistic: 16.36 on 16 and 1983 DF,  p-value: < 2.2e-16
summary(All_PopBig5GB_full)
## 
## Call:
## lm(formula = populism_rw_std ~ devalued_std + ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     ethnic_majority + age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = GB_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0026 -0.5041 -0.0055  0.5291  3.0162 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.221016   0.085684   2.579 0.009967 ** 
## devalued_std                 0.463001   0.020859  22.197  < 2e-16 ***
## ethnocentrism_std            0.144059   0.025862   5.570 2.89e-08 ***
## rwa_std                      0.002702   0.023236   0.116 0.907447    
## sdo_std                     -0.068766   0.026298  -2.615 0.008995 ** 
## church_attendance_std       -0.077639   0.021350  -3.637 0.000283 ***
## ideology_std                 0.053611   0.022226   2.412 0.015950 *  
## ethnic_majority             -0.220277   0.061878  -3.560 0.000380 ***
## age_std                     -0.029899   0.022638  -1.321 0.186735    
## education_collapse          -0.022432   0.016937  -1.324 0.185501    
## Q1_interest_in_politics_std  0.090368   0.020772   4.350 1.43e-05 ***
## income_num_std              -0.009602   0.021915  -0.438 0.661340    
## marital_status               0.077029   0.041590   1.852 0.064160 .  
## big5_conscientiousness_std   0.064261   0.022829   2.815 0.004928 ** 
## big5_agreeableness_std      -0.008066   0.022316  -0.361 0.717799    
## big5_extraversion_std        0.045030   0.020735   2.172 0.029999 *  
## big5_openness_std            0.058160   0.021425   2.715 0.006693 ** 
## big5_stability_std          -0.015552   0.023041  -0.675 0.499764    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8447 on 1982 degrees of freedom
## Multiple R-squared:  0.2925, Adjusted R-squared:  0.2864 
## F-statistic: 48.19 on 17 and 1982 DF,  p-value: < 2.2e-16
summary(All_ConsBig5GB_Main)
## 
## Call:
## lm(formula = conspiratorial_orientation_std ~ ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     ethnic_majority + age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = GB_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7661 -0.5944 -0.0439  0.6039  2.8662 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.347527   0.094258   3.687 0.000233 ***
## ethnocentrism_std            0.148537   0.028269   5.254 1.64e-07 ***
## rwa_std                      0.003883   0.025560   0.152 0.879260    
## sdo_std                      0.052278   0.028909   1.808 0.070699 .  
## church_attendance_std       -0.101819   0.023427  -4.346 1.45e-05 ***
## ideology_std                 0.032226   0.024450   1.318 0.187644    
## ethnic_majority             -0.218410   0.068068  -3.209 0.001355 ** 
## age_std                     -0.130425   0.024616  -5.298 1.30e-07 ***
## education_collapse          -0.076862   0.018629  -4.126 3.85e-05 ***
## Q1_interest_in_politics_std  0.009410   0.022821   0.412 0.680145    
## income_num_std              -0.034744   0.023999  -1.448 0.147838    
## marital_status               0.155226   0.045712   3.396 0.000698 ***
## big5_conscientiousness_std  -0.031275   0.025057  -1.248 0.212125    
## big5_agreeableness_std      -0.045419   0.024550  -1.850 0.064449 .  
## big5_extraversion_std        0.024727   0.022777   1.086 0.277765    
## big5_openness_std            0.087374   0.023553   3.710 0.000213 ***
## big5_stability_std          -0.076453   0.024724  -3.092 0.002014 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9293 on 1983 degrees of freedom
## Multiple R-squared:  0.1433, Adjusted R-squared:  0.1364 
## F-statistic: 20.73 on 16 and 1983 DF,  p-value: < 2.2e-16
summary(All_ConsBig5GB_full)
## 
## Call:
## lm(formula = conspiratorial_orientation_std ~ devalued_std + 
##     ethnocentrism_std + rwa_std + sdo_std + church_attendance_std + 
##     ideology_std + ethnic_majority + age_std + education_collapse + 
##     Q1_interest_in_politics_std + income_num_std + marital_status + 
##     big5_conscientiousness_std + big5_agreeableness_std + big5_extraversion_std + 
##     big5_openness_std + big5_stability_std, data = GB_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4060 -0.5176 -0.0071  0.5279  3.1895 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.360943   0.086742   4.161 3.30e-05 ***
## devalued_std                 0.400489   0.021116  18.966  < 2e-16 ***
## ethnocentrism_std            0.092482   0.026181   3.532 0.000421 ***
## rwa_std                      0.009386   0.023523   0.399 0.689916    
## sdo_std                      0.072106   0.026623   2.708 0.006819 ** 
## church_attendance_std       -0.072402   0.021614  -3.350 0.000824 ***
## ideology_std                 0.034266   0.022500   1.523 0.127934    
## ethnic_majority             -0.232133   0.062642  -3.706 0.000217 ***
## age_std                     -0.064498   0.022917  -2.814 0.004936 ** 
## education_collapse          -0.071246   0.017146  -4.155 3.39e-05 ***
## Q1_interest_in_politics_std -0.011385   0.021029  -0.541 0.588306    
## income_num_std               0.005571   0.022186   0.251 0.801762    
## marital_status               0.121220   0.042104   2.879 0.004031 ** 
## big5_conscientiousness_std  -0.001574   0.023111  -0.068 0.945717    
## big5_agreeableness_std      -0.044603   0.022591  -1.974 0.048482 *  
## big5_extraversion_std        0.046618   0.020991   2.221 0.026477 *  
## big5_openness_std            0.071822   0.021689   3.311 0.000945 ***
## big5_stability_std           0.021101   0.023326   0.905 0.365768    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8552 on 1982 degrees of freedom
## Multiple R-squared:  0.2749, Adjusted R-squared:  0.2687 
## F-statistic:  44.2 on 17 and 1982 DF,  p-value: < 2.2e-16
summary(All_PopBig5FR_Main)
