Specifying the packages

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(haven)
library(psych)
## 
## Attaching package: 'psych'
## 
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(knitr)
library(kableExtra)
## 
## Attaching package: 'kableExtra'
## 
## The following object is masked from 'package:dplyr':
## 
##     group_rows
library(lavaan)
## This is lavaan 0.6-18
## lavaan is FREE software! Please report any bugs.
## 
## Attaching package: 'lavaan'
## 
## The following object is masked from 'package:psych':
## 
##     cor2cov
library(apaTables)
library(semPlot)
library(questionr)
## 
## Attaching package: 'questionr'
## 
## The following object is masked from 'package:psych':
## 
##     describe
library(corrplot)
## corrplot 0.92 loaded

This block of code brings in the data from spss and renames the variables for easier interpretation.

Carly_MA_Data <- read_sav("MA Thesis Quant Data_With Missing Data_Recoded.sav")

names(Carly_MA_Data)
##   [1] "ParticipantID"                  "Progress"                      
##   [3] "ResponseID"                     "Consent"                       
##   [5] "ConsentForQuotes"               "OConnorAndCasey_1"             
##   [7] "OConnorAndCasey_2"              "OConnorAndCasey_3"             
##   [9] "OConnorAndCasey_4"              "OConnorAndCasey_5"             
##  [11] "OConnorAndCasey_6"              "OConnorAndCasey_7"             
##  [13] "OConnorAndCasey_8"              "OConnorAndCasey_9"             
##  [15] "OConnorAndCasey_10"             "OConnorAndCasey_11"            
##  [17] "OConnorAndCasey_12"             "OConnorAndCasey_13"            
##  [19] "OConnorAndCasey_14"             "OConnorAndCasey_15"            
##  [21] "OConnorAndCasey_16"             "OConnorAndCasey_17"            
##  [23] "OConnorAndCasey_18"             "OConnorAndCasey_19"            
##  [25] "OConnorAndCasey_20"             "OConnorAndCasey_21"            
##  [27] "OConnorAndCasey_22"             "OConnorAndCasey_23"            
##  [29] "OConnorAndCasey_24"             "OConnorAndCasey_25"            
##  [31] "OConnorAndCasey_26"             "OConnorAndCasey_27"            
##  [33] "OConnorAndCasey_28"             "OConnorAndCasey_29"            
##  [35] "OConnorAndCasey_30"             "OConnorAndCasey_31"            
##  [37] "OConnorAndCasey_32"             "OConnorAndCasey_33"            
##  [39] "OConnorAndCasey_34"             "OConnorAndCasey_35"            
##  [41] "Vogel_1"                        "Vogel_2"                       
##  [43] "Vogel_3"                        "Vogel_4"                       
##  [45] "Vogel_5"                        "Vogel_6"                       
##  [47] "Vogel_7"                        "Vogel_8"                       
##  [49] "Vogel_9"                        "Vogel_10"                      
##  [51] "FischerAndFarina_1"             "FischerAndFarina_2"            
##  [53] "FischerAndFarina_3"             "FischerAndFarina_4"            
##  [55] "FischerAndFarina_5"             "FischerAndFarina_6"            
##  [57] "FischerAndFarina_7"             "FischerAndFarina_8"            
##  [59] "FischerAndFarina_9"             "FischerAndFarina_10"           
##  [61] "Cash_1"                         "Cash_2"                        
##  [63] "Cash_3"                         "Cash_4"                        
##  [65] "Cash_5"                         "Cash_6"                        
##  [67] "Cash_7"                         "Cash_8"                        
##  [69] "Cash_9"                         "Cash_10"                       
##  [71] "Cash_11"                        "Cash_12"                       
##  [73] "Cash_13"                        "Cash_14"                       
##  [75] "Cash_15"                        "Cash_16"                       
##  [77] "Cash_17"                        "Tomczyk_1"                     
##  [79] "Tomczyk_2"                      "Tomczyk_3"                     
##  [81] "Kessler_1"                      "Kessler_2"                     
##  [83] "Kessler_3"                      "Kessler_4"                     
##  [85] "Kessler_5"                      "Kessler_6"                     
##  [87] "Kessler_7"                      "Kessler_8"                     
##  [89] "Kessler_9"                      "Kessler_10"                    
##  [91] "AGE"                            "GENDER"                        
##  [93] "SEXUALORIENTATION"              "SEXUALORIENTATION_7_TEXT"      
##  [95] "RACE"                           "RACE_11_TEXT"                  
##  [97] "LANGUAGE"                       "LANGUAGE_2_TEXT"               
##  [99] "LIVINGAREA"                     "LIVINGSITUATION"               
## [101] "LIVINGSITUATION_9_TEXT"         "RELATIONSHIP"                  
## [103] "RELATIONSHIP_8_TEXT"            "INCOME"                        
## [105] "EMPLOYMENT"                     "EMPLOYMENT_10_TEXT"            
## [107] "STUDENTTYPE"                    "CANADA"                        
## [109] "STUDENTSTATUS"                  "STUDENTSTATUS_13_TEXT"         
## [111] "FACULTY"                        "DISABILITY"                    
## [113] "PASTTHERAPY"                    "CURRENTTHERAPY"                
## [115] "PASTMEDS"                       "CURRENTMEDS"                   
## [117] "OConnorAndCasey_10_R"           "OConnorAndCasey_12_R"          
## [119] "OConnorAndCasey_15_R"           "OConnorAndCasey_20_R"          
## [121] "OConnorAndCasey_21_R"           "OConnorAndCasey_22_R"          
## [123] "OConnorAndCasey_23_R"           "OConnorAndCasey_24_R"          
## [125] "OConnorAndCasey_25_R"           "OConnorAndCasey_26_R"          
## [127] "OConnorAndCasey_27_R"           "OConnorAndCasey_28_R"          
## [129] "Vogel_2_R"                      "Vogel_4_R"                     
## [131] "Vogel_5_R"                      "Vogel_7_R"                     
## [133] "Vogel_9_R"                      "FischerAndFarina_2_R"          
## [135] "FischerAndFarina_4_R"           "FischerAndFarina_8_R"          
## [137] "FischerAndFarina_9_R"           "FischerAndFarina_10_R"         
## [139] "MHLS_TOTAL_OConnorAndCasey"     "SSOSH_TOTAL_Vogel"             
## [141] "ATSPPHS_TOTAL_FischerAndFarina" "ISCI_TOTAL_Cash"               
## [143] "PBC_TOTAL_Tomczyk"              "K10_TOTAL_Kessler"
colnames(Carly_MA_Data)[6] = "MHLS_1"
colnames(Carly_MA_Data)[7] = "MHLS_2"
colnames(Carly_MA_Data)[8] = "MHLS_3"
colnames(Carly_MA_Data)[9] = "MHLS_4"
colnames(Carly_MA_Data)[10] = "MHLS_5"
colnames(Carly_MA_Data)[11] = "MHLS_6"
colnames(Carly_MA_Data)[12] = "MHLS_7"
colnames(Carly_MA_Data)[13] = "MHLS_8"
colnames(Carly_MA_Data)[14] = "MHLS_9"
colnames(Carly_MA_Data)[15] = "MHLS_10"
colnames(Carly_MA_Data)[16] = "MHLS_11"
colnames(Carly_MA_Data)[17] = "MHLS_12"
colnames(Carly_MA_Data)[18] = "MHLS_13"
colnames(Carly_MA_Data)[19] = "MHLS_14"
colnames(Carly_MA_Data)[20] = "MHLS_15"
colnames(Carly_MA_Data)[21] = "MHLS_16"
colnames(Carly_MA_Data)[22] = "MHLS_17"
colnames(Carly_MA_Data)[23] = "MHLS_18"
colnames(Carly_MA_Data)[24] = "MHLS_19"
colnames(Carly_MA_Data)[25] = "MHLS_20"
colnames(Carly_MA_Data)[26] = "MHLS_21"
colnames(Carly_MA_Data)[27] = "MHLS_22"
colnames(Carly_MA_Data)[28] = "MHLS_23"
colnames(Carly_MA_Data)[29] = "MHLS_24"
