We reconstruct here the analysis for the article:
“National Leadership in Time of A Pandemic: Mechanisms that
Create a Gendered Gap” by Freund and
Shomer
To conduct the reconstruction, follow these steps:
load external packages and Source helper functions Note: All routines starting with ’
source("wl_load_packages.R")
source("wl_utils.R")
source("wl_graph.R") #wl_ggsave()
source("wl_regression.R")
source("wl_variables.R") # wl_desc_summary()
source("wl_align_waves.R")
source("wl_countries.R")
source("wl_smartAgg.R") # Aggregate multiple columns using different functions
source("wl_wldb.R") # wl_db()
source("wl_delay.R") #wl_delay_fields()
source("wl_pal.R") #wl_pal_color()
source("wl_reg_report.R") #wl_reg_interpret()
source("wl_learning_curve.R")
source("wl_polls_ml_olm.R")
source("wl_public_support.R")
source("wl_leaders.R") # wl_leaders_si_table
source("wl_data_dictionary.R") # wl_si_data_sources
source("wl_coef_summary.R") # wl_coef_and_ci_table, wl_coef_and_ci_plot
source("wl_timing.R") # wl_ld_prepare_cox
options(dplyr.summarise.inform = FALSE)
Set the default theme & font for plots and tables
loadfonts(device = "win", quiet=TRUE)
theme_set(theme_bw() +
theme(text = element_text(family = "LM Roman 10", size = 12)))
Load the data
wl_get_wldb("Weekly")
wl_get_data_dictionary()
wl_delay_fields()
# Set scandinavia and Northern EU fields
wl_geography_fields()
# Add order information for the dependent variables
# (for continuous learning curve analysis)
wl_learning_order()
country_leaders.tex country_leaders.rtf
wl_leaders_si_table("tables/country_leaders.tex")
#> <div id="mipvvheyho" style="padding-left:0px;padding-right:0px;padding-top:10px;padding-bottom:10px;overflow-x:auto;overflow-y:auto;width:auto;height:auto;">
#> <style>#mipvvheyho table {
#> font-family: system-ui, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji';
#> -webkit-font-smoothing: antialiased;
#> -moz-osx-font-smoothing: grayscale;
#> }
#>
#> #mipvvheyho thead, #mipvvheyho tbody, #mipvvheyho tfoot, #mipvvheyho tr, #mipvvheyho td, #mipvvheyho th {
#> border-style: none;
#> }
#>
#> #mipvvheyho p {
#> margin: 0;
#> padding: 0;
#> }
#>
#> #mipvvheyho .gt_table {
#> display: table;
#> border-collapse: collapse;
#> line-height: normal;
#> margin-left: auto;
#> margin-right: auto;
#> color: #333333;
#> font-size: 14px;
#> font-weight: normal;
#> font-style: normal;
#> background-color: #FFFFFF;
#> width: auto;
#> border-top-style: solid;
#> border-top-width: 0px;
#> border-top-color: #A8A8A8;
#> border-right-style: none;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 0px;
#> border-bottom-color: #A8A8A8;
#> border-left-style: none;
#> border-left-width: 2px;
#> border-left-color: #D3D3D3;
#> }
#>
#> #mipvvheyho .gt_caption {
#> padding-top: 4px;
#> padding-bottom: 4px;
#> }
#>
#> #mipvvheyho .gt_title {
#> color: #333333;
#> font-size: 125%;
#> font-weight: initial;
#> padding-top: 4px;
#> padding-bottom: 4px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-bottom-color: #FFFFFF;
#> border-bottom-width: 0;
#> }
#>
#> #mipvvheyho .gt_subtitle {
#> color: #333333;
#> font-size: 85%;
#> font-weight: initial;
#> padding-top: 3px;
#> padding-bottom: 5px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-top-color: #FFFFFF;
#> border-top-width: 0;
#> }
#>
#> #mipvvheyho .gt_heading {
#> background-color: #FFFFFF;
#> text-align: center;
#> border-bottom-color: #FFFFFF;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #mipvvheyho .gt_bottom_border {
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #mipvvheyho .gt_col_headings {
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #mipvvheyho .gt_col_heading {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: normal;
#> text-transform: inherit;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> vertical-align: bottom;
#> padding-top: 5px;
#> padding-bottom: 6px;
#> padding-left: 5px;
#> padding-right: 5px;
#> overflow-x: hidden;
#> }
#>
#> #mipvvheyho .gt_column_spanner_outer {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: normal;
#> text-transform: inherit;
#> padding-top: 0;
#> padding-bottom: 0;
#> padding-left: 4px;
#> padding-right: 4px;
#> }
#>
#> #mipvvheyho .gt_column_spanner_outer:first-child {
#> padding-left: 0;
#> }
#>
#> #mipvvheyho .gt_column_spanner_outer:last-child {
#> padding-right: 0;
#> }
#>
#> #mipvvheyho .gt_column_spanner {
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> vertical-align: bottom;
#> padding-top: 5px;
#> padding-bottom: 5px;
#> overflow-x: hidden;
#> display: inline-block;
#> width: 100%;
#> }
#>
#> #mipvvheyho .gt_spanner_row {
#> border-bottom-style: hidden;
#> }
#>
#> #mipvvheyho .gt_group_heading {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> text-transform: inherit;
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> vertical-align: middle;
#> text-align: left;
#> }
#>
#> #mipvvheyho .gt_empty_group_heading {
#> padding: 0.5px;
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> vertical-align: middle;
#> }
#>
#> #mipvvheyho .gt_from_md > :first-child {
#> margin-top: 0;
#> }
#>
#> #mipvvheyho .gt_from_md > :last-child {
#> margin-bottom: 0;
#> }
#>
#> #mipvvheyho .gt_row {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> margin: 10px;
#> border-top-style: solid;
#> border-top-width: 1px;
#> border-top-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> vertical-align: middle;
#> overflow-x: hidden;
#> }
#>
#> #mipvvheyho .gt_stub {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> text-transform: inherit;
#> border-right-style: solid;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #mipvvheyho .gt_stub_row_group {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> text-transform: inherit;
#> border-right-style: solid;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> padding-left: 5px;
#> padding-right: 5px;
#> vertical-align: top;
#> }
#>
#> #mipvvheyho .gt_row_group_first td {
#> border-top-width: 2px;
#> }
#>
#> #mipvvheyho .gt_row_group_first th {
#> border-top-width: 2px;
#> }
#>
#> #mipvvheyho .gt_summary_row {
#> color: #333333;
#> background-color: #FFFFFF;
#> text-transform: inherit;
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #mipvvheyho .gt_first_summary_row {
#> border-top-style: solid;
#> border-top-color: #D3D3D3;
#> }
#>
#> #mipvvheyho .gt_first_summary_row.thick {
#> border-top-width: 2px;
#> }
#>
#> #mipvvheyho .gt_last_summary_row {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #mipvvheyho .gt_grand_summary_row {
#> color: #333333;
#> background-color: #FFFFFF;
#> text-transform: inherit;
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #mipvvheyho .gt_first_grand_summary_row {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-top-style: double;
#> border-top-width: 6px;
#> border-top-color: #D3D3D3;
#> }
#>
#> #mipvvheyho .gt_last_grand_summary_row_top {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-bottom-style: double;
#> border-bottom-width: 6px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #mipvvheyho .gt_striped {
#> background-color: rgba(128, 128, 128, 0.05);
#> }
#>
#> #mipvvheyho .gt_table_body {
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #mipvvheyho .gt_footnotes {
#> color: #333333;
#> background-color: #FFFFFF;
#> border-bottom-style: none;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 2px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #mipvvheyho .gt_footnote {
#> margin: 0px;
#> font-size: 90%;
#> padding-top: 4px;
#> padding-bottom: 4px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #mipvvheyho .gt_sourcenotes {
#> color: #333333;
#> background-color: #FFFFFF;
#> border-bottom-style: none;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 2px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #mipvvheyho .gt_sourcenote {
#> font-size: 90%;
#> padding-top: 4px;
#> padding-bottom: 4px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #mipvvheyho .gt_left {
#> text-align: left;
#> }
#>
#> #mipvvheyho .gt_center {
#> text-align: center;
#> }
#>
#> #mipvvheyho .gt_right {
#> text-align: right;
#> font-variant-numeric: tabular-nums;
#> }
#>
#> #mipvvheyho .gt_font_normal {
#> font-weight: normal;
#> }
#>
#> #mipvvheyho .gt_font_bold {
#> font-weight: bold;
#> }
#>
#> #mipvvheyho .gt_font_italic {
#> font-style: italic;
#> }
#>
#> #mipvvheyho .gt_super {
#> font-size: 65%;
#> }
#>
#> #mipvvheyho .gt_footnote_marks {
#> font-size: 75%;
#> vertical-align: 0.4em;
#> position: initial;
#> }
#>
#> #mipvvheyho .gt_asterisk {
#> font-size: 100%;
#> vertical-align: 0;
#> }
#>
#> #mipvvheyho .gt_indent_1 {
#> text-indent: 5px;
#> }
#>
#> #mipvvheyho .gt_indent_2 {
#> text-indent: 10px;
#> }
#>
#> #mipvvheyho .gt_indent_3 {
#> text-indent: 15px;
#> }
#>
#> #mipvvheyho .gt_indent_4 {
#> text-indent: 20px;
#> }
#>
#> #mipvvheyho .gt_indent_5 {
#> text-indent: 25px;
#> }
#> </style>
#> <table class="gt_table" data-quarto-disable-processing="false" data-quarto-bootstrap="false">
#> <thead>
#> <tr class="gt_col_headings">
#> <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="Leader Gender">Leader Gender</th>
#> <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="Leader Name">Leader Name</th>
#> <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="Start in Position">Start in Position</th>
#> </tr>
#> </thead>
#> <tbody class="gt_table_body">
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Argentina">Argentina</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Argentina pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Argentina pm_name" class="gt_row gt_left">Alberto Fernandez</td>
#> <td headers="Argentina pm_start_in_position" class="gt_row gt_left">2019-12-10</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Australia">Australia</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Australia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Australia pm_name" class="gt_row gt_left">Scott Morrison</td>
#> <td headers="Australia pm_start_in_position" class="gt_row gt_left">2018-08-24</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Austria">Austria</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Austria pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Austria pm_name" class="gt_row gt_left">Sebastian Kurz</td>
#> <td headers="Austria pm_start_in_position" class="gt_row gt_left">2020-01-07</td></tr>
#> <tr><td headers="Austria pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Austria pm_name" class="gt_row gt_left">Karl Nehammer</td>
#> <td headers="Austria pm_start_in_position" class="gt_row gt_left">2021-12-06</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Bahamas">Bahamas</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Bahamas pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Bahamas pm_name" class="gt_row gt_left">Hubert Minnis</td>
#> <td headers="Bahamas pm_start_in_position" class="gt_row gt_left">2017-05-11</td></tr>
#> <tr><td headers="Bahamas pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Bahamas pm_name" class="gt_row gt_left">Philip Davis</td>