## 
## Call:
## lm(formula = populism_rw_std ~ ethnocentrism_std + rwa_std + 
##     sdo_std + church_attendance_std + ideology_std + ethnic_majority + 
##     age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = FR_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7752 -0.5823  0.0178  0.6391  2.7822 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.353614   0.102090   3.464 0.000544 ***
## ethnocentrism_std            0.251132   0.026038   9.645  < 2e-16 ***
## rwa_std                     -0.099253   0.025020  -3.967 7.54e-05 ***
## sdo_std                     -0.056574   0.025308  -2.235 0.025504 *  
## church_attendance_std       -0.124556   0.022321  -5.580 2.73e-08 ***
## ideology_std                 0.057845   0.024323   2.378 0.017492 *  
## ethnic_majority             -0.097902   0.078974  -1.240 0.215246    
## age_std                     -0.090187   0.023218  -3.884 0.000106 ***
## education_collapse          -0.106967   0.018528  -5.773 9.00e-09 ***
## Q1_interest_in_politics_std  0.017516   0.022565   0.776 0.437678    
## income_num_std              -0.040074   0.025847  -1.550 0.121202    
## marital_status               0.081702   0.051767   1.578 0.114661    
## big5_conscientiousness_std   0.003331   0.024804   0.134 0.893187    
## big5_agreeableness_std       0.008731   0.024474   0.357 0.721329    
## big5_extraversion_std       -0.005338   0.022392  -0.238 0.811588    
## big5_openness_std            0.035458   0.023712   1.495 0.134980    
## big5_stability_std          -0.028841   0.023200  -1.243 0.213951    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9516 on 1987 degrees of freedom
## Multiple R-squared:  0.1017, Adjusted R-squared:  0.0945 
## F-statistic: 14.06 on 16 and 1987 DF,  p-value: < 2.2e-16
summary(All_PopBig5FR_full)
## 
## Call:
## lm(formula = populism_rw_std ~ devalued_std + ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     ethnic_majority + age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = FR_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0558 -0.5164  0.0165  0.5566  3.9906 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.275830   0.092147   2.993  0.00279 ** 
## devalued_std                 0.436133   0.020407  21.372  < 2e-16 ***
## ethnocentrism_std            0.184412   0.023690   7.784 1.12e-14 ***
## rwa_std                     -0.066658   0.022617  -2.947  0.00324 ** 
## sdo_std                     -0.049978   0.022828  -2.189  0.02869 *  
## church_attendance_std       -0.090850   0.020193  -4.499 7.22e-06 ***
## ideology_std                 0.037126   0.021958   1.691  0.09104 .  
## ethnic_majority             -0.084989   0.071230  -1.193  0.23295    
## age_std                     -0.063533   0.020977  -3.029  0.00249 ** 
## education_collapse          -0.076270   0.016772  -4.548 5.75e-06 ***
## Q1_interest_in_politics_std  0.037222   0.020372   1.827  0.06783 .  
## income_num_std              -0.004457   0.023371  -0.191  0.84878    
## marital_status               0.043468   0.046723   0.930  0.35231    
## big5_conscientiousness_std   0.032844   0.022413   1.465  0.14298    
## big5_agreeableness_std       0.029041   0.022093   1.314  0.18884    
## big5_extraversion_std        0.027360   0.020253   1.351  0.17688    
## big5_openness_std            0.035268   0.021386   1.649  0.09928 .  
## big5_stability_std           0.033132   0.021124   1.568  0.11693    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8582 on 1986 degrees of freedom
## Multiple R-squared:  0.2697, Adjusted R-squared:  0.2634 
## F-statistic: 43.14 on 17 and 1986 DF,  p-value: < 2.2e-16
summary(All_ConsBig5FR_Main)
## 
## Call:
## lm(formula = conspiratorial_orientation_std ~ ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     ethnic_majority + age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = FR_data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.70521 -0.57746  0.02145  0.58131  2.81750 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.44509    0.09816   4.535 6.12e-06 ***
## ethnocentrism_std            0.20400    0.02503   8.149 6.43e-16 ***
## rwa_std                     -0.04084    0.02406  -1.698 0.089745 .  
## sdo_std                      0.02134    0.02433   0.877 0.380663    
## church_attendance_std       -0.09311    0.02146  -4.338 1.51e-05 ***
## ideology_std                 0.13054    0.02339   5.582 2.70e-08 ***
## ethnic_majority             -0.18253    0.07593  -2.404 0.016315 *  
## age_std                     -0.12199    0.02232  -5.465 5.22e-08 ***
## education_collapse          -0.11314    0.01781  -6.351 2.64e-10 ***
## Q1_interest_in_politics_std -0.09629    0.02169  -4.438 9.57e-06 ***
## income_num_std              -0.08425    0.02485  -3.390 0.000713 ***
## marital_status               0.08813    0.04977   1.771 0.076765 .  
## big5_conscientiousness_std  -0.02626    0.02385  -1.101 0.270926    
## big5_agreeableness_std      -0.03768    0.02353  -1.601 0.109433    
## big5_extraversion_std        0.01916    0.02153   0.890 0.373607    
## big5_openness_std            0.08731    0.02280   3.830 0.000132 ***
## big5_stability_std          -0.06241    0.02231  -2.798 0.005190 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9149 on 1987 degrees of freedom
## Multiple R-squared:  0.1696, Adjusted R-squared:  0.1629 
## F-statistic: 25.37 on 16 and 1987 DF,  p-value: < 2.2e-16
summary(All_ConsBig5FR_full)