colnames(Carly_MA_Data)[30] = "MHLS_25"
colnames(Carly_MA_Data)[31] = "MHLS_26"
colnames(Carly_MA_Data)[32] = "MHLS_27"
colnames(Carly_MA_Data)[33] = "MHLS_28"
colnames(Carly_MA_Data)[34] = "MHLS_29"
colnames(Carly_MA_Data)[35] = "MHLS_30"
colnames(Carly_MA_Data)[36] = "MHLS_31"
colnames(Carly_MA_Data)[37] = "MHLS_32"
colnames(Carly_MA_Data)[38] = "MHLS_33"
colnames(Carly_MA_Data)[39] = "MHLS_34"
colnames(Carly_MA_Data)[40] = "MHLS_35"
colnames(Carly_MA_Data)[41] = "SSOH_1"
colnames(Carly_MA_Data)[42] = "SSOH_2"
colnames(Carly_MA_Data)[43] = "SSOH_3"
colnames(Carly_MA_Data)[44] = "SSOH_4"
colnames(Carly_MA_Data)[45] = "SSOH_5"
colnames(Carly_MA_Data)[46] = "SSOH_6"
colnames(Carly_MA_Data)[47] = "SSOH_7"
colnames(Carly_MA_Data)[48] = "SSOH_8"
colnames(Carly_MA_Data)[49] = "SSOH_9"
colnames(Carly_MA_Data)[50] = "SSOH_10"
colnames(Carly_MA_Data)[51] = "ATSPPHS_1"
colnames(Carly_MA_Data)[52] = "ATSPPHS_2"
colnames(Carly_MA_Data)[53] = "ATSPPHS_3"
colnames(Carly_MA_Data)[54] = "ATSPPHS_4"
colnames(Carly_MA_Data)[55] = "ATSPPHS_5"
colnames(Carly_MA_Data)[56] = "ATSPPHS_6"
colnames(Carly_MA_Data)[57] = "ATSPPHS_7"
colnames(Carly_MA_Data)[58] = "ATSPPHS_8"
colnames(Carly_MA_Data)[59] = "ATSPPHS_9"
colnames(Carly_MA_Data)[60] = "ATSPPHS_10"
colnames(Carly_MA_Data)[61] = "ISCI_1"
colnames(Carly_MA_Data)[62] = "ISCI_2"
colnames(Carly_MA_Data)[63] = "ISCI_3"
colnames(Carly_MA_Data)[64] = "ISCI_4"
colnames(Carly_MA_Data)[65] = "ISCI_5"
colnames(Carly_MA_Data)[66] = "ISCI_6"
colnames(Carly_MA_Data)[67] = "ISCI_7"
colnames(Carly_MA_Data)[68] = "ISCI_8"
colnames(Carly_MA_Data)[69] = "ISCI_9"
colnames(Carly_MA_Data)[70] = "ISCI_10"
colnames(Carly_MA_Data)[71] = "ISCI_11"
colnames(Carly_MA_Data)[72] = "ISCI_12"
colnames(Carly_MA_Data)[73] = "ISCI_13"
colnames(Carly_MA_Data)[74] = "ISCI_14"
colnames(Carly_MA_Data)[75] = "ISCI_15"
colnames(Carly_MA_Data)[76] = "ISCI_16"
colnames(Carly_MA_Data)[77] = "ISCI_17"
colnames(Carly_MA_Data)[78] = "TPBQ_1"
colnames(Carly_MA_Data)[79] = "TPBQ_2"
colnames(Carly_MA_Data)[80] = "TPBQ_3"
colnames(Carly_MA_Data)[81] = "K10_1"
colnames(Carly_MA_Data)[82] = "K10_2"
colnames(Carly_MA_Data)[83] = "K10_3"
colnames(Carly_MA_Data)[84] = "K10_4"
colnames(Carly_MA_Data)[85] = "K10_5"
colnames(Carly_MA_Data)[86] = "K10_6"
colnames(Carly_MA_Data)[87] = "K10_7"
colnames(Carly_MA_Data)[88] = "K10_8"
colnames(Carly_MA_Data)[89] = "K10_9"
colnames(Carly_MA_Data)[90] = "K10_10"
colnames(Carly_MA_Data)[117] = "MHLS_10_R"
colnames(Carly_MA_Data)[118] = "MHLS_12_R"
colnames(Carly_MA_Data)[119] = "MHLS_15_R"
colnames(Carly_MA_Data)[120] = "MHLS_20_R"
colnames(Carly_MA_Data)[121] = "MHLS_21_R"
colnames(Carly_MA_Data)[122] = "MHLS_22_R"
colnames(Carly_MA_Data)[123] = "MHLS_23_R"
colnames(Carly_MA_Data)[124] = "MHLS_24_R"
colnames(Carly_MA_Data)[125] = "MHLS_25_R"
colnames(Carly_MA_Data)[126] = "MHLS_26_R"
colnames(Carly_MA_Data)[127] = "MHLS_27_R"
colnames(Carly_MA_Data)[128] = "MHLS_28_R"
colnames(Carly_MA_Data)[129] = "SSOH_2_R"
colnames(Carly_MA_Data)[130] = "SSOH_4_R"
colnames(Carly_MA_Data)[131] = "SSOH_5_R"
colnames(Carly_MA_Data)[132] = "SSOH_7_R"
colnames(Carly_MA_Data)[133] = "SSOH_9_R"
colnames(Carly_MA_Data)[134] = "ATSPPHS_2_R"
colnames(Carly_MA_Data)[135] = "ATSPPHS_4_R"
colnames(Carly_MA_Data)[136] = "ATSPPHS_8_R"
colnames(Carly_MA_Data)[137] = "ATSPPHS_9_R"
colnames(Carly_MA_Data)[138] = "ATSPPHS_10_R"
colnames(Carly_MA_Data)[139] = "MHLS_Total"
colnames(Carly_MA_Data)[140] = "SSOSH_Total"
colnames(Carly_MA_Data)[141] = "ATSPPHS_Total"
colnames(Carly_MA_Data)[142] = "ISCI_Total"
colnames(Carly_MA_Data)[143] = "PBC_Total"
colnames(Carly_MA_Data)[144] = "K10_Total"