#> <td headers="Bahamas pm_start_in_position" class="gt_row gt_left">2021-09-17</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Barbados">Barbados</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Barbados pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Barbados pm_name" class="gt_row gt_left">Mia Mottley</td>
#> <td headers="Barbados pm_start_in_position" class="gt_row gt_left">2018-05-25</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Belgium">Belgium</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Belgium pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Belgium pm_name" class="gt_row gt_left">Sophie Wilmes</td>
#> <td headers="Belgium pm_start_in_position" class="gt_row gt_left">2019-10-27</td></tr>
#> <tr><td headers="Belgium pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Belgium pm_name" class="gt_row gt_left">Alexander De Croo</td>
#> <td headers="Belgium pm_start_in_position" class="gt_row gt_left">2020-10-01</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Belize">Belize</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Belize pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Belize pm_name" class="gt_row gt_left">Dean Barrow</td>
#> <td headers="Belize pm_start_in_position" class="gt_row gt_left">2008-02-08</td></tr>
#> <tr><td headers="Belize pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Belize pm_name" class="gt_row gt_left">Johnny Briceno</td>
#> <td headers="Belize pm_start_in_position" class="gt_row gt_left">2020-11-12</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Botswana">Botswana</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Botswana pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Botswana pm_name" class="gt_row gt_left">Mokgweetsi Masisi</td>
#> <td headers="Botswana pm_start_in_position" class="gt_row gt_left">2018-04-01</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Brazil">Brazil</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Brazil pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Brazil pm_name" class="gt_row gt_left">Jair Bolsonaro</td>
#> <td headers="Brazil pm_start_in_position" class="gt_row gt_left">2019-01-01</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Bulgaria">Bulgaria</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Bulgaria pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Bulgaria pm_name" class="gt_row gt_left">Boyko Borisov</td>
#> <td headers="Bulgaria pm_start_in_position" class="gt_row gt_left">2017-05-04</td></tr>
#> <tr><td headers="Bulgaria pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Bulgaria pm_name" class="gt_row gt_left">Stefan Yanev</td>
#> <td headers="Bulgaria pm_start_in_position" class="gt_row gt_left">2021-05-12</td></tr>
#> <tr><td headers="Bulgaria pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Bulgaria pm_name" class="gt_row gt_left">Kiril Petkov</td>
#> <td headers="Bulgaria pm_start_in_position" class="gt_row gt_left">2021-12-13</td></tr>
#> <tr><td headers="Bulgaria pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Bulgaria pm_name" class="gt_row gt_left">Galab Donev</td>
#> <td headers="Bulgaria pm_start_in_position" class="gt_row gt_left">2022-08-02</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Canada">Canada</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Canada pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Canada pm_name" class="gt_row gt_left">Justin Trudeau</td>
#> <td headers="Canada pm_start_in_position" class="gt_row gt_left">2015-11-01</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Cape Verde">Cape Verde</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Cape Verde pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Cape Verde pm_name" class="gt_row gt_left">Ulisses Correia e Silva</td>
#> <td headers="Cape Verde pm_start_in_position" class="gt_row gt_left">2016-04-22</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Chile">Chile</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Chile pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Chile pm_name" class="gt_row gt_left">Sebastian Pinera</td>
#> <td headers="Chile pm_start_in_position" class="gt_row gt_left">2018-03-11</td></tr>
#> <tr><td headers="Chile pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Chile pm_name" class="gt_row gt_left">Gabriel Boric</td>
#> <td headers="Chile pm_start_in_position" class="gt_row gt_left">2022-03-11</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Costa Rica">Costa Rica</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Costa Rica pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Costa Rica pm_name" class="gt_row gt_left">Carlos Alvarado Quesada</td>
#> <td headers="Costa Rica pm_start_in_position" class="gt_row gt_left">2018-05-08</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Croatia">Croatia</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Croatia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Croatia pm_name" class="gt_row gt_left">Andrej Plenkovic</td>
#> <td headers="Croatia pm_start_in_position" class="gt_row gt_left">2016-10-19</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Cyprus">Cyprus</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Cyprus pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Cyprus pm_name" class="gt_row gt_left">Nicos Anastasiades</td>
#> <td headers="Cyprus pm_start_in_position" class="gt_row gt_left">2013-02-18</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Czechia">Czechia</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Czechia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Czechia pm_name" class="gt_row gt_left">Andrej Babis</td>
#> <td headers="Czechia pm_start_in_position" class="gt_row gt_left">2017-12-06</td></tr>
#> <tr><td headers="Czechia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Czechia pm_name" class="gt_row gt_left">Petr Fiala</td>
#> <td headers="Czechia pm_start_in_position" class="gt_row gt_left">2021-11-28</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Denmark">Denmark</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Denmark pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Denmark pm_name" class="gt_row gt_left">Mette Frederiksen</td>
#> <td headers="Denmark pm_start_in_position" class="gt_row gt_left">2019-06-27</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Estonia">Estonia</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Estonia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Estonia pm_name" class="gt_row gt_left">Juri Ratas</td>
#> <td headers="Estonia pm_start_in_position" class="gt_row gt_left">2019-04-29</td></tr>
#> <tr><td headers="Estonia pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Estonia pm_name" class="gt_row gt_left">Kaja Kallas</td>
#> <td headers="Estonia pm_start_in_position" class="gt_row gt_left">2021-01-26</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Finland">Finland</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Finland pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Finland pm_name" class="gt_row gt_left">Sanna Marin</td>
#> <td headers="Finland pm_start_in_position" class="gt_row gt_left">2019-12-10</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="France">France</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="France pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="France pm_name" class="gt_row gt_left">Emmanuel Macron</td>
#> <td headers="France pm_start_in_position" class="gt_row gt_left">2017-05-14</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Germany">Germany</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Germany pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Germany pm_name" class="gt_row gt_left">Angela Merkel</td>
#> <td headers="Germany pm_start_in_position" class="gt_row gt_left">2005-11-22</td></tr>
#> <tr><td headers="Germany pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Germany pm_name" class="gt_row gt_left">Olaf Scholz</td>
#> <td headers="Germany pm_start_in_position" class="gt_row gt_left">2021-12-08</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Ghana">Ghana</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Ghana pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Ghana pm_name" class="gt_row gt_left">Nana Akufo-Addo</td>
#> <td headers="Ghana pm_start_in_position" class="gt_row gt_left">2017-01-07</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Greece">Greece</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Greece pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Greece pm_name" class="gt_row gt_left">Kyriakos Mitsotakis</td>
#> <td headers="Greece pm_start_in_position" class="gt_row gt_left">2019-07-08</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Guyana">Guyana</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Guyana pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Guyana pm_name" class="gt_row gt_left">David Granger</td>
#> <td headers="Guyana pm_start_in_position" class="gt_row gt_left">2015-05-16</td></tr>
#> <tr><td headers="Guyana pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Guyana pm_name" class="gt_row gt_left">Irfaan Ali</td>
#> <td headers="Guyana pm_start_in_position" class="gt_row gt_left">2020-08-02</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Hungary">Hungary</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Hungary pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Hungary pm_name" class="gt_row gt_left">Viktor Orban</td>
#> <td headers="Hungary pm_start_in_position" class="gt_row gt_left">2010-05-29</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Iceland">Iceland</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Iceland pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Iceland pm_name" class="gt_row gt_left">Katrin Jakobsdottir</td>
#> <td headers="Iceland pm_start_in_position" class="gt_row gt_left">2017-11-30</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Ireland">Ireland</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Ireland pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Ireland pm_name" class="gt_row gt_left">Leo Varadkar</td>
#> <td headers="Ireland pm_start_in_position" class="gt_row gt_left">2017-06-14</td></tr>
#> <tr><td headers="Ireland pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Ireland pm_name" class="gt_row gt_left">Micheal Martin</td>
#> <td headers="Ireland pm_start_in_position" class="gt_row gt_left">2020-06-27</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Israel">Israel</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Israel pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Israel pm_name" class="gt_row gt_left">Benjamin Netanyau</td>
#> <td headers="Israel pm_start_in_position" class="gt_row gt_left">2009-03-31</td></tr>
#> <tr><td headers="Israel pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Israel pm_name" class="gt_row gt_left">Naftali Bennett</td>