## 
## Call:
## lm(formula = conspiratorial_orientation_std ~ devalued_std + 
##     ethnocentrism_std + rwa_std + sdo_std + church_attendance_std + 
##     ideology_std + ethnic_majority + age_std + education_collapse + 
##     Q1_interest_in_politics_std + income_num_std + marital_status + 
##     big5_conscientiousness_std + big5_agreeableness_std + big5_extraversion_std + 
##     big5_openness_std + big5_stability_std, data = FR_data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.89455 -0.54363  0.02098  0.54150  2.88638 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.384733   0.092080   4.178 3.06e-05 ***
## devalued_std                 0.338427   0.020392  16.596  < 2e-16 ***
## ethnocentrism_std            0.152223   0.023673   6.430 1.59e-10 ***
## rwa_std                     -0.015544   0.022601  -0.688 0.491676    
## sdo_std                      0.026455   0.022811   1.160 0.246298    
## church_attendance_std       -0.066953   0.020179  -3.318 0.000923 ***
## ideology_std                 0.114468   0.021942   5.217 2.01e-07 ***
## ethnic_majority             -0.172506   0.071177  -2.424 0.015456 *  
## age_std                     -0.101309   0.020962  -4.833 1.45e-06 ***
## education_collapse          -0.089324   0.016759  -5.330 1.10e-07 ***
## Q1_interest_in_politics_std -0.080997   0.020357  -3.979 7.17e-05 ***
## income_num_std              -0.056608   0.023354  -2.424 0.015444 *  
## marital_status               0.058462   0.046688   1.252 0.210655    
## big5_conscientiousness_std  -0.003361   0.022397  -0.150 0.880723    
## big5_agreeableness_std      -0.021923   0.022077  -0.993 0.320818    
## big5_extraversion_std        0.044533   0.020238   2.200 0.027893 *  
## big5_openness_std            0.087161   0.021370   4.079 4.71e-05 ***
## big5_stability_std          -0.014324   0.021108  -0.679 0.497469    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8576 on 1986 degrees of freedom
## Multiple R-squared:  0.2708, Adjusted R-squared:  0.2645 
## F-statistic: 43.38 on 17 and 1986 DF,  p-value: < 2.2e-16
summary(All_PopBig5US_Main)
## 
## Call:
## lm(formula = populism_rw_std ~ ethnocentrism_std + rwa_std + 
##     sdo_std + church_attendance_std + ideology_std + ethnic_majority + 
##     age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = US_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9667 -0.5843 -0.0026  0.5983  3.0863 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.09432    0.08292   1.138 0.255447    
## ethnocentrism_std            0.04996    0.02622   1.905 0.056899 .  
## rwa_std                      0.03570    0.02486   1.436 0.151199    
## sdo_std                     -0.01187    0.02787  -0.426 0.670072    
## church_attendance_std       -0.07683    0.02293  -3.351 0.000821 ***
## ideology_std                 0.28050    0.02412  11.627  < 2e-16 ***
## ethnic_majority              0.04248    0.05463   0.778 0.436908    
## age_std                     -0.07954    0.02485  -3.201 0.001392 ** 
## education_collapse          -0.05207    0.02133  -2.441 0.014717 *  
## Q1_interest_in_politics_std  0.16609    0.02215   7.497 9.78e-14 ***
## income_num_std               0.01647    0.02248   0.733 0.463948    
## marital_status               0.07326    0.04428   1.654 0.098228 .  
## big5_conscientiousness_std   0.03573    0.02555   1.399 0.162099    
## big5_agreeableness_std      -0.06176    0.02604  -2.371 0.017815 *  
## big5_extraversion_std       -0.02813    0.02195  -1.282 0.200044    
## big5_openness_std           -0.01191    0.02395  -0.497 0.619133    
## big5_stability_std          -0.02563    0.02479  -1.034 0.301396    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9106 on 1983 degrees of freedom
## Multiple R-squared:  0.1774, Adjusted R-squared:  0.1707 
## F-statistic: 26.72 on 16 and 1983 DF,  p-value: < 2.2e-16
summary(All_PopBig5US_full)
## 
## Call:
## lm(formula = populism_rw_std ~ devalued_std + ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     ethnic_majority + age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = US_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7309 -0.5019  0.0144  0.5405  3.3925 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.106205   0.074688   1.422 0.155193    
## devalued_std                 0.445964   0.020742  21.501  < 2e-16 ***
## ethnocentrism_std            0.024301   0.023650   1.027 0.304315    
## rwa_std                      0.040885   0.022395   1.826 0.068060 .  
## sdo_std                     -0.014988   0.025100  -0.597 0.550488    
## church_attendance_std       -0.057787   0.020670  -2.796 0.005229 ** 
## ideology_std                 0.235582   0.021829  10.792  < 2e-16 ***
## ethnic_majority              0.057605   0.049209   1.171 0.241895    
## age_std                      0.001945   0.022702   0.086 0.931729    
## education_collapse          -0.058752   0.019214  -3.058 0.002260 ** 
## Q1_interest_in_politics_std  0.126154   0.020041   6.295 3.78e-10 ***
## income_num_std               0.030706   0.020262   1.515 0.129824    
## marital_status               0.069170   0.039888   1.734 0.083055 .  
## big5_conscientiousness_std   0.085281   0.023124   3.688 0.000232 ***
## big5_agreeableness_std      -0.037762   0.023485  -1.608 0.108016    
## big5_extraversion_std        0.007940   0.019837   0.400 0.689021    
## big5_openness_std           -0.006246   0.021573  -0.290 0.772214    
## big5_stability_std           0.074081   0.022808   3.248 0.001182 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8202 on 1982 degrees of freedom
## Multiple R-squared:  0.3329, Adjusted R-squared:  0.3272 
## F-statistic: 58.19 on 17 and 1982 DF,  p-value: < 2.2e-16
summary(All_ConsBig5US_Main)
