Start by creating a data set that has the name of the state and its population. Show the first 10 rows in the knitted document.
## # A tibble: 51 × 2
## state_name population
## <chr> <int>
## 1 Alabama 4893186
## 2 Alaska 736990
## 3 Arizona 7174064
## 4 Arkansas 3011873
## 5 California 39346023
## 6 Colorado 5684926
## 7 Connecticut 3570549
## 8 Delaware 967679
## 9 District of Columbia 701974
## 10 Florida 21216924
## # ℹ 41 more rows
Create the state_lines data set by joining a data set with the state borders with the states data set created in 1a). Again, show the first 10 rows of the data set.
## # A tibble: 15,537 × 8
## long lat group order region subregion state_name population
## <dbl> <dbl> <dbl> <int> <chr> <chr> <chr> <int>
## 1 -87.5 30.4 1 1 alabama <NA> Alabama 4893186
## 2 -87.5 30.4 1 2 alabama <NA> Alabama 4893186
## 3 -87.5 30.4 1 3 alabama <NA> Alabama 4893186
## 4 -87.5 30.3 1 4 alabama <NA> Alabama 4893186
## 5 -87.6 30.3 1 5 alabama <NA> Alabama 4893186
## 6 -87.6 30.3 1 6 alabama <NA> Alabama 4893186
## 7 -87.6 30.3 1 7 alabama <NA> Alabama 4893186
## 8 -87.6 30.3 1 8 alabama <NA> Alabama 4893186
## 9 -87.7 30.3 1 9 alabama <NA> Alabama 4893186
## 10 -87.8 30.3 1 10 alabama <NA> Alabama 4893186
## # ℹ 15,527 more rows
Create a map that shows the population of each state. It should look similar to what is in Brightspace, but doesn’t have be identical! Hint: A log10 transformation was applied to population!
Start by creating the county_lines data that has the:
The pdf in Brightspace has the first 10 rows. Make sure that the data set you create matches it!
## # A tibble: 87,949 × 8
## long lat group order region subregion state_county fips
## <dbl> <dbl> <dbl> <int> <chr> <chr> <chr> <int>
## 1 -86.5 32.3 1 1 alabama autauga alabama,autauga 1001
## 2 -86.5 32.4 1 2 alabama autauga alabama,autauga 1001
## 3 -86.5 32.4 1 3 alabama autauga alabama,autauga 1001
## 4 -86.6 32.4 1 4 alabama autauga alabama,autauga 1001
## 5 -86.6 32.4 1 5 alabama autauga alabama,autauga 1001
## 6 -86.6 32.4 1 6 alabama autauga alabama,autauga 1001
## 7 -86.6 32.4 1 7 alabama autauga alabama,autauga 1001
## 8 -86.6 32.4 1 8 alabama autauga alabama,autauga 1001
## 9 -86.6 32.4 1 9 alabama autauga alabama,autauga 1001
## 10 -86.6 32.4 1 10 alabama autauga alabama,autauga 1001
## # ℹ 87,939 more rows
Using the county_lines and counties data sets, create a map for the population of each county. Add the border for each state to the map as well.
Like the previous map, it should be similar to the graph found in blackboard, but it doesn’t need to be identical. Pay attention to the fill scale for population!
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
Using the counties data set, create a column that represents the county’s population percentage of the state’s population.
For example, if Vermont has 600,000 people and Chittenden county had 120,000 it would be 0.20 or 20% (either proportion or percentage is fine).
Show the counties in Vermont in the knitted document!
## county county_full FIPS state_abbv state_name population
## 1 Addison Addison County 50001 VT Vermont 36947
## 2 Bennington Bennington County 50003 VT Vermont 35649
## 3 Caledonia Caledonia County 50005 VT Vermont 30027
## 4 Chittenden Chittenden County 50007 VT Vermont 163414
## 5 Essex Essex County 50009 VT Vermont 6179
## 6 Franklin Franklin County 50011 VT Vermont 49275
## 7 Grand Isle Grand Isle County 50013 VT Vermont 7075
## 8 Lamoille Lamoille County 50015 VT Vermont 25376
## 9 Orange Orange County 50017 VT Vermont 28873
## 10 Orleans Orleans County 50019 VT Vermont 26843
## 11 Rutland Rutland County 50021 VT Vermont 58527
## 12 Washington Washington County 50023 VT Vermont 58336
## 13 Windham Windham County 50025 VT Vermont 42628
## 14 Windsor Windsor County 50027 VT Vermont 55191
## pop_per
## 1 0.059177692
## 2 0.057098696
## 3 0.048093987
## 4 0.261738796
## 5 0.009896851
## 6 0.078923343
## 7 0.011331967
## 8 0.040644521
## 9 0.046245635
## 10 0.042994202
## 11 0.093742192
## 12 0.093436269
## 13 0.068276900
## 14 0.088398949
Create a graph that presents the county’s percentage (or proportion) of the state’s population. It should look similar to the one in blackboard!
What two counties stand out and why? What does the map tells us about those two counties?