#> <td headers="Israel pm_start_in_position" class="gt_row gt_left">2021-06-13</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Italy">Italy</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Italy pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Italy pm_name" class="gt_row gt_left">Giuseppe Conte</td>
#> <td headers="Italy pm_start_in_position" class="gt_row gt_left">2018-06-01</td></tr>
#> <tr><td headers="Italy pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Italy pm_name" class="gt_row gt_left">Mario Draghi</td>
#> <td headers="Italy pm_start_in_position" class="gt_row gt_left">2021-02-13</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Jamaica">Jamaica</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Jamaica pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Jamaica pm_name" class="gt_row gt_left">Andrew Holness</td>
#> <td headers="Jamaica pm_start_in_position" class="gt_row gt_left">2016-03-03</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Japan">Japan</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Japan pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Japan pm_name" class="gt_row gt_left">Shinzo Abe</td>
#> <td headers="Japan pm_start_in_position" class="gt_row gt_left">2012-12-26</td></tr>
#> <tr><td headers="Japan pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Japan pm_name" class="gt_row gt_left">Yoshihide Suga</td>
#> <td headers="Japan pm_start_in_position" class="gt_row gt_left">2020-09-16</td></tr>
#> <tr><td headers="Japan pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Japan pm_name" class="gt_row gt_left">Fumio Kishida</td>
#> <td headers="Japan pm_start_in_position" class="gt_row gt_left">2021-10-04</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Latvia">Latvia</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Latvia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Latvia pm_name" class="gt_row gt_left">Krisjanis Kariņs</td>
#> <td headers="Latvia pm_start_in_position" class="gt_row gt_left">2019-01-23</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Lithuania">Lithuania</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Lithuania pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Lithuania pm_name" class="gt_row gt_left">Saulius Skvernelis</td>
#> <td headers="Lithuania pm_start_in_position" class="gt_row gt_left">2016-11-22</td></tr>
#> <tr><td headers="Lithuania pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Lithuania pm_name" class="gt_row gt_left">Ingrida Simonyte</td>
#> <td headers="Lithuania pm_start_in_position" class="gt_row gt_left">2020-12-11</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Luxembourg">Luxembourg</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Luxembourg pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Luxembourg pm_name" class="gt_row gt_left">Xavier Bettel</td>
#> <td headers="Luxembourg pm_start_in_position" class="gt_row gt_left">2013-12-04</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Malta">Malta</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Malta pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Malta pm_name" class="gt_row gt_left">Robert Abela</td>
#> <td headers="Malta pm_start_in_position" class="gt_row gt_left">2020-01-13</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Mauritius">Mauritius</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Mauritius pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Mauritius pm_name" class="gt_row gt_left">Pravind Jugnauth</td>
#> <td headers="Mauritius pm_start_in_position" class="gt_row gt_left">2017-01-23</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Mexico">Mexico</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Mexico pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Mexico pm_name" class="gt_row gt_left">Andres Manuel Lopez Obrador</td>
#> <td headers="Mexico pm_start_in_position" class="gt_row gt_left">2018-12-01</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Netherlands">Netherlands</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Netherlands pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Netherlands pm_name" class="gt_row gt_left">Mark Rutte</td>
#> <td headers="Netherlands pm_start_in_position" class="gt_row gt_left">2010-10-14</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="New Zealand">New Zealand</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="New Zealand pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="New Zealand pm_name" class="gt_row gt_left">Jacinda Ardern</td>
#> <td headers="New Zealand pm_start_in_position" class="gt_row gt_left">2017-10-26</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Norway">Norway</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Norway pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Norway pm_name" class="gt_row gt_left">Erna Solberg</td>
#> <td headers="Norway pm_start_in_position" class="gt_row gt_left">2013-10-16</td></tr>
#> <tr><td headers="Norway pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Norway pm_name" class="gt_row gt_left">Jonas Gahr Store</td>
#> <td headers="Norway pm_start_in_position" class="gt_row gt_left">2021-10-14</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Panama">Panama</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Panama pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Panama pm_name" class="gt_row gt_left">Laurentino Cortizo</td>
#> <td headers="Panama pm_start_in_position" class="gt_row gt_left">2019-07-01</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Poland">Poland</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Poland pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Poland pm_name" class="gt_row gt_left">Mateusz Morawiecki</td>
#> <td headers="Poland pm_start_in_position" class="gt_row gt_left">2017-12-11</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Portugal">Portugal</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Portugal pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Portugal pm_name" class="gt_row gt_left">Antonio Costa</td>
#> <td headers="Portugal pm_start_in_position" class="gt_row gt_left">2015-11-26</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Romania">Romania</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Romania pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Romania pm_name" class="gt_row gt_left">Ludovic Orban</td>
#> <td headers="Romania pm_start_in_position" class="gt_row gt_left">2019-11-04</td></tr>
#> <tr><td headers="Romania pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Romania pm_name" class="gt_row gt_left">Florin Citu</td>
#> <td headers="Romania pm_start_in_position" class="gt_row gt_left">2020-12-07</td></tr>
#> <tr><td headers="Romania pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Romania pm_name" class="gt_row gt_left">Nicolae Ciuca</td>
#> <td headers="Romania pm_start_in_position" class="gt_row gt_left">2021-11-25</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Sao Tome and Principe">Sao Tome and Principe</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Sao Tome and Principe pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Sao Tome and Principe pm_name" class="gt_row gt_left">Jorge Bom Jesus</td>
#> <td headers="Sao Tome and Principe pm_start_in_position" class="gt_row gt_left">2018-12-03</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Slovakia">Slovakia</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Slovakia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Slovakia pm_name" class="gt_row gt_left">Peter Pellegrini</td>
#> <td headers="Slovakia pm_start_in_position" class="gt_row gt_left">2018-03-22</td></tr>
#> <tr><td headers="Slovakia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Slovakia pm_name" class="gt_row gt_left">Igor Matovic</td>
#> <td headers="Slovakia pm_start_in_position" class="gt_row gt_left">2020-03-21</td></tr>
#> <tr><td headers="Slovakia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Slovakia pm_name" class="gt_row gt_left">Eduard Heger</td>
#> <td headers="Slovakia pm_start_in_position" class="gt_row gt_left">2021-04-01</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Slovenia">Slovenia</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Slovenia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Slovenia pm_name" class="gt_row gt_left">Marjan Sarec</td>
#> <td headers="Slovenia pm_start_in_position" class="gt_row gt_left">2018-09-13</td></tr>
#> <tr><td headers="Slovenia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Slovenia pm_name" class="gt_row gt_left">Janez Jansa</td>
#> <td headers="Slovenia pm_start_in_position" class="gt_row gt_left">2020-03-03</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="South Africa">South Africa</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="South Africa pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="South Africa pm_name" class="gt_row gt_left">Cyril Ramaphosa</td>
#> <td headers="South Africa pm_start_in_position" class="gt_row gt_left">2018-02-15</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="South Korea">South Korea</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="South Korea pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="South Korea pm_name" class="gt_row gt_left">Moon Jae-in</td>
#> <td headers="South Korea pm_start_in_position" class="gt_row gt_left">2017-05-10</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Spain">Spain</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Spain pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Spain pm_name" class="gt_row gt_left">Pedro Sanchez</td>
#> <td headers="Spain pm_start_in_position" class="gt_row gt_left">2018-06-02</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Suriname">Suriname</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Suriname pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Suriname pm_name" class="gt_row gt_left">Desi Bouterse</td>
#> <td headers="Suriname pm_start_in_position" class="gt_row gt_left">2010-08-12</td></tr>
#> <tr><td headers="Suriname pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Suriname pm_name" class="gt_row gt_left">Chan Santokhi</td>
#> <td headers="Suriname pm_start_in_position" class="gt_row gt_left">2020-07-16</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Sweden">Sweden</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Sweden pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Sweden pm_name" class="gt_row gt_left">Stefan Lofven</td>
#> <td headers="Sweden pm_start_in_position" class="gt_row gt_left">2014-10-03</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Switzerland">Switzerland</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Switzerland pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Switzerland pm_name" class="gt_row gt_left">Simonetta Sommaruga</td>
#> <td headers="Switzerland pm_start_in_position" class="gt_row gt_left">2020-01-01</td></tr>
#> <tr><td headers="Switzerland pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Switzerland pm_name" class="gt_row gt_left">Guy Parmelin</td>