## 
## Call:
## lm(formula = conspiratorial_orientation_std ~ ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     ethnic_majority + age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = US_data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.87334 -0.52552 -0.01336  0.56381  2.66120 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.21245    0.07726   2.750 0.006017 ** 
## ethnocentrism_std            0.04263    0.02443   1.745 0.081209 .  
## rwa_std                      0.06961    0.02317   3.005 0.002689 ** 
## sdo_std                      0.11528    0.02596   4.440 9.48e-06 ***
## church_attendance_std       -0.04522    0.02136  -2.117 0.034410 *  
## ideology_std                 0.30898    0.02248  13.746  < 2e-16 ***
## ethnic_majority             -0.03349    0.05090  -0.658 0.510631    
## age_std                     -0.18525    0.02315  -8.001 2.09e-15 ***
## education_collapse          -0.07397    0.01987  -3.722 0.000203 ***
## Q1_interest_in_politics_std  0.04034    0.02064   1.954 0.050792 .  
## income_num_std               0.00105    0.02095   0.050 0.960028    
## marital_status               0.09796    0.04126   2.374 0.017686 *  
## big5_conscientiousness_std  -0.03100    0.02380  -1.302 0.192940    
## big5_agreeableness_std      -0.04958    0.02427  -2.043 0.041172 *  
## big5_extraversion_std       -0.03777    0.02045  -1.847 0.064836 .  
## big5_openness_std            0.04881    0.02231   2.187 0.028825 *  
## big5_stability_std          -0.06261    0.02310  -2.710 0.006780 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8485 on 1983 degrees of freedom
## Multiple R-squared:  0.2858, Adjusted R-squared:  0.2801 
## F-statistic:  49.6 on 16 and 1983 DF,  p-value: < 2.2e-16
summary(All_ConsBig5US_full)
## 
## Call:
## lm(formula = conspiratorial_orientation_std ~ devalued_std + 
##     ethnocentrism_std + rwa_std + sdo_std + church_attendance_std + 
##     ideology_std + ethnic_majority + age_std + education_collapse + 
##     Q1_interest_in_politics_std + income_num_std + marital_status + 
##     big5_conscientiousness_std + big5_agreeableness_std + big5_extraversion_std + 
##     big5_openness_std + big5_stability_std, data = US_data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.90515 -0.47731  0.01786  0.48859  2.57230 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.222360   0.071180   3.124 0.001811 ** 
## devalued_std                 0.372071   0.019768  18.822  < 2e-16 ***
## ethnocentrism_std            0.021218   0.022540   0.941 0.346631    
## rwa_std                      0.073939   0.021344   3.464 0.000543 ***
## sdo_std                      0.112686   0.023921   4.711 2.64e-06 ***
## church_attendance_std       -0.029333   0.019699  -1.489 0.136634    
## ideology_std                 0.271503   0.020804  13.050  < 2e-16 ***
## ethnic_majority             -0.020870   0.046898  -0.445 0.656367    
## age_std                     -0.117260   0.021635  -5.420 6.69e-08 ***
## education_collapse          -0.079539   0.018312  -4.344 1.47e-05 ***
## Q1_interest_in_politics_std  0.007022   0.019099   0.368 0.713157    
## income_num_std               0.012928   0.019311   0.669 0.503280    
## marital_status               0.094548   0.038015   2.487 0.012959 *  
## big5_conscientiousness_std   0.010344   0.022038   0.469 0.638843    
## big5_agreeableness_std      -0.029556   0.022382  -1.321 0.186812    
## big5_extraversion_std       -0.007681   0.018906  -0.406 0.684593    
## big5_openness_std            0.053534   0.020559   2.604 0.009287 ** 
## big5_stability_std           0.020579   0.021737   0.947 0.343897    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7817 on 1982 degrees of freedom
## Multiple R-squared:  0.3941, Adjusted R-squared:  0.3889 
## F-statistic: 75.84 on 17 and 1982 DF,  p-value: < 2.2e-16
summary(All_PopBig5PL_Main)
## 
## Call:
## lm(formula = populism_rw_std ~ ethnocentrism_std + rwa_std + 
##     sdo_std + church_attendance_std + ideology_std + ethnic_majority + 
##     age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = PL_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9916 -0.6146 -0.0174  0.6175  2.9306 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.25865    0.12509   2.068 0.038801 *  
## ethnocentrism_std            0.11755    0.02591   4.536 6.07e-06 ***
## rwa_std                     -0.13592    0.02925  -4.646 3.60e-06 ***
## sdo_std                     -0.07884    0.02535  -3.110 0.001898 ** 
## church_attendance_std       -0.04114    0.02477  -1.661 0.096903 .  
## ideology_std                 0.01723    0.02454   0.702 0.482606    
## ethnic_majority             -0.22605    0.11347  -1.992 0.046499 *  
## age_std                      0.03359    0.02384   1.409 0.159077    
## education_collapse          -0.04739    0.02069  -2.291 0.022093 *  
## Q1_interest_in_politics_std  0.06141    0.02337   2.628 0.008661 ** 
## income_num_std              -0.01887    0.02354  -0.802 0.422865    
## marital_status               0.12169    0.04792   2.540 0.011175 *  
## big5_conscientiousness_std   0.09460    0.02690   3.517 0.000446 ***
## big5_agreeableness_std       0.04415    0.02741   1.611 0.107380    
## big5_extraversion_std        0.02609    0.02744   0.951 0.341880    
## big5_openness_std           -0.06570    0.02459  -2.672 0.007611 ** 
## big5_stability_std          -0.02518    0.02507  -1.004 0.315334    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9713 on 1984 degrees of freedom
## Multiple R-squared:  0.06421,    Adjusted R-squared:  0.05666 
## F-statistic: 8.508 on 16 and 1984 DF,  p-value: < 2.2e-16
summary(All_PopBig5PL_full)