The next block creates the subscale variables from the Intention Scale

Carly_MA_Data$Psy_Int <-(Carly_MA_Data$ISCI_3+Carly_MA_Data$ISCI_4+Carly_MA_Data$ISCI_5+
                           Carly_MA_Data$ISCI_6+Carly_MA_Data$ISCI_8+Carly_MA_Data$ISCI_10+
                           Carly_MA_Data$ISCI_12+Carly_MA_Data$ISCI_14+Carly_MA_Data$ISCI_16+
                           Carly_MA_Data$ISCI_17)/10

Carly_MA_Data$Acad_Int <-(Carly_MA_Data$ISCI_7+ Carly_MA_Data$ISCI_9+Carly_MA_Data$ISCI_13+
                            Carly_MA_Data$ISCI_15)/4

Carly_MA_Data$Drugs_Int <-(Carly_MA_Data$ISCI_2 + Carly_MA_Data$ISCI_11)/2

This section creates a new analysis dataset from the original data and restructures past therapy and gender variables

Carly_Analysis_Data <-Carly_MA_Data[,c(91:93,95,97,99,100,102,104,105,107:109,111,112:116,139:147)]

recode.na(Carly_Analysis_Data$PASTTHERAPY, "-8")
## Recoded 7 values to NA.
## Recoded variable contains only numeric characters. Consider using as.numeric = TRUE.
##   [1] 1    1    0    1    0    1    1    0    1    0    1    1    0    1    1   
##  [16] 1    1    0    0    1    <NA> 1    1    0    0    0    1    1    1    1   
##  [31] <NA> <NA> 1    1    1    0    0    1    0    1    1    <NA> 1    0    1   
##  [46] 1    1    0    1    1    1    1    1    0    0    0    0    1    1    0   
##  [61] 0    <NA> <NA> 0    0    1    1    0    0    <NA> <NA> 0    1    1    1   
##  [76] <NA> 0    0    0    0    0    0    0    0    1    <NA> <NA> 0    1    1   
##  [91] 1    0    0    1    1    1    1    1    0    1    <NA> <NA> 1    1    0   
## [106] <NA> 0    1    0    1    1    1    1    0    1    1    1    0    0    <NA>
## [121] 1    0   
## Levels: 0 1
Carly_Analysis_Data$GENDER<- factor(Carly_Analysis_Data$GENDER,
                                    levels = c(1:7),
                                    labels = c("Cis Female","Trans Female","Cis Male","Trans Male","Indigenous or Other Cultural Gender Identity","Non-Binary","Prefer Not to Answer"))
levels(Carly_Analysis_Data$GENDER)[levels(Carly_Analysis_Data$GENDER) == 'Prefer Not to Answer'] <- NA

Then we have the code for the descriptive statistics for the study variables

table(Carly_Analysis_Data$GENDER)
## 
##                                   Cis Female 
##                                           75 
##                                 Trans Female 
##                                            2 
##                                     Cis Male 
##                                           21 
##                                   Trans Male 
##                                            1 
## Indigenous or Other Cultural Gender Identity 
##                                            0 
##                                   Non-Binary 
##                                           10
table(Carly_Analysis_Data$PASTTHERAPY)
## 
## -8  0  1 
##  7 45 62
table(Carly_Analysis_Data$CURRENTTHERAPY)
## 
## -8  0  1 
##  3 85 26
describe(Carly_Analysis_Data)%>%
  knitr::kable(digits = 3, format="html", booktabs=TRUE, caption="Table 1. Carly Thesis Descriptives")%>%
  kable_classic(full_width = F, html_font = "Cambria")
Table 1. Carly Thesis Descriptives
x

[122 obs. x 28 variables] tbl_df tbl data.frame

$AGE: numeric: 21 19 21 19 19 25 20 19 21 18 … min: 18 - max: 28 - NAs: 14 (11.5%) - 11 unique values

$GENDER: nominal factor: “Cis Female” “Trans Female” “Cis Female” “Cis Female” “Cis Female” “Cis Female” “Cis Male” “Cis Female” “Cis Female” “Cis Female” … 6 levels: Cis Female | Trans Female | Cis Male | Trans Male | Indigenous or Other Cultural Gender Identity | Non-Binary NAs: 13 (10.7%)

$SEXUALORIENTATION: numeric: 3 2 1 1 1 1 1 1 3 1 … min: 1 - max: 9 - NAs: 8 (6.6%) - 9 unique values

$RACE: numeric: 10 10 10 10 1 10 10 10 10 9 … min: 1 - max: 12 - NAs: 15 (12.3%) - 11 unique values