#> <td headers="Switzerland pm_start_in_position" class="gt_row gt_left">2021-01-01</td></tr>
#> <tr><td headers="Switzerland pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Switzerland pm_name" class="gt_row gt_left">Ignazio Cassis</td>
#> <td headers="Switzerland pm_start_in_position" class="gt_row gt_left">2022-01-01</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Taiwan">Taiwan</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Taiwan pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Taiwan pm_name" class="gt_row gt_left">Tsai Ing-wen</td>
#> <td headers="Taiwan pm_start_in_position" class="gt_row gt_left">2016-05-20</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Trinidad and Tobago">Trinidad and Tobago</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Trinidad and Tobago pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Trinidad and Tobago pm_name" class="gt_row gt_left">Keith Rowley</td>
#> <td headers="Trinidad and Tobago pm_start_in_position" class="gt_row gt_left">2015-09-09</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Turkey">Turkey</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Turkey pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Turkey pm_name" class="gt_row gt_left">Recep Tayyip Erdogan</td>
#> <td headers="Turkey pm_start_in_position" class="gt_row gt_left">2003-02-09</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="United Kingdom">United Kingdom</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="United Kingdom pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="United Kingdom pm_name" class="gt_row gt_left">Boris Johnson</td>
#> <td headers="United Kingdom pm_start_in_position" class="gt_row gt_left">2019-07-24</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="United States">United States</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="United States pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="United States pm_name" class="gt_row gt_left">Donald Trump</td>
#> <td headers="United States pm_start_in_position" class="gt_row gt_left">2017-01-20</td></tr>
#> <tr><td headers="United States pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="United States pm_name" class="gt_row gt_left">Joe Biden</td>
#> <td headers="United States pm_start_in_position" class="gt_row gt_left">2021-01-20</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Uruguay">Uruguay</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Uruguay pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Uruguay pm_name" class="gt_row gt_left">Tabare Vazquez</td>
#> <td headers="Uruguay pm_start_in_position" class="gt_row gt_left">2015-03-01</td></tr>
#> <tr><td headers="Uruguay pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Uruguay pm_name" class="gt_row gt_left">Luis Lacalle Pou</td>
#> <td headers="Uruguay pm_start_in_position" class="gt_row gt_left">2020-03-01</td></tr>
#> </tbody>
#>
#>
#> </table>
#> </div>
wl_leaders_si_table("tables/country_leaders.rtf")
#> <div id="kpsenyqemm" style="padding-left:0px;padding-right:0px;padding-top:10px;padding-bottom:10px;overflow-x:auto;overflow-y:auto;width:auto;height:auto;">
#> <style>#kpsenyqemm table {
#> font-family: system-ui, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji';
#> -webkit-font-smoothing: antialiased;
#> -moz-osx-font-smoothing: grayscale;
#> }
#>
#> #kpsenyqemm thead, #kpsenyqemm tbody, #kpsenyqemm tfoot, #kpsenyqemm tr, #kpsenyqemm td, #kpsenyqemm th {
#> border-style: none;
#> }
#>
#> #kpsenyqemm p {
#> margin: 0;
#> padding: 0;
#> }
#>
#> #kpsenyqemm .gt_table {
#> display: table;
#> border-collapse: collapse;
#> line-height: normal;
#> margin-left: auto;
#> margin-right: auto;
#> color: #333333;
#> font-size: 14px;
#> font-weight: normal;
#> font-style: normal;
#> background-color: #FFFFFF;
#> width: auto;
#> border-top-style: solid;
#> border-top-width: 0px;
#> border-top-color: #A8A8A8;
#> border-right-style: none;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 0px;
#> border-bottom-color: #A8A8A8;
#> border-left-style: none;
#> border-left-width: 2px;
#> border-left-color: #D3D3D3;
#> }
#>
#> #kpsenyqemm .gt_caption {
#> padding-top: 4px;
#> padding-bottom: 4px;
#> }
#>
#> #kpsenyqemm .gt_title {
#> color: #333333;
#> font-size: 125%;
#> font-weight: initial;
#> padding-top: 4px;
#> padding-bottom: 4px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-bottom-color: #FFFFFF;
#> border-bottom-width: 0;
#> }
#>
#> #kpsenyqemm .gt_subtitle {
#> color: #333333;
#> font-size: 85%;
#> font-weight: initial;
#> padding-top: 3px;
#> padding-bottom: 5px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-top-color: #FFFFFF;
#> border-top-width: 0;
#> }
#>
#> #kpsenyqemm .gt_heading {
#> background-color: #FFFFFF;
#> text-align: center;
#> border-bottom-color: #FFFFFF;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #kpsenyqemm .gt_bottom_border {
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #kpsenyqemm .gt_col_headings {
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #kpsenyqemm .gt_col_heading {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: normal;
#> text-transform: inherit;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> vertical-align: bottom;
#> padding-top: 5px;
#> padding-bottom: 6px;
#> padding-left: 5px;
#> padding-right: 5px;
#> overflow-x: hidden;
#> }
#>
#> #kpsenyqemm .gt_column_spanner_outer {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: normal;
#> text-transform: inherit;
#> padding-top: 0;
#> padding-bottom: 0;
#> padding-left: 4px;
#> padding-right: 4px;
#> }
#>
#> #kpsenyqemm .gt_column_spanner_outer:first-child {
#> padding-left: 0;
#> }
#>
#> #kpsenyqemm .gt_column_spanner_outer:last-child {
#> padding-right: 0;
#> }
#>
#> #kpsenyqemm .gt_column_spanner {
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> vertical-align: bottom;
#> padding-top: 5px;
#> padding-bottom: 5px;
#> overflow-x: hidden;
#> display: inline-block;
#> width: 100%;
#> }
#>
#> #kpsenyqemm .gt_spanner_row {
#> border-bottom-style: hidden;
#> }
#>
#> #kpsenyqemm .gt_group_heading {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> text-transform: inherit;
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> vertical-align: middle;
#> text-align: left;
#> }
#>
#> #kpsenyqemm .gt_empty_group_heading {
#> padding: 0.5px;
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> vertical-align: middle;
#> }
#>
#> #kpsenyqemm .gt_from_md > :first-child {
#> margin-top: 0;
#> }
#>
#> #kpsenyqemm .gt_from_md > :last-child {
#> margin-bottom: 0;
#> }
#>
#> #kpsenyqemm .gt_row {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> margin: 10px;
#> border-top-style: solid;
#> border-top-width: 1px;
#> border-top-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> vertical-align: middle;
#> overflow-x: hidden;
#> }
#>
#> #kpsenyqemm .gt_stub {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> text-transform: inherit;
#> border-right-style: solid;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #kpsenyqemm .gt_stub_row_group {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> text-transform: inherit;
#> border-right-style: solid;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> padding-left: 5px;
#> padding-right: 5px;
#> vertical-align: top;
#> }
#>
#> #kpsenyqemm .gt_row_group_first td {
#> border-top-width: 2px;
#> }
#>
#> #kpsenyqemm .gt_row_group_first th {
#> border-top-width: 2px;
#> }
#>
#> #kpsenyqemm .gt_summary_row {
#> color: #333333;
#> background-color: #FFFFFF;
#> text-transform: inherit;
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #kpsenyqemm .gt_first_summary_row {
#> border-top-style: solid;
#> border-top-color: #D3D3D3;
#> }
#>
#> #kpsenyqemm .gt_first_summary_row.thick {
#> border-top-width: 2px;
#> }
#>
#> #kpsenyqemm .gt_last_summary_row {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #kpsenyqemm .gt_grand_summary_row {
#> color: #333333;
#> background-color: #FFFFFF;
#> text-transform: inherit;
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #kpsenyqemm .gt_first_grand_summary_row {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-top-style: double;
#> border-top-width: 6px;
#> border-top-color: #D3D3D3;
#> }
#>
#> #kpsenyqemm .gt_last_grand_summary_row_top {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-bottom-style: double;
#> border-bottom-width: 6px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #kpsenyqemm .gt_striped {
#> background-color: rgba(128, 128, 128, 0.05);
#> }
#>
#> #kpsenyqemm .gt_table_body {
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #kpsenyqemm .gt_footnotes {
#> color: #333333;
#> background-color: #FFFFFF;
#> border-bottom-style: none;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 2px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #kpsenyqemm .gt_footnote {
#> margin: 0px;
#> font-size: 90%;
#> padding-top: 4px;
#> padding-bottom: 4px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #kpsenyqemm .gt_sourcenotes {
#> color: #333333;
#> background-color: #FFFFFF;
#> border-bottom-style: none;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 2px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #kpsenyqemm .gt_sourcenote {
#> font-size: 90%;
#> padding-top: 4px;
#> padding-bottom: 4px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #kpsenyqemm .gt_left {
#> text-align: left;
#> }
#>
#> #kpsenyqemm .gt_center {
#> text-align: center;
#> }
#>
#> #kpsenyqemm .gt_right {
#> text-align: right;
#> font-variant-numeric: tabular-nums;
#> }
#>
#> #kpsenyqemm .gt_font_normal {
#> font-weight: normal;
#> }
#>
#> #kpsenyqemm .gt_font_bold {
#> font-weight: bold;
#> }
#>
#> #kpsenyqemm .gt_font_italic {
#> font-style: italic;
#> }
#>
#> #kpsenyqemm .gt_super {
#> font-size: 65%;
#> }
#>
#> #kpsenyqemm .gt_footnote_marks {
#> font-size: 75%;
#> vertical-align: 0.4em;
#> position: initial;
#> }
#>
#> #kpsenyqemm .gt_asterisk {
#> font-size: 100%;
#> vertical-align: 0;
#> }
#>
#> #kpsenyqemm .gt_indent_1 {
#> text-indent: 5px;
#> }
#>
#> #kpsenyqemm .gt_indent_2 {
#> text-indent: 10px;
#> }
#>
#> #kpsenyqemm .gt_indent_3 {
#> text-indent: 15px;
#> }
#>
#> #kpsenyqemm .gt_indent_4 {
#> text-indent: 20px;
#> }
#>
#> #kpsenyqemm .gt_indent_5 {
#> text-indent: 25px;
#> }
#> </style>
#> <table class="gt_table" data-quarto-disable-processing="false" data-quarto-bootstrap="false">
#> <thead>
#> <tr class="gt_col_headings">
#> <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="Leader Gender">Leader Gender</th>
#> <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="Leader Name">Leader Name</th>
#> <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="Start in Position">Start in Position</th>
#> </tr>
#> </thead>
#> <tbody class="gt_table_body">
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Argentina">Argentina</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Argentina pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Argentina pm_name" class="gt_row gt_left">Alberto Fernandez</td>