## 
## Call:
## lm(formula = populism_rw_std ~ devalued_std + ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     ethnic_majority + age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = PL_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4318 -0.5552  0.0010  0.5560  3.3179 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.285671   0.116305   2.456 0.014126 *  
## devalued_std                 0.372967   0.021098  17.678  < 2e-16 ***
## ethnocentrism_std            0.069893   0.024243   2.883 0.003981 ** 
## rwa_std                     -0.128231   0.027200  -4.714 2.59e-06 ***
## sdo_std                     -0.086642   0.023572  -3.676 0.000244 ***
## church_attendance_std       -0.032588   0.023034  -1.415 0.157284    
## ideology_std                 0.020382   0.022811   0.894 0.371681    
## ethnic_majority             -0.263381   0.105514  -2.496 0.012635 *  
## age_std                      0.058742   0.022214   2.644 0.008248 ** 
## education_collapse          -0.041799   0.019239  -2.173 0.029925 *  
## Q1_interest_in_politics_std  0.051343   0.021734   2.362 0.018258 *  
## income_num_std              -0.003556   0.021905  -0.162 0.871069    
## marital_status               0.113514   0.044550   2.548 0.010909 *  
## big5_conscientiousness_std   0.093093   0.025007   3.723 0.000203 ***
## big5_agreeableness_std       0.040122   0.025482   1.575 0.115524    
## big5_extraversion_std        0.038641   0.025525   1.514 0.130224    
## big5_openness_std           -0.054393   0.022871  -2.378 0.017488 *  
## big5_stability_std           0.050237   0.023694   2.120 0.034108 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.903 on 1983 degrees of freedom
## Multiple R-squared:  0.1916, Adjusted R-squared:  0.1847 
## F-statistic: 27.65 on 17 and 1983 DF,  p-value: < 2.2e-16
summary(All_ConsBig5PL_Main)
## 
## Call:
## lm(formula = conspiratorial_orientation_std ~ ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     ethnic_majority + age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = PL_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2420 -0.5828 -0.0071  0.6665  2.5303 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.19238    0.12505   1.538  0.12410    
## ethnocentrism_std            0.15609    0.02591   6.026    2e-09 ***
## rwa_std                      0.01837    0.02924   0.628  0.52999    
## sdo_std                      0.01337    0.02534   0.528  0.59788    
## church_attendance_std       -0.04954    0.02476  -2.001  0.04555 *  
## ideology_std                 0.02683    0.02453   1.094  0.27410    
## ethnic_majority             -0.16719    0.11343  -1.474  0.14066    
## age_std                     -0.03337    0.02384  -1.400  0.16170    
## education_collapse          -0.02943    0.02068  -1.423  0.15498    
## Q1_interest_in_politics_std -0.05414    0.02336  -2.317  0.02059 *  
## income_num_std              -0.02496    0.02353  -1.060  0.28906    
## marital_status               0.06630    0.04790   1.384  0.16649    
## big5_conscientiousness_std   0.07720    0.02689   2.871  0.00413 ** 
## big5_agreeableness_std       0.01815    0.02740   0.663  0.50766    
## big5_extraversion_std        0.02168    0.02743   0.790  0.42949    
## big5_openness_std           -0.03400    0.02458  -1.383  0.16679    
## big5_stability_std          -0.06769    0.02506  -2.701  0.00697 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9709 on 1984 degrees of freedom
## Multiple R-squared:  0.06491,    Adjusted R-squared:  0.05737 
## F-statistic: 8.607 on 16 and 1984 DF,  p-value: < 2.2e-16
summary(All_ConsBig5PL_full)
## 
## Call:
## lm(formula = conspiratorial_orientation_std ~ devalued_std + 
##     ethnocentrism_std + rwa_std + sdo_std + church_attendance_std + 
##     ideology_std + ethnic_majority + age_std + education_collapse + 
##     Q1_interest_in_politics_std + income_num_std + marital_status + 
##     big5_conscientiousness_std + big5_agreeableness_std + big5_extraversion_std + 
##     big5_openness_std + big5_stability_std, data = PL_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3325 -0.5359  0.0192  0.6033  2.7259 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.216179   0.118291   1.828  0.06777 .  
## devalued_std                 0.328530   0.021458  15.310  < 2e-16 ***
## ethnocentrism_std            0.114110   0.024657   4.628 3.93e-06 ***
## rwa_std                      0.025145   0.027664   0.909  0.36350    
## sdo_std                      0.006496   0.023975   0.271  0.78647    
## church_attendance_std       -0.042010   0.023427  -1.793  0.07309 .  
## ideology_std                 0.029608   0.023200   1.276  0.20204    
## ethnic_majority             -0.200075   0.107317  -1.864  0.06242 .  
## age_std                     -0.011213   0.022593  -0.496  0.61973    
## education_collapse          -0.024497   0.019567  -1.252  0.21073    
## Q1_interest_in_politics_std -0.063005   0.022106  -2.850  0.00442 ** 
## income_num_std              -0.011465   0.022279  -0.515  0.60688    
## marital_status               0.059095   0.045311   1.304  0.19231    
## big5_conscientiousness_std   0.075869   0.025434   2.983  0.00289 ** 
## big5_agreeableness_std       0.014606   0.025917   0.564  0.57310    
## big5_extraversion_std        0.032734   0.025961   1.261  0.20750    
## big5_openness_std           -0.024042   0.023261  -1.034  0.30146    
## big5_stability_std          -0.001256   0.024098  -0.052  0.95843    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9184 on 1983 degrees of freedom
## Multiple R-squared:  0.1638, Adjusted R-squared:  0.1566 
## F-statistic: 22.84 on 17 and 1983 DF,  p-value: < 2.2e-16