$LANGUAGE: numeric: 1 1 1 1 1 1 1 1 1 2 … min: 1 - max: 3 - NAs: 8 (6.6%) - 4 unique values

$LIVINGAREA: numeric: 1 2 2 2 1 1 2 2 1 1 … min: 1 - max: 4 - NAs: 8 (6.6%) - 5 unique values

$LIVINGSITUATION: numeric: 7 NA 7 5 1 2 5 NA NA 6 … min: 1 - max: 10 - NAs: 44 (36.1%) - 8 unique values

$RELATIONSHIP: numeric: 1 3 3 2 1 4 1 1 3 1 … min: 1 - max: 9 - NAs: 8 (6.6%) - 7 unique values

$INCOME: numeric: 2 12 12 12 5 7 12 2 12 12 … min: 1 - max: 13 - NAs: 8 (6.6%) - 14 unique values

$EMPLOYMENT: numeric: 1 NA 3 NA 2 3 3 NA NA NA … min: 1 - max: 11 - NAs: 63 (51.6%) - 8 unique values

$STUDENTTYPE: numeric: 1 1 1 1 2 1 1 1 1 2 … min: 1 - max: 3 - NAs: 8 (6.6%) - 4 unique values

$CANADA: numeric: 5 5 5 5 2 5 5 5 5 1 … min: 1 - max: 6 - NAs: 9 (7.4%) - 7 unique values

$STUDENTSTATUS: numeric: 7 1 7 3 5 11 5 5 5 1 … min: 1 - max: 13 - NAs: 8 (6.6%) - 9 unique values

$FACULTY: numeric: 2 7 1 8 1 2 3 8 6 1 … min: 1 - max: 9 - NAs: 8 (6.6%) - 10 unique values

$DISABILITY: numeric: 2 1 2 2 2 2 2 2 1 2 … min: 1 - max: 3 - NAs: 8 (6.6%) - 4 unique values

$PASTTHERAPY: labelled double: 1 1 0 1 0 1 1 0 1 0 … min: -8 - max: 1 - NAs: 8 (6.6%) - 4 unique values 3 value labels: [-8] Prefer Not to Answer [0] No [1] Yes

$CURRENTTHERAPY: numeric: 0 0 0 1 0 1 0 0 0 0 … min: -8 - max: 1 - NAs: 8 (6.6%) - 4 unique values

$PASTMEDS: numeric: 1 1 0 0 0 1 0 0 1 0 … min: -8 - max: 1 - NAs: 8 (6.6%) - 4 unique values

$CURRENTMEDS: numeric: 0 1 0 0 0 1 0 0 1 0 … min: -8 - max: 1 - NAs: 8 (6.6%) - 4 unique values

$MHLS_Total: numeric: 133 141 138 138 113 141 133 140 149 131 … min: 90 - max: 157 - NAs: 4 (3.3%) - 46 unique values

$SSOSH_Total: numeric: 20 21 15 24 15 24 16 27 11 13 … min: 9 - max: 36 - NAs: 1 (0.8%) - 29 unique values

$ATSPPHS_Total: numeric: 28 37 38 30 26 35 29 31 34 34 … min: 17 - max: 39 - NAs: 2 (1.6%) - 23 unique values

$ISCI_Total: numeric: 44 40 47 36 23 39 40 40 43 50 … min: 21 - max: 68 - NAs: 2 (1.6%) - 39 unique values

$PBC_Total: numeric: 9 20 17 21 21 21 19 15 21 19 … min: 9 - max: 21 - NAs: 1 (0.8%) - 13 unique values

$K10_Total: numeric: 25 36 25 38 13 30 14 22 12 36 … min: 10 - max: 48 - NAs: 1 (0.8%) - 36 unique values

$Psy_Int: numeric: 2.5 2.6 3.1 2 1.2 2.6 2.3 2.3 2.3 2.7 … min: 1 - max: 4 - NAs: 2 (1.6%) - 31 unique values

$Acad_Int: numeric: 2.25 1.75 1.75 1.75 1 1 1.75 2 2.75 3.5 … min: 1 - max: 4 - NAs: 0 (0%) - 13 unique values