#> <td headers="Argentina pm_start_in_position" class="gt_row gt_left">2019-12-10</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Australia">Australia</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Australia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Australia pm_name" class="gt_row gt_left">Scott Morrison</td>
#> <td headers="Australia pm_start_in_position" class="gt_row gt_left">2018-08-24</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Austria">Austria</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Austria pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Austria pm_name" class="gt_row gt_left">Sebastian Kurz</td>
#> <td headers="Austria pm_start_in_position" class="gt_row gt_left">2020-01-07</td></tr>
#> <tr><td headers="Austria pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Austria pm_name" class="gt_row gt_left">Karl Nehammer</td>
#> <td headers="Austria pm_start_in_position" class="gt_row gt_left">2021-12-06</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Bahamas">Bahamas</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Bahamas pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Bahamas pm_name" class="gt_row gt_left">Hubert Minnis</td>
#> <td headers="Bahamas pm_start_in_position" class="gt_row gt_left">2017-05-11</td></tr>
#> <tr><td headers="Bahamas pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Bahamas pm_name" class="gt_row gt_left">Philip Davis</td>
#> <td headers="Bahamas pm_start_in_position" class="gt_row gt_left">2021-09-17</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Barbados">Barbados</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Barbados pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Barbados pm_name" class="gt_row gt_left">Mia Mottley</td>
#> <td headers="Barbados pm_start_in_position" class="gt_row gt_left">2018-05-25</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Belgium">Belgium</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Belgium pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Belgium pm_name" class="gt_row gt_left">Sophie Wilmes</td>
#> <td headers="Belgium pm_start_in_position" class="gt_row gt_left">2019-10-27</td></tr>
#> <tr><td headers="Belgium pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Belgium pm_name" class="gt_row gt_left">Alexander De Croo</td>
#> <td headers="Belgium pm_start_in_position" class="gt_row gt_left">2020-10-01</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Belize">Belize</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Belize pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Belize pm_name" class="gt_row gt_left">Dean Barrow</td>
#> <td headers="Belize pm_start_in_position" class="gt_row gt_left">2008-02-08</td></tr>
#> <tr><td headers="Belize pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Belize pm_name" class="gt_row gt_left">Johnny Briceno</td>
#> <td headers="Belize pm_start_in_position" class="gt_row gt_left">2020-11-12</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Botswana">Botswana</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Botswana pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Botswana pm_name" class="gt_row gt_left">Mokgweetsi Masisi</td>
#> <td headers="Botswana pm_start_in_position" class="gt_row gt_left">2018-04-01</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Brazil">Brazil</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Brazil pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Brazil pm_name" class="gt_row gt_left">Jair Bolsonaro</td>
#> <td headers="Brazil pm_start_in_position" class="gt_row gt_left">2019-01-01</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Bulgaria">Bulgaria</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Bulgaria pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Bulgaria pm_name" class="gt_row gt_left">Boyko Borisov</td>
#> <td headers="Bulgaria pm_start_in_position" class="gt_row gt_left">2017-05-04</td></tr>
#> <tr><td headers="Bulgaria pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Bulgaria pm_name" class="gt_row gt_left">Stefan Yanev</td>
#> <td headers="Bulgaria pm_start_in_position" class="gt_row gt_left">2021-05-12</td></tr>
#> <tr><td headers="Bulgaria pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Bulgaria pm_name" class="gt_row gt_left">Kiril Petkov</td>
#> <td headers="Bulgaria pm_start_in_position" class="gt_row gt_left">2021-12-13</td></tr>
#> <tr><td headers="Bulgaria pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Bulgaria pm_name" class="gt_row gt_left">Galab Donev</td>
#> <td headers="Bulgaria pm_start_in_position" class="gt_row gt_left">2022-08-02</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Canada">Canada</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Canada pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Canada pm_name" class="gt_row gt_left">Justin Trudeau</td>
#> <td headers="Canada pm_start_in_position" class="gt_row gt_left">2015-11-01</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Cape Verde">Cape Verde</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Cape Verde pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Cape Verde pm_name" class="gt_row gt_left">Ulisses Correia e Silva</td>
#> <td headers="Cape Verde pm_start_in_position" class="gt_row gt_left">2016-04-22</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Chile">Chile</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Chile pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Chile pm_name" class="gt_row gt_left">Sebastian Pinera</td>
#> <td headers="Chile pm_start_in_position" class="gt_row gt_left">2018-03-11</td></tr>
#> <tr><td headers="Chile pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Chile pm_name" class="gt_row gt_left">Gabriel Boric</td>
#> <td headers="Chile pm_start_in_position" class="gt_row gt_left">2022-03-11</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Costa Rica">Costa Rica</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Costa Rica pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Costa Rica pm_name" class="gt_row gt_left">Carlos Alvarado Quesada</td>
#> <td headers="Costa Rica pm_start_in_position" class="gt_row gt_left">2018-05-08</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Croatia">Croatia</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Croatia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Croatia pm_name" class="gt_row gt_left">Andrej Plenkovic</td>
#> <td headers="Croatia pm_start_in_position" class="gt_row gt_left">2016-10-19</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Cyprus">Cyprus</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Cyprus pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Cyprus pm_name" class="gt_row gt_left">Nicos Anastasiades</td>
#> <td headers="Cyprus pm_start_in_position" class="gt_row gt_left">2013-02-18</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Czechia">Czechia</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Czechia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Czechia pm_name" class="gt_row gt_left">Andrej Babis</td>
#> <td headers="Czechia pm_start_in_position" class="gt_row gt_left">2017-12-06</td></tr>
#> <tr><td headers="Czechia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Czechia pm_name" class="gt_row gt_left">Petr Fiala</td>
#> <td headers="Czechia pm_start_in_position" class="gt_row gt_left">2021-11-28</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Denmark">Denmark</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Denmark pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Denmark pm_name" class="gt_row gt_left">Mette Frederiksen</td>
#> <td headers="Denmark pm_start_in_position" class="gt_row gt_left">2019-06-27</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Estonia">Estonia</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Estonia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Estonia pm_name" class="gt_row gt_left">Juri Ratas</td>
#> <td headers="Estonia pm_start_in_position" class="gt_row gt_left">2019-04-29</td></tr>
#> <tr><td headers="Estonia pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Estonia pm_name" class="gt_row gt_left">Kaja Kallas</td>
#> <td headers="Estonia pm_start_in_position" class="gt_row gt_left">2021-01-26</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Finland">Finland</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Finland pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Finland pm_name" class="gt_row gt_left">Sanna Marin</td>
#> <td headers="Finland pm_start_in_position" class="gt_row gt_left">2019-12-10</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="France">France</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="France pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="France pm_name" class="gt_row gt_left">Emmanuel Macron</td>
#> <td headers="France pm_start_in_position" class="gt_row gt_left">2017-05-14</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Germany">Germany</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Germany pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Germany pm_name" class="gt_row gt_left">Angela Merkel</td>
#> <td headers="Germany pm_start_in_position" class="gt_row gt_left">2005-11-22</td></tr>
#> <tr><td headers="Germany pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Germany pm_name" class="gt_row gt_left">Olaf Scholz</td>
#> <td headers="Germany pm_start_in_position" class="gt_row gt_left">2021-12-08</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Ghana">Ghana</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Ghana pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Ghana pm_name" class="gt_row gt_left">Nana Akufo-Addo</td>
#> <td headers="Ghana pm_start_in_position" class="gt_row gt_left">2017-01-07</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Greece">Greece</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Greece pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Greece pm_name" class="gt_row gt_left">Kyriakos Mitsotakis</td>
#> <td headers="Greece pm_start_in_position" class="gt_row gt_left">2019-07-08</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Guyana">Guyana</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Guyana pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Guyana pm_name" class="gt_row gt_left">David Granger</td>
#> <td headers="Guyana pm_start_in_position" class="gt_row gt_left">2015-05-16</td></tr>
#> <tr><td headers="Guyana pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Guyana pm_name" class="gt_row gt_left">Irfaan Ali</td>
#> <td headers="Guyana pm_start_in_position" class="gt_row gt_left">2020-08-02</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Hungary">Hungary</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Hungary pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Hungary pm_name" class="gt_row gt_left">Viktor Orban</td>