Country specific without FBD

Country specific

# Extracting coefficients and creating a tidy data frame with confidence intervals
df1 <- tidy(ConspUS_Main, conf.int = TRUE) %>% mutate(Country = "United States")
df2 <- tidy(ConspFR_Main, conf.int = TRUE) %>% mutate(Country = "France")
df3 <- tidy(ConspPL_Main, conf.int = TRUE) %>% mutate(Country = "Poland")
df4 <- tidy(ConspGB_Main, conf.int = TRUE) %>% mutate(Country = "United Kingdom")


# Extracting 99% confidence intervals
ci99_df1 <- confint(ConspUS_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "United States")
ci99_df2 <- confint(ConspFR_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "France")
ci99_df3 <- confint(ConspPL_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "Poland")
ci99_df4 <- confint(ConspGB_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "United Kingdom")

# Renaming columns to match
colnames(ci99_df1)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df2)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df3)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df4)[1:2] <- c("conf.low2", "conf.high2")

# Combining the 99% CIs into one data frame
ci99_df <- bind_rows(ci99_df1, ci99_df2, ci99_df3, ci99_df4)


# Preparing the combined dataframe
coefficients_df <- bind_rows(df1, df2, df3, df4)
coefficients_df <- coefficients_df %>%
  left_join(ci99_df, by = c("term", "Country"))

# Filter out the intercept and other unwanted coefficients
coefficients_df <- coefficients_df %>%
  filter(term != "(Intercept)")

# Rename terms for readability
coefficients_df <- coefficients_df %>%
  mutate(term = case_when(
    term == "rwa_std" ~ "Right-Wing Authoritarianism",
    term == "sdo_std" ~ "Social Dominance Orientation",
    term == "ethnocentrism_std" ~ "Ethnocentrism",
    term == "ideology_std" ~ "Ideology",
    term == "ethnic_majority" ~ "Ethnic Majority",
    term == "age_std" ~ "Age",
    term == "church_attendance_std" ~ "Religiosity",
    term == "income_num_std" ~ "Income",
    term == "Q1_interest_in_politics_std" ~ "Political Interest",
    term == "marital_status" ~ "Marital Status",
    term == "education_collapse" ~ "Education",
    TRUE ~ term
  ))

# Define the desired order for facets
facet_order <- c("Age", "Income", "Marital Status", "Education", "Political Interest", "Religiosity", "Ethnocentrism", "Ideology", "Ethnic Majority",
                 "Right-Wing Authoritarianism", "Social Dominance Orientation")


# Relevel the 'term' factor according to the desired facet order
coefficients_df <- coefficients_df %>%
  mutate(term = factor(term, levels = facet_order))