$Drugs_Int: numeric: 3.5 3 3.5 3 3 3 3.5 4 4 4 … min: 1 - max: 4 - NAs: 0 (0%) - 7 unique values
names(Carly_Analysis_Data)
##  [1] "AGE"               "GENDER"            "SEXUALORIENTATION"
##  [4] "RACE"              "LANGUAGE"          "LIVINGAREA"       
##  [7] "LIVINGSITUATION"   "RELATIONSHIP"      "INCOME"           
## [10] "EMPLOYMENT"        "STUDENTTYPE"       "CANADA"           
## [13] "STUDENTSTATUS"     "FACULTY"           "DISABILITY"       
## [16] "PASTTHERAPY"       "CURRENTTHERAPY"    "PASTMEDS"         
## [19] "CURRENTMEDS"       "MHLS_Total"        "SSOSH_Total"      
## [22] "ATSPPHS_Total"     "ISCI_Total"        "PBC_Total"        
## [25] "K10_Total"         "Psy_Int"           "Acad_Int"         
## [28] "Drugs_Int"
apa.cor.table(Carly_Analysis_Data [,c(20:28)], filename = "Carly_Thesis_Desc.doc")
## 
## 
## Means, standard deviations, and correlations with confidence intervals
##  
## 
##   Variable         M      SD    1            2            3          
##   1. MHLS_Total    133.06 12.62                                      
##                                                                      
##   2. SSOSH_Total   19.25  6.31  -.33**                               
##                                 [-.48, -.16]                         
##                                                                      
##   3. ATSPPHS_Total 30.39  4.90  .54**        -.54**                  
##                                 [.39, .66]   [-.66, -.40]            
##                                                                      
##   4. ISCI_Total    45.08  10.25 .45**        -.36**       .51**      
##                                 [.29, .58]   [-.51, -.19] [.36, .63] 
##                                                                      
##   5. PBC_Total     17.71  3.00  .21*         -.25**       .17        
##                                 [.03, .38]   [-.41, -.08] [-.02, .34]
##                                                                      
##   6. K10_Total     26.21  8.85  .10          .16          .06        
##                                 [-.08, .28]  [-.02, .33]  [-.12, .24]
##                                                                      
##   7. Psy_Int       2.71   0.69  .48**        -.35**       .53**      
##                                 [.32, .61]   [-.50, -.18] [.39, .65] 
##                                                                      
##   8. Acad_Int      2.43   0.74  .26**        -.23*        .24**      
##                                 [.08, .42]   [-.39, -.06] [.06, .40] 
##                                                                      
##   9. Drugs_Int     3.12   0.92  .18*         -.20*        .29**      
##                                 [.00, .35]   [-.37, -.02] [.11, .44] 
##                                                                      
##   4           5            6           7          8         
##                                                             
##                                                             
##                                                             
##                                                             
##                                                             
##                                                             
##                                                             
##                                                             
##                                                             
##                                                             
##                                                             
##   .04                                                       
##   [-.14, .22]                                               
##                                                             
##   .18         -.20*                                         
##   [-.00, .34] [-.37, -.02]                                  
##                                                             
##   .95**       .03          .16                              
##   [.93, .97]  [-.15, .21]  [-.02, .33]                      
##                                                             
##   .80**       .00          .10         .64**                
##   [.72, .86]  [-.18, .18]  [-.08, .28] [.52, .74]           
##                                                             
##   .50**       .11          .11         .35**      .28**     
##   [.35, .62]  [-.07, .28]  [-.07, .28] [.18, .50] [.11, .44]
##                                                             
## 
## Note. M and SD are used to represent mean and standard deviation, respectively.
## Values in square brackets indicate the 95% confidence interval.
## The confidence interval is a plausible range of population correlations 
## that could have caused the sample correlation (Cumming, 2014).
##  * indicates p < .05. ** indicates p < .01.
## 
Carly_Analysis_Data_no_Missing <-na.omit(Carly_Analysis_Data)
res <- cor(Carly_Analysis_Data_no_Missing[,c(20:28)])
round(res, 2)
##               MHLS_Total SSOSH_Total ATSPPHS_Total ISCI_Total PBC_Total
## MHLS_Total          1.00       -0.23          0.61       0.70      0.03
## SSOSH_Total        -0.23        1.00         -0.49      -0.41     -0.25
## ATSPPHS_Total       0.61       -0.49          1.00       0.70      0.18
## ISCI_Total          0.70       -0.41          0.70       1.00      0.08
## PBC_Total           0.03       -0.25          0.18       0.08      1.00
## K10_Total           0.43       -0.01          0.34       0.43     -0.09
## Psy_Int             0.73       -0.47          0.76       0.96      0.12
## Acad_Int            0.54       -0.18          0.37       0.82     -0.09
## Drugs_Int           0.22       -0.08          0.26       0.50      0.11
##               K10_Total Psy_Int Acad_Int Drugs_Int
## MHLS_Total         0.43    0.73     0.54      0.22
## SSOSH_Total       -0.01   -0.47    -0.18     -0.08
## ATSPPHS_Total      0.34    0.76     0.37      0.26
## ISCI_Total         0.43    0.96     0.82      0.50
## PBC_Total         -0.09    0.12    -0.09      0.11
## K10_Total          1.00    0.40     0.30      0.38
## Psy_Int            0.40    1.00     0.69      0.37
## Acad_Int           0.30    0.69     1.00      0.33
## Drugs_Int          0.38    0.37     0.33      1.00
corrplot(res, type = "lower", order = "hclust", 
         tl.col = "black", tl.srt = 45)

This block runs the initial model that did not fit.