#> <td headers="Hungary pm_start_in_position" class="gt_row gt_left">2010-05-29</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Iceland">Iceland</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Iceland pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Iceland pm_name" class="gt_row gt_left">Katrin Jakobsdottir</td>
#> <td headers="Iceland pm_start_in_position" class="gt_row gt_left">2017-11-30</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Ireland">Ireland</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Ireland pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Ireland pm_name" class="gt_row gt_left">Leo Varadkar</td>
#> <td headers="Ireland pm_start_in_position" class="gt_row gt_left">2017-06-14</td></tr>
#> <tr><td headers="Ireland pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Ireland pm_name" class="gt_row gt_left">Micheal Martin</td>
#> <td headers="Ireland pm_start_in_position" class="gt_row gt_left">2020-06-27</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Israel">Israel</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Israel pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Israel pm_name" class="gt_row gt_left">Benjamin Netanyau</td>
#> <td headers="Israel pm_start_in_position" class="gt_row gt_left">2009-03-31</td></tr>
#> <tr><td headers="Israel pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Israel pm_name" class="gt_row gt_left">Naftali Bennett</td>
#> <td headers="Israel pm_start_in_position" class="gt_row gt_left">2021-06-13</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Italy">Italy</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Italy pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Italy pm_name" class="gt_row gt_left">Giuseppe Conte</td>
#> <td headers="Italy pm_start_in_position" class="gt_row gt_left">2018-06-01</td></tr>
#> <tr><td headers="Italy pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Italy pm_name" class="gt_row gt_left">Mario Draghi</td>
#> <td headers="Italy pm_start_in_position" class="gt_row gt_left">2021-02-13</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Jamaica">Jamaica</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Jamaica pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Jamaica pm_name" class="gt_row gt_left">Andrew Holness</td>
#> <td headers="Jamaica pm_start_in_position" class="gt_row gt_left">2016-03-03</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Japan">Japan</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Japan pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Japan pm_name" class="gt_row gt_left">Shinzo Abe</td>
#> <td headers="Japan pm_start_in_position" class="gt_row gt_left">2012-12-26</td></tr>
#> <tr><td headers="Japan pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Japan pm_name" class="gt_row gt_left">Yoshihide Suga</td>
#> <td headers="Japan pm_start_in_position" class="gt_row gt_left">2020-09-16</td></tr>
#> <tr><td headers="Japan pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Japan pm_name" class="gt_row gt_left">Fumio Kishida</td>
#> <td headers="Japan pm_start_in_position" class="gt_row gt_left">2021-10-04</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Latvia">Latvia</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Latvia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Latvia pm_name" class="gt_row gt_left">Krisjanis Kariņs</td>
#> <td headers="Latvia pm_start_in_position" class="gt_row gt_left">2019-01-23</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Lithuania">Lithuania</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Lithuania pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Lithuania pm_name" class="gt_row gt_left">Saulius Skvernelis</td>
#> <td headers="Lithuania pm_start_in_position" class="gt_row gt_left">2016-11-22</td></tr>
#> <tr><td headers="Lithuania pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Lithuania pm_name" class="gt_row gt_left">Ingrida Simonyte</td>
#> <td headers="Lithuania pm_start_in_position" class="gt_row gt_left">2020-12-11</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Luxembourg">Luxembourg</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Luxembourg pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Luxembourg pm_name" class="gt_row gt_left">Xavier Bettel</td>
#> <td headers="Luxembourg pm_start_in_position" class="gt_row gt_left">2013-12-04</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Malta">Malta</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Malta pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Malta pm_name" class="gt_row gt_left">Robert Abela</td>
#> <td headers="Malta pm_start_in_position" class="gt_row gt_left">2020-01-13</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Mauritius">Mauritius</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Mauritius pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Mauritius pm_name" class="gt_row gt_left">Pravind Jugnauth</td>
#> <td headers="Mauritius pm_start_in_position" class="gt_row gt_left">2017-01-23</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Mexico">Mexico</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Mexico pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Mexico pm_name" class="gt_row gt_left">Andres Manuel Lopez Obrador</td>
#> <td headers="Mexico pm_start_in_position" class="gt_row gt_left">2018-12-01</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Netherlands">Netherlands</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Netherlands pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Netherlands pm_name" class="gt_row gt_left">Mark Rutte</td>
#> <td headers="Netherlands pm_start_in_position" class="gt_row gt_left">2010-10-14</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="New Zealand">New Zealand</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="New Zealand pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="New Zealand pm_name" class="gt_row gt_left">Jacinda Ardern</td>
#> <td headers="New Zealand pm_start_in_position" class="gt_row gt_left">2017-10-26</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Norway">Norway</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Norway pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Norway pm_name" class="gt_row gt_left">Erna Solberg</td>
#> <td headers="Norway pm_start_in_position" class="gt_row gt_left">2013-10-16</td></tr>
#> <tr><td headers="Norway pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Norway pm_name" class="gt_row gt_left">Jonas Gahr Store</td>
#> <td headers="Norway pm_start_in_position" class="gt_row gt_left">2021-10-14</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Panama">Panama</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Panama pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Panama pm_name" class="gt_row gt_left">Laurentino Cortizo</td>
#> <td headers="Panama pm_start_in_position" class="gt_row gt_left">2019-07-01</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Poland">Poland</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Poland pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Poland pm_name" class="gt_row gt_left">Mateusz Morawiecki</td>
#> <td headers="Poland pm_start_in_position" class="gt_row gt_left">2017-12-11</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Portugal">Portugal</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Portugal pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Portugal pm_name" class="gt_row gt_left">Antonio Costa</td>
#> <td headers="Portugal pm_start_in_position" class="gt_row gt_left">2015-11-26</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Romania">Romania</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Romania pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Romania pm_name" class="gt_row gt_left">Ludovic Orban</td>
#> <td headers="Romania pm_start_in_position" class="gt_row gt_left">2019-11-04</td></tr>
#> <tr><td headers="Romania pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Romania pm_name" class="gt_row gt_left">Florin Citu</td>
#> <td headers="Romania pm_start_in_position" class="gt_row gt_left">2020-12-07</td></tr>
#> <tr><td headers="Romania pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Romania pm_name" class="gt_row gt_left">Nicolae Ciuca</td>
#> <td headers="Romania pm_start_in_position" class="gt_row gt_left">2021-11-25</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Sao Tome and Principe">Sao Tome and Principe</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Sao Tome and Principe pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Sao Tome and Principe pm_name" class="gt_row gt_left">Jorge Bom Jesus</td>
#> <td headers="Sao Tome and Principe pm_start_in_position" class="gt_row gt_left">2018-12-03</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Slovakia">Slovakia</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Slovakia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Slovakia pm_name" class="gt_row gt_left">Peter Pellegrini</td>
#> <td headers="Slovakia pm_start_in_position" class="gt_row gt_left">2018-03-22</td></tr>
#> <tr><td headers="Slovakia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Slovakia pm_name" class="gt_row gt_left">Igor Matovic</td>
#> <td headers="Slovakia pm_start_in_position" class="gt_row gt_left">2020-03-21</td></tr>
#> <tr><td headers="Slovakia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Slovakia pm_name" class="gt_row gt_left">Eduard Heger</td>
#> <td headers="Slovakia pm_start_in_position" class="gt_row gt_left">2021-04-01</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Slovenia">Slovenia</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Slovenia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Slovenia pm_name" class="gt_row gt_left">Marjan Sarec</td>
#> <td headers="Slovenia pm_start_in_position" class="gt_row gt_left">2018-09-13</td></tr>
#> <tr><td headers="Slovenia pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Slovenia pm_name" class="gt_row gt_left">Janez Jansa</td>
#> <td headers="Slovenia pm_start_in_position" class="gt_row gt_left">2020-03-03</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="South Africa">South Africa</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="South Africa pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="South Africa pm_name" class="gt_row gt_left">Cyril Ramaphosa</td>
#> <td headers="South Africa pm_start_in_position" class="gt_row gt_left">2018-02-15</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="South Korea">South Korea</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="South Korea pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="South Korea pm_name" class="gt_row gt_left">Moon Jae-in</td>
#> <td headers="South Korea pm_start_in_position" class="gt_row gt_left">2017-05-10</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Spain">Spain</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Spain pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Spain pm_name" class="gt_row gt_left">Pedro Sanchez</td>