# Creating the plot with multi-level confidence intervals
plot1 <- ggplot(coefficients_df, aes(x = estimate, y = Country, color = Country)) +
    facet_wrap(~ term, scales = "free_y", ncol = 1) +
    geom_point(size = 2, shape = 16) +
    geom_linerange(aes(xmin = conf.low2, xmax = conf.high2), height = 0.2, color = "gray70", size = 0.25) + # Wider CI in lighter gray
    geom_linerange(aes(xmin = conf.low, xmax = conf.high), height = 0.2, color = "gray20", size = 0.25) + # Narrower CI in darker gray
    geom_vline(xintercept = 0, color = "black", size = .5, linetype = "solid") +  # Add vertical line for intercept
    scale_color_manual(values = c("United States" = "black", "France" = "black", "Poland" = "black", "United Kingdom" = "black")) +
    labs(x = "Point estimates", y = NULL, title = "DV: Conspiratorial Orientation") +
    theme_minimal() +
    theme(
        legend.position = "none",
        axis.text.y = element_text(size = 10),
        axis.title.x = element_text(size = 12),
        plot.title = element_text(hjust = 0.5, size = 14),
        strip.text = element_text(size = 12),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_line(size = .5, color = "gray", linetype = "dotted")
    )
# Extracting coefficients and creating a tidy data frame with confidence intervals
df1 <- tidy(PopUS_Main, conf.int = TRUE) %>% mutate(Country = "United States")
df2 <- tidy(PopFR_Main, conf.int = TRUE) %>% mutate(Country = "France")
df3 <- tidy(PopPL_Main, conf.int = TRUE) %>% mutate(Country = "Poland")
df4 <- tidy(PopGB_Main, conf.int = TRUE) %>% mutate(Country = "United Kingdom")


# Extracting 99% confidence intervals
ci99_df1 <- confint(PopUS_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "United States")
ci99_df2 <- confint(PopFR_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "France")
ci99_df3 <- confint(PopPL_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "Poland")
ci99_df4 <- confint(PopGB_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "United Kingdom")

# Renaming columns to match
colnames(ci99_df1)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df2)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df3)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df4)[1:2] <- c("conf.low2", "conf.high2")

# Combining the 99% CIs into one data frame
ci99_df <- bind_rows(ci99_df1, ci99_df2, ci99_df3, ci99_df4)

# Preparing the combined dataframe
coefficients_df <- bind_rows(df1, df2, df3, df4)
coefficients_df <- coefficients_df %>%
  left_join(ci99_df, by = c("term", "Country"))

# Filter out the intercept and other unwanted coefficients
coefficients_df <- coefficients_df %>%
  filter(term != "(Intercept)")

# Rename terms for readability
coefficients_df <- coefficients_df %>%
  mutate(term = case_when(
    term == "rwa_std" ~ "Right-Wing Authoritarianism",
    term == "sdo_std" ~ "Social Dominance Orientation",
    term == "ethnocentrism_std" ~ "Ethnocentrism",
    term == "ideology_std" ~ "Ideology",
    term == "ethnic_majority" ~ "Ethnic Majority",
    term == "age_std" ~ "Age",
    term == "church_attendance_std" ~ "Religiosity",
    term == "income_num_std" ~ "Income",
    term == "Q1_interest_in_politics_std" ~ "Political Interest",
    term == "marital_status" ~ "Marital Status",
    term == "education_collapse" ~ "Education",
    TRUE ~ term
  ))

# Define the desired order for facets
facet_order <- c("Age", "Income", "Marital Status", "Education", "Political Interest", "Religiosity", "Ethnocentrism", "Ideology", "Ethnic Majority",
                 "Right-Wing Authoritarianism", "Social Dominance Orientation")


# Relevel the 'term' factor according to the desired facet order
coefficients_df <- coefficients_df %>%
  mutate(term = factor(term, levels = facet_order))


# Creating the plot with multi-level confidence intervals
plot2 <- ggplot(coefficients_df, aes(x = estimate, y = Country, color = Country)) +
    facet_wrap(~ term, scales = "free_y", ncol = 1) +
    geom_point(size = 2, shape = 16) +
    geom_linerange(aes(xmin = conf.low2, xmax = conf.high2), height = 0.2, color = "gray70", size = 0.25) + # Wider CI in lighter gray
    geom_linerange(aes(xmin = conf.low, xmax = conf.high), height = 0.2, color = "gray20", size = 0.25) + # Narrower CI in darker gray
    geom_vline(xintercept = 0, color = "black", size = .5, linetype = "solid") +  # Add vertical line for intercept
    scale_color_manual(values = c("United States" = "black", "France" = "black", "Poland" = "black", "United Kingdom" = "black")) +
    labs(x = "Point estimates", y = NULL, title = "DV: Populist Attitudes") +
    theme_minimal() +
    theme(
        legend.position = "none",
        axis.text.y = element_text(size = 10),
        axis.title.x = element_text(size = 12),
        plot.title = element_text(hjust = 0.5, size = 14),
        strip.text = element_text(size = 12),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_line(size = .5, color = "gray", linetype = "dotted")
    )

if (!require(grid)) install.packages("grid")
library(grid)
# Creating the combined plot object with arrangeGrob
combined_plot <- arrangeGrob(
  plot2, plot1,
  ncol = 2,
  top = textGrob("Populist & Conspiratorial Attitudes Per Country (Main Models)\n", 
                 gp = gpar(fontface = "bold", fontsize = 20), vjust = 1)
)
# Printing the combined plot with annotations
grid.draw(combined_plot)