Model_initial <- '
            ISCI_Total ~  ATSPPHS_Total 
            ATSPPHS_Total ~ SSOSH_Total + MHLS_Total
            SSOSH_Total ~ MHLS_Total

'
Model_initial_fit <- sem(Model_initial, estimator= "MLR", data=Carly_Analysis_Data, mimic = "Mplus", missing = "FIML", fixed.x=TRUE)
## Warning: lavaan->lav_data_full():  
##    4 cases were deleted due to missing values in exogenous variable(s), while 
##    fixed.x = TRUE.
summary(Model_initial_fit, fit.measures = TRUE, rsquare = TRUE, standardized=TRUE)
## lavaan 0.6-18 ended normally after 28 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
## 
##                                                   Used       Total
##   Number of observations                           118         122
##   Number of missing patterns                         4            
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 8.805       8.546
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.012       0.014
##   Scaling correction factor                                  1.030
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                               122.587     113.792
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.077
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.942       0.939
##   Tucker-Lewis Index (TLI)                       0.825       0.818
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.940
##   Robust Tucker-Lewis Index (TLI)                            0.821
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1109.954   -1109.954
##   Scaling correction factor                                  1.009
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)      -1105.552   -1105.552
##   Scaling correction factor                                  1.012
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                                2239.909    2239.909
##   Bayesian (BIC)                              2267.616    2267.616
##   Sample-size adjusted Bayesian (SABIC)       2236.003    2236.003
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.170       0.167
##   90 Percent confidence interval - lower         0.067       0.065
##   90 Percent confidence interval - upper         0.291       0.286
##   P-value H_0: RMSEA <= 0.050                    0.031       0.033
##   P-value H_0: RMSEA >= 0.080                    0.930       0.925
##                                                                   
##   Robust RMSEA                                               0.172
##   90 Percent confidence interval - lower                     0.069
##   90 Percent confidence interval - upper                     0.295
##   P-value H_0: Robust RMSEA <= 0.050                         0.030
##   P-value H_0: Robust RMSEA >= 0.080                         0.932
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.053       0.053
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ISCI_Total ~                                                          
##     ATSPPHS_Total     1.043    0.170    6.149    0.000    1.043    0.496
##   ATSPPHS_Total ~                                                       
##     SSOSH_Total      -0.320    0.060   -5.317    0.000   -0.320   -0.414
##     MHLS_Total        0.157    0.031    5.094    0.000    0.157    0.402
##   SSOSH_Total ~                                                         
##     MHLS_Total       -0.165    0.043   -3.824    0.000   -0.165   -0.327
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ISCI_Total       13.306    5.151    2.583    0.010   13.306    1.291
##    .ATSPPHS_Total    15.630    4.598    3.399    0.001   15.630    3.187
##    .SSOSH_Total      41.309    5.911    6.989    0.000   41.309    6.509
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ISCI_Total       80.048   11.060    7.238    0.000   80.048    0.754
##    .ATSPPHS_Total    13.437    1.612    8.335    0.000   13.437    0.559
##    .SSOSH_Total      35.965    4.471    8.044    0.000   35.965    0.893
## 
## R-Square:
##                    Estimate
##     ISCI_Total        0.246
##     ATSPPHS_Total     0.441
##     SSOSH_Total       0.107

This block runs the final model and provides a table with the regression coefficients and a path diagrame with standardized path coeffients

Model_final <- '
            Drugs_Int ~  ATSPPHS_Total
            Acad_Int ~  ATSPPHS_Total
            Psy_Int ~  ATSPPHS_Total
            ATSPPHS_Total ~ SSOSH_Total + MHLS_Total
            SSOSH_Total ~ MHLS_Total