#> <td headers="Spain pm_start_in_position" class="gt_row gt_left">2018-06-02</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Suriname">Suriname</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Suriname pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Suriname pm_name" class="gt_row gt_left">Desi Bouterse</td>
#> <td headers="Suriname pm_start_in_position" class="gt_row gt_left">2010-08-12</td></tr>
#> <tr><td headers="Suriname pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Suriname pm_name" class="gt_row gt_left">Chan Santokhi</td>
#> <td headers="Suriname pm_start_in_position" class="gt_row gt_left">2020-07-16</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Sweden">Sweden</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Sweden pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Sweden pm_name" class="gt_row gt_left">Stefan Lofven</td>
#> <td headers="Sweden pm_start_in_position" class="gt_row gt_left">2014-10-03</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Switzerland">Switzerland</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Switzerland pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Switzerland pm_name" class="gt_row gt_left">Simonetta Sommaruga</td>
#> <td headers="Switzerland pm_start_in_position" class="gt_row gt_left">2020-01-01</td></tr>
#> <tr><td headers="Switzerland pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Switzerland pm_name" class="gt_row gt_left">Guy Parmelin</td>
#> <td headers="Switzerland pm_start_in_position" class="gt_row gt_left">2021-01-01</td></tr>
#> <tr><td headers="Switzerland pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Switzerland pm_name" class="gt_row gt_left">Ignazio Cassis</td>
#> <td headers="Switzerland pm_start_in_position" class="gt_row gt_left">2022-01-01</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Taiwan">Taiwan</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Taiwan pm_gender" class="gt_row gt_left">Female</td>
#> <td headers="Taiwan pm_name" class="gt_row gt_left">Tsai Ing-wen</td>
#> <td headers="Taiwan pm_start_in_position" class="gt_row gt_left">2016-05-20</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Trinidad and Tobago">Trinidad and Tobago</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Trinidad and Tobago pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Trinidad and Tobago pm_name" class="gt_row gt_left">Keith Rowley</td>
#> <td headers="Trinidad and Tobago pm_start_in_position" class="gt_row gt_left">2015-09-09</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Turkey">Turkey</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Turkey pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Turkey pm_name" class="gt_row gt_left">Recep Tayyip Erdogan</td>
#> <td headers="Turkey pm_start_in_position" class="gt_row gt_left">2003-02-09</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="United Kingdom">United Kingdom</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="United Kingdom pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="United Kingdom pm_name" class="gt_row gt_left">Boris Johnson</td>
#> <td headers="United Kingdom pm_start_in_position" class="gt_row gt_left">2019-07-24</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="United States">United States</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="United States pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="United States pm_name" class="gt_row gt_left">Donald Trump</td>
#> <td headers="United States pm_start_in_position" class="gt_row gt_left">2017-01-20</td></tr>
#> <tr><td headers="United States pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="United States pm_name" class="gt_row gt_left">Joe Biden</td>
#> <td headers="United States pm_start_in_position" class="gt_row gt_left">2021-01-20</td></tr>
#> <tr class="gt_group_heading_row">
#> <th colspan="3" class="gt_group_heading" scope="colgroup" id="Uruguay">Uruguay</th>
#> </tr>
#> <tr class="gt_row_group_first"><td headers="Uruguay pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Uruguay pm_name" class="gt_row gt_left">Tabare Vazquez</td>
#> <td headers="Uruguay pm_start_in_position" class="gt_row gt_left">2015-03-01</td></tr>
#> <tr><td headers="Uruguay pm_gender" class="gt_row gt_left">Male</td>
#> <td headers="Uruguay pm_name" class="gt_row gt_left">Luis Lacalle Pou</td>
#> <td headers="Uruguay pm_start_in_position" class="gt_row gt_left">2020-03-01</td></tr>
#> </tbody>
#>
#>
#> </table>
#> </div>
data_sources.tex
wl_si_data_sources("tables/data_sources.tex")
#> <div id="syeiargnxc" style="padding-left:0px;padding-right:0px;padding-top:10px;padding-bottom:10px;overflow-x:auto;overflow-y:auto;width:auto;height:auto;">
#> <style>#syeiargnxc table {
#> font-family: system-ui, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji';
#> -webkit-font-smoothing: antialiased;
#> -moz-osx-font-smoothing: grayscale;
#> }
#>
#> #syeiargnxc thead, #syeiargnxc tbody, #syeiargnxc tfoot, #syeiargnxc tr, #syeiargnxc td, #syeiargnxc th {
#> border-style: none;
#> }
#>
#> #syeiargnxc p {
#> margin: 0;
#> padding: 0;
#> }
#>
#> #syeiargnxc .gt_table {
#> display: table;
#> border-collapse: collapse;
#> line-height: normal;
#> margin-left: auto;
#> margin-right: auto;
#> color: #333333;
#> font-size: 16px;
#> font-weight: normal;
#> font-style: normal;
#> background-color: #FFFFFF;
#> width: auto;
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #A8A8A8;
#> border-right-style: none;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #A8A8A8;
#> border-left-style: none;
#> border-left-width: 2px;
#> border-left-color: #D3D3D3;
#> }
#>
#> #syeiargnxc .gt_caption {
#> padding-top: 4px;
#> padding-bottom: 4px;
#> }
#>
#> #syeiargnxc .gt_title {
#> color: #333333;
#> font-size: 125%;
#> font-weight: initial;
#> padding-top: 4px;
#> padding-bottom: 4px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-bottom-color: #FFFFFF;
#> border-bottom-width: 0;
#> }
#>
#> #syeiargnxc .gt_subtitle {
#> color: #333333;
#> font-size: 85%;
#> font-weight: initial;
#> padding-top: 3px;
#> padding-bottom: 5px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-top-color: #FFFFFF;
#> border-top-width: 0;
#> }
#>
#> #syeiargnxc .gt_heading {
#> background-color: #FFFFFF;
#> text-align: center;
#> border-bottom-color: #FFFFFF;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #syeiargnxc .gt_bottom_border {
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #syeiargnxc .gt_col_headings {
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #syeiargnxc .gt_col_heading {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: normal;
#> text-transform: inherit;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> vertical-align: bottom;
#> padding-top: 5px;
#> padding-bottom: 6px;
#> padding-left: 5px;
#> padding-right: 5px;
#> overflow-x: hidden;
#> }
#>
#> #syeiargnxc .gt_column_spanner_outer {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: normal;
#> text-transform: inherit;
#> padding-top: 0;
#> padding-bottom: 0;
#> padding-left: 4px;
#> padding-right: 4px;
#> }
#>
#> #syeiargnxc .gt_column_spanner_outer:first-child {
#> padding-left: 0;
#> }
#>
#> #syeiargnxc .gt_column_spanner_outer:last-child {
#> padding-right: 0;
#> }
#>
#> #syeiargnxc .gt_column_spanner {
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> vertical-align: bottom;
#> padding-top: 5px;
#> padding-bottom: 5px;
#> overflow-x: hidden;
#> display: inline-block;
#> width: 100%;
#> }
#>
#> #syeiargnxc .gt_spanner_row {
#> border-bottom-style: hidden;
#> }
#>
#> #syeiargnxc .gt_group_heading {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> text-transform: inherit;
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> vertical-align: middle;
#> text-align: left;
#> }
#>
#> #syeiargnxc .gt_empty_group_heading {
#> padding: 0.5px;
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> vertical-align: middle;
#> }
#>
#> #syeiargnxc .gt_from_md > :first-child {
#> margin-top: 0;
#> }
#>
#> #syeiargnxc .gt_from_md > :last-child {
#> margin-bottom: 0;
#> }
#>
#> #syeiargnxc .gt_row {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> margin: 10px;
#> border-top-style: solid;
#> border-top-width: 1px;
#> border-top-color: #000000;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> vertical-align: middle;
#> overflow-x: hidden;
#> }
#>
#> #syeiargnxc .gt_stub {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> text-transform: inherit;
#> border-right-style: solid;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #syeiargnxc .gt_stub_row_group {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> text-transform: inherit;
#> border-right-style: solid;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> padding-left: 5px;
#> padding-right: 5px;
#> vertical-align: top;
#> }
#>
#> #syeiargnxc .gt_row_group_first td {
#> border-top-width: 2px;
#> }
#>
#> #syeiargnxc .gt_row_group_first th {
#> border-top-width: 2px;
#> }
#>
#> #syeiargnxc .gt_summary_row {
#> color: #333333;
#> background-color: #FFFFFF;
#> text-transform: inherit;
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #syeiargnxc .gt_first_summary_row {
#> border-top-style: solid;
#> border-top-color: #D3D3D3;
#> }
#>
#> #syeiargnxc .gt_first_summary_row.thick {
#> border-top-width: 2px;
#> }
#>
#> #syeiargnxc .gt_last_summary_row {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #syeiargnxc .gt_grand_summary_row {
#> color: #333333;
#> background-color: #FFFFFF;
#> text-transform: inherit;
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #syeiargnxc .gt_first_grand_summary_row {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-top-style: double;
#> border-top-width: 6px;
#> border-top-color: #D3D3D3;
#> }
#>
#> #syeiargnxc .gt_last_grand_summary_row_top {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-bottom-style: double;
#> border-bottom-width: 6px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #syeiargnxc .gt_striped {
#> background-color: rgba(128, 128, 128, 0.05);
#> }
#>
#> #syeiargnxc .gt_table_body {
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #syeiargnxc .gt_footnotes {
#> color: #333333;
#> background-color: #FFFFFF;
#> border-bottom-style: none;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 2px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #syeiargnxc .gt_footnote {
#> margin: 0px;
#> font-size: 90%;
#> padding-top: 4px;
#> padding-bottom: 4px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #syeiargnxc .gt_sourcenotes {
#> color: #333333;
#> background-color: #FFFFFF;
#> border-bottom-style: none;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 2px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #syeiargnxc .gt_sourcenote {
#> font-size: 90%;
#> padding-top: 4px;
#> padding-bottom: 4px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #syeiargnxc .gt_left {
#> text-align: left;
#> }
#>
#> #syeiargnxc .gt_center {
#> text-align: center;
#> }
#>
#> #syeiargnxc .gt_right {
#> text-align: right;
#> font-variant-numeric: tabular-nums;