Correlations populist vote x attitudes

PL

# Spearman correlation
correlation_spearmanPL <- cor(PL_data$vote_prawo, PL_data$populism_rw_std, method = "spearman")

# Kendall correlation
correlation_kendallPL <- cor(PL_data$vote_prawo, PL_data$populism_rw_std, method = "kendall")

# Print the results
print(correlation_spearmanPL)
## [1] -0.01558146
print(correlation_kendallPL)
## [1] -0.01294549

US

# Spearman correlation
correlation_spearmanUS <- cor(US_data$vote_trump, US_data$populism_rw_std, method = "spearman")

# Kendall correlation
correlation_kendallUS <- cor(US_data$vote_trump, US_data$populism_rw_std, method = "kendall")

# Print the results
print(correlation_spearmanUS)
## [1] 0.2728396
print(correlation_kendallUS)
## [1] 0.2265467

FR

# Spearman correlation
correlation_spearmanFR <- cor(FR_data$vote_lepen, FR_data$populism_rw_std, method = "spearman")

# Kendall correlation
correlation_kendallFR <- cor(FR_data$vote_lepen, FR_data$populism_rw_std, method = "kendall")

# Print the results
print(correlation_spearmanFR)
## [1] 0.2827311
print(correlation_kendallFR)
## [1] 0.23457

Summary RWP

summary(RWPUS_full)
## 
## Call:
## lm(formula = vote_trump ~ devalued_std + ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     ethnic_majority + age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status, data = US_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7790 -0.3099 -0.1174  0.3181  1.1483 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.277706   0.036193   7.673 2.62e-14 ***
## devalued_std                 0.022552   0.009504   2.373 0.017747 *  
## ethnocentrism_std           -0.051363   0.011400  -4.506 7.00e-06 ***
## rwa_std                      0.053261   0.010678   4.988 6.64e-07 ***
## sdo_std                      0.052031   0.011565   4.499 7.22e-06 ***
## church_attendance_std        0.001127   0.009905   0.114 0.909439    
## ideology_std                 0.160107   0.010521  15.218  < 2e-16 ***
## ethnic_majority              0.160387   0.023793   6.741 2.06e-11 ***
## age_std                      0.066876   0.010475   6.384 2.14e-10 ***
## education_collapse          -0.032696   0.009297  -3.517 0.000446 ***
## Q1_interest_in_politics_std  0.026992   0.009600   2.812 0.004977 ** 
## income_num_std               0.013731   0.009803   1.401 0.161467    
## marital_status               0.022786   0.019337   1.178 0.238796    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.398 on 1987 degrees of freedom
## Multiple R-squared:  0.2673, Adjusted R-squared:  0.2629 
## F-statistic: 60.42 on 12 and 1987 DF,  p-value: < 2.2e-16
summary(RWPFR_full)
## 
## Call:
## lm(formula = vote_lepen ~ devalued_std + ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     ethnic_majority + age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status, data = FR_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7846 -0.2482 -0.1231  0.1137  1.3444 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.2376517  0.0402674   5.902 4.21e-09 ***
## devalued_std                 0.0453457  0.0087331   5.192 2.29e-07 ***
## ethnocentrism_std            0.0910505  0.0102988   8.841  < 2e-16 ***
## rwa_std                     -0.0179359  0.0097285  -1.844   0.0654 .  
## sdo_std                     -0.0243618  0.0095637  -2.547   0.0109 *  
## church_attendance_std        0.0177253  0.0087792   2.019   0.0436 *  
## ideology_std                 0.1268561  0.0095545  13.277  < 2e-16 ***
## ethnic_majority              0.0675774  0.0311129   2.172   0.0300 *  
## age_std                     -0.0235738  0.0090030  -2.618   0.0089 ** 
## education_collapse          -0.0305089  0.0072983  -4.180 3.04e-05 ***
## Q1_interest_in_politics_std  0.0051625  0.0088211   0.585   0.5585    
## income_num_std              -0.0000351  0.0101615  -0.003   0.9972    
## marital_status               0.0277436  0.0204235   1.358   0.1745    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3755 on 1991 degrees of freedom
## Multiple R-squared:  0.2019, Adjusted R-squared:  0.1971 
## F-statistic: 41.98 on 12 and 1991 DF,  p-value: < 2.2e-16
summary(RWPPL_full)
## 
## Call:
## lm(formula = vote_prawo ~ devalued_std + ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     ethnic_majority + age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status, data = PL_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8447 -0.2393 -0.0957  0.2216  1.1011 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.2038311  0.0463028   4.402 1.13e-05 ***
## devalued_std                -0.0015786  0.0082060  -0.192  0.84747    
## ethnocentrism_std            0.0178695  0.0095142   1.878  0.06050 .  
## rwa_std                      0.0829600  0.0107510   7.716 1.88e-14 ***
## sdo_std                     -0.0524712  0.0090935  -5.770 9.16e-09 ***
## church_attendance_std       -0.0421124  0.0091245  -4.615 4.18e-06 ***
## ideology_std                 0.1592224  0.0090532  17.587  < 2e-16 ***
## ethnic_majority              0.0889350  0.0420097   2.117  0.03438 *  
## age_std                      0.0271748  0.0085868   3.165  0.00158 ** 
## education_collapse          -0.0208804  0.0076540  -2.728  0.00643 ** 
## Q1_interest_in_politics_std  0.0424393  0.0085536   4.962 7.59e-07 ***
## income_num_std               0.0005368  0.0086615   0.062  0.95058    
## marital_status               0.0144730  0.0176161   0.822  0.41142    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3599 on 1988 degrees of freedom
## Multiple R-squared:  0.3058, Adjusted R-squared:  0.3016 
## F-statistic: 72.98 on 12 and 1988 DF,  p-value: < 2.2e-16