'
Model_final_fit <- sem(Model_final, estimator= "MLR", data=Carly_Analysis_Data, mimic = "Mplus", missing = "FIML", fixed.x=TRUE)
## Warning: lavaan->lav_data_full():  
##    4 cases were deleted due to missing values in exogenous variable(s), while 
##    fixed.x = TRUE.
summary(Model_final_fit, fit.measures = TRUE, rsquare=TRUE, standardized=TRUE)
## lavaan 0.6-18 ended normally after 66 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        19
## 
##                                                   Used       Total
##   Number of observations                           118         122
##   Number of missing patterns                         4            
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                11.109      10.174
##   Degrees of freedom                                 6           6
##   P-value (Chi-square)                           0.085       0.118
##   Scaling correction factor                                  1.092
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                               215.319     199.229
##   Degrees of freedom                                15          15
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.081
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.974       0.977
##   Tucker-Lewis Index (TLI)                       0.936       0.943
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.976
##   Robust Tucker-Lewis Index (TLI)                            0.941
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1039.667   -1039.667
##   Scaling correction factor                                  1.001
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)      -1034.113   -1034.113
##   Scaling correction factor                                  1.023
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                                2117.335    2117.335
##   Bayesian (BIC)                              2169.978    2169.978
##   Sample-size adjusted Bayesian (SABIC)       2109.914    2109.914
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.085       0.077
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.162       0.152
##   P-value H_0: RMSEA <= 0.050                    0.197       0.243
##   P-value H_0: RMSEA >= 0.080                    0.603       0.534
##                                                                   
##   Robust RMSEA                                               0.082
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.164
##   P-value H_0: Robust RMSEA <= 0.050                         0.230
##   P-value H_0: Robust RMSEA >= 0.080                         0.578
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.053       0.053
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Drugs_Int ~                                                           
##     ATSPPHS_Total     0.057    0.016    3.591    0.000    0.057    0.310
##   Acad_Int ~                                                            
##     ATSPPHS_Total     0.034    0.014    2.432    0.015    0.034    0.225
##   Psy_Int ~                                                             
##     ATSPPHS_Total     0.073    0.011    6.482    0.000    0.073    0.515
##   ATSPPHS_Total ~                                                       
##     SSOSH_Total      -0.320    0.060   -5.297    0.000   -0.320   -0.414
##     MHLS_Total        0.157    0.031    5.092    0.000    0.157    0.401
##   SSOSH_Total ~                                                         
##     MHLS_Total       -0.165    0.043   -3.824    0.000   -0.165   -0.327
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Drugs_Int ~~                                                          
##    .Acad_Int          0.162    0.058    2.799    0.005    0.162    0.261
##    .Psy_Int           0.135    0.052    2.589    0.010    0.135    0.266
##  .Acad_Int ~~                                                           
##    .Psy_Int           0.273    0.047    5.775    0.000    0.273    0.631
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Drugs_Int         1.405    0.502    2.798    0.005    1.405    1.559
##    .Acad_Int          1.372    0.421    3.260    0.001    1.372    1.841
##    .Psy_Int           0.501    0.348    1.440    0.150    0.501    0.722
##    .ATSPPHS_Total    15.644    4.597    3.403    0.001   15.644    3.192
##    .SSOSH_Total      41.309    5.911    6.989    0.000   41.309    6.509
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Drugs_Int         0.734    0.102    7.209    0.000    0.734    0.904
##    .Acad_Int          0.528    0.058    9.125    0.000    0.528    0.949
##    .Psy_Int           0.354    0.050    7.019    0.000    0.354    0.735
##    .ATSPPHS_Total    13.424    1.605    8.364    0.000   13.424    0.559
##    .SSOSH_Total      35.965    4.471    8.044    0.000   35.965    0.893
## 
## R-Square:
##                    Estimate
##     Drugs_Int         0.096
##     Acad_Int          0.051
##     Psy_Int           0.265
##     ATSPPHS_Total     0.441
##     SSOSH_Total       0.107
parameterEstimates(Model_final_fit, standardized=TRUE) %>%
  filter(op == "~") %>%
  select('LV1'=lhs, 'LV2'=rhs, B=est, SE=se, Z=z, 'p-value'=pvalue, Beta=std.all,CI_Lower=ci.lower, CI_Upper=ci.upper) %>%
  knitr::kable(digits = 3, format="html", booktabs=TRUE, caption="Path Model Regression Coefficients")%>%
  kable_classic(full_width = F, html_font = "Cambria")
Path Model Regression Coefficients
LV1 LV2 B SE Z p-value Beta CI_Lower CI_Upper
Drugs_Int ATSPPHS_Total 0.057 0.016 3.591 0.000 0.310 0.026 0.088
Acad_Int ATSPPHS_Total 0.034 0.014 2.432 0.015 0.225 0.007 0.062
Psy_Int ATSPPHS_Total 0.073 0.011 6.482 0.000 0.515 0.051 0.095
ATSPPHS_Total SSOSH_Total -0.320 0.060 -5.297 0.000 -0.414 -0.438 -0.201
ATSPPHS_Total MHLS_Total 0.157 0.031 5.092 0.000 0.401 0.096 0.217
SSOSH_Total MHLS_Total -0.165 0.043 -3.824 0.000 -0.327 -0.250 -0.081
semPaths(Model_final_fit, whatLabels = "std", edge.label.cex = .5, layout = "tree2",
         rotation = 2, style = "lisrel", intercepts = FALSE, residuals = TRUE,
         curve = 1, curvature = 3, nCharNodes = 8, sizeMan = 6, sizeMan2 = 3, 
         optimizeLatRes = TRUE, edge.color = "#000000")