#> }
#>
#> #syeiargnxc .gt_font_normal {
#> font-weight: normal;
#> }
#>
#> #syeiargnxc .gt_font_bold {
#> font-weight: bold;
#> }
#>
#> #syeiargnxc .gt_font_italic {
#> font-style: italic;
#> }
#>
#> #syeiargnxc .gt_super {
#> font-size: 65%;
#> }
#>
#> #syeiargnxc .gt_footnote_marks {
#> font-size: 75%;
#> vertical-align: 0.4em;
#> position: initial;
#> }
#>
#> #syeiargnxc .gt_asterisk {
#> font-size: 100%;
#> vertical-align: 0;
#> }
#>
#> #syeiargnxc .gt_indent_1 {
#> text-indent: 5px;
#> }
#>
#> #syeiargnxc .gt_indent_2 {
#> text-indent: 10px;
#> }
#>
#> #syeiargnxc .gt_indent_3 {
#> text-indent: 15px;
#> }
#>
#> #syeiargnxc .gt_indent_4 {
#> text-indent: 20px;
#> }
#>
#> #syeiargnxc .gt_indent_5 {
#> text-indent: 25px;
#> }
#> </style>
#> <table class="gt_table" style="table-layout: fixed;; width: 0px" data-quarto-disable-processing="false" data-quarto-bootstrap="false">
#> <colgroup>
#> <col style="width:200px;"/>
#> <col style="width:400px;"/>
#> <col style="width:200px;"/>
#> </colgroup>
#> <thead>
#> <tr class="gt_col_headings">
#> <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="Name">Name</th>
#> <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="Credit">Credit</th>
#> <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="Variables">Variables</th>
#> </tr>
#> </thead>
#> <tbody class="gt_table_body">
#> <tr><td headers="Name" class="gt_row gt_left">Freedom House</td>
#> <td headers="Credit" class="gt_row gt_left">Freedom in the World report, FIW 2013-2021</td>
#> <td headers="Variables" class="gt_row gt_left">Democracy Score</td></tr>
#> <tr><td headers="Name" class="gt_row gt_left">Governmental online resources</td>
#> <td headers="Credit" class="gt_row gt_left">Governmental online resources</td>
#> <td headers="Variables" class="gt_row gt_left">Leader Age, Leader Gender[female]</td></tr>
#> <tr><td headers="Name" class="gt_row gt_left">Hanson-Sigman State Capacity</td>
#> <td headers="Credit" class="gt_row gt_left">Hanson, Jonathan; Sigman, Rachel, 2020, "Leviathan's Latent Dimensions: Measuring State Capacity for Comparative Political Research", https://doi.org/10.7910/DVN/IFZXQX, Harvard Dataverse, V1</td>
#> <td headers="Variables" class="gt_row gt_left">State Capacity</td></tr>
#> <tr><td headers="Name" class="gt_row gt_left">Legatum Prosperity Index (LPI)</td>
#> <td headers="Credit" class="gt_row gt_left">Legatum Institute Foundation. 2023 Legatum Prosperity Index (www.prosperity.com)</td>
#> <td headers="Variables" class="gt_row gt_left">Health-system Score</td></tr>
#> <tr><td headers="Name" class="gt_row gt_left">Our World in Data (OWID)</td>
#> <td headers="Credit" class="gt_row gt_left">Hannah Ritchie, Edouard Mathieu, Lucas Rodes-Guirao, Cameron Appel, Charlie Giattino, Esteban Ortiz-Ospina, Joe Hasell, Bobbie Macdonald, Diana Beltekian and Max Roser (2020) - "Coronavirus Pandemic (COVID-19)". Published online at OurWorldInData.org. </td>
#> <td headers="Variables" class="gt_row gt_left">Population Aged 70 or Older, Excess Mortality, Immigration Percentage, New Infection Cases, New Death Cases, New Vaccination (delayed), Stringency Index (delayed), GDP per Capita, Population Size</td></tr>
#> <tr><td headers="Name" class="gt_row gt_left">The World Bank (WDI)</td>
#> <td headers="Credit" class="gt_row gt_left">The World Bank, Urban Population, United Nations Population Division</td>
#> <td headers="Variables" class="gt_row gt_left">Urbanization Percentage</td></tr>
#> </tbody>
#>
#>
#> </table>
#> </div>
wl_si_data_sources("tables/data_sources.rtf")
#> <div id="ixjoabcoer" style="padding-left:0px;padding-right:0px;padding-top:10px;padding-bottom:10px;overflow-x:auto;overflow-y:auto;width:auto;height:auto;">
#> <style>#ixjoabcoer table {
#> font-family: system-ui, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji';
#> -webkit-font-smoothing: antialiased;
#> -moz-osx-font-smoothing: grayscale;
#> }
#>
#> #ixjoabcoer thead, #ixjoabcoer tbody, #ixjoabcoer tfoot, #ixjoabcoer tr, #ixjoabcoer td, #ixjoabcoer th {
#> border-style: none;
#> }
#>
#> #ixjoabcoer p {
#> margin: 0;
#> padding: 0;
#> }
#>
#> #ixjoabcoer .gt_table {
#> display: table;
#> border-collapse: collapse;
#> line-height: normal;
#> margin-left: auto;
#> margin-right: auto;
#> color: #333333;
#> font-size: 16px;
#> font-weight: normal;
#> font-style: normal;
#> background-color: #FFFFFF;
#> width: auto;
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #A8A8A8;
#> border-right-style: none;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #A8A8A8;
#> border-left-style: none;
#> border-left-width: 2px;
#> border-left-color: #D3D3D3;
#> }
#>
#> #ixjoabcoer .gt_caption {
#> padding-top: 4px;
#> padding-bottom: 4px;
#> }
#>
#> #ixjoabcoer .gt_title {
#> color: #333333;
#> font-size: 125%;
#> font-weight: initial;
#> padding-top: 4px;
#> padding-bottom: 4px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-bottom-color: #FFFFFF;
#> border-bottom-width: 0;
#> }
#>
#> #ixjoabcoer .gt_subtitle {
#> color: #333333;
#> font-size: 85%;
#> font-weight: initial;
#> padding-top: 3px;
#> padding-bottom: 5px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-top-color: #FFFFFF;
#> border-top-width: 0;
#> }
#>
#> #ixjoabcoer .gt_heading {
#> background-color: #FFFFFF;
#> text-align: center;
#> border-bottom-color: #FFFFFF;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #ixjoabcoer .gt_bottom_border {
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #ixjoabcoer .gt_col_headings {
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #ixjoabcoer .gt_col_heading {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: normal;
#> text-transform: inherit;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> vertical-align: bottom;
#> padding-top: 5px;
#> padding-bottom: 6px;
#> padding-left: 5px;
#> padding-right: 5px;
#> overflow-x: hidden;
#> }
#>
#> #ixjoabcoer .gt_column_spanner_outer {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: normal;
#> text-transform: inherit;
#> padding-top: 0;
#> padding-bottom: 0;
#> padding-left: 4px;
#> padding-right: 4px;
#> }
#>
#> #ixjoabcoer .gt_column_spanner_outer:first-child {
#> padding-left: 0;
#> }
#>
#> #ixjoabcoer .gt_column_spanner_outer:last-child {
#> padding-right: 0;
#> }
#>
#> #ixjoabcoer .gt_column_spanner {
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> vertical-align: bottom;
#> padding-top: 5px;
#> padding-bottom: 5px;
#> overflow-x: hidden;
#> display: inline-block;
#> width: 100%;
#> }
#>
#> #ixjoabcoer .gt_spanner_row {
#> border-bottom-style: hidden;
#> }
#>
#> #ixjoabcoer .gt_group_heading {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> text-transform: inherit;
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> vertical-align: middle;
#> text-align: left;
#> }
#>
#> #ixjoabcoer .gt_empty_group_heading {
#> padding: 0.5px;
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> vertical-align: middle;
#> }
#>
#> #ixjoabcoer .gt_from_md > :first-child {
#> margin-top: 0;
#> }
#>
#> #ixjoabcoer .gt_from_md > :last-child {
#> margin-bottom: 0;
#> }
#>
#> #ixjoabcoer .gt_row {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> margin: 10px;
#> border-top-style: solid;
#> border-top-width: 1px;
#> border-top-color: #000000;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> vertical-align: middle;
#> overflow-x: hidden;
#> }
#>
#> #ixjoabcoer .gt_stub {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> text-transform: inherit;
#> border-right-style: solid;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #ixjoabcoer .gt_stub_row_group {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> text-transform: inherit;
#> border-right-style: solid;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> padding-left: 5px;
#> padding-right: 5px;
#> vertical-align: top;
#> }
#>
#> #ixjoabcoer .gt_row_group_first td {
#> border-top-width: 2px;
#> }
#>
#> #ixjoabcoer .gt_row_group_first th {
#> border-top-width: 2px;
#> }
#>
#> #ixjoabcoer .gt_summary_row {
#> color: #333333;
#> background-color: #FFFFFF;
#> text-transform: inherit;
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #ixjoabcoer .gt_first_summary_row {
#> border-top-style: solid;
#> border-top-color: #D3D3D3;
#> }
#>
#> #ixjoabcoer .gt_first_summary_row.thick {
#> border-top-width: 2px;
#> }
#>
#> #ixjoabcoer .gt_last_summary_row {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #ixjoabcoer .gt_grand_summary_row {
#> color: #333333;
#> background-color: #FFFFFF;
#> text-transform: inherit;
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #ixjoabcoer .gt_first_grand_summary_row {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-top-style: double;
#> border-top-width: 6px;
#> border-top-color: #D3D3D3;
#> }
#>
#> #ixjoabcoer .gt_last_grand_summary_row_top {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-bottom-style: double;
#> border-bottom-width: 6px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #ixjoabcoer .gt_striped {
#> background-color: rgba(128, 128, 128, 0.05);
#> }
#>
#> #ixjoabcoer .gt_table_body {
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #ixjoabcoer .gt_footnotes {
#> color: #333333;
#> background-color: #FFFFFF;
#> border-bottom-style: none;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 2px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #ixjoabcoer .gt_footnote {
#> margin: 0px;
#> font-size: 90%;
#> padding-top: 4px;
#> padding-bottom: 4px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #ixjoabcoer .gt_sourcenotes {
#> color: #333333;
#> background-color: #FFFFFF;
#> border-bottom-style: none;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 2px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #ixjoabcoer .gt_sourcenote {
#> font-size: 90%;
#> padding-top: 4px;
#> padding-bottom: 4px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #ixjoabcoer .gt_left {
#> text-align: left;
#> }
#>
#> #ixjoabcoer .gt_center {
#> text-align: center;
#> }
#>
#> #ixjoabcoer .gt_right {
#> text-align: right;
#> font-variant-numeric: tabular-nums;
#> }
#>
#> #ixjoabcoer .gt_font_normal {
#> font-weight: normal;
#> }
#>
#> #ixjoabcoer .gt_font_bold {
#> font-weight: bold;
#> }
#>
#> #ixjoabcoer .gt_font_italic {
#> font-style: italic;
#> }
#>
#> #ixjoabcoer .gt_super {
#> font-size: 65%;
#> }
#>
#> #ixjoabcoer .gt_footnote_marks {
#> font-size: 75%;
#> vertical-align: 0.4em;
#> position: initial;
#> }
#>
#> #ixjoabcoer .gt_asterisk {
#> font-size: 100%;
#> vertical-align: 0;
#> }
#>
#> #ixjoabcoer .gt_indent_1 {
#> text-indent: 5px;
#> }
#>
#> #ixjoabcoer .gt_indent_2 {
#> text-indent: 10px;
#> }
#>
#> #ixjoabcoer .gt_indent_3 {
#> text-indent: 15px;
#> }
#>
#> #ixjoabcoer .gt_indent_4 {
#> text-indent: 20px;
#> }
#>
#> #ixjoabcoer .gt_indent_5 {
#> text-indent: 25px;
#> }
#> </style>
#> <table class="gt_table" style="table-layout: fixed;; width: 0px" data-quarto-disable-processing="false" data-quarto-bootstrap="false">
#> <colgroup>
#> <col style="width:200px;"/>
#> <col style="width:400px;"/>
#> <col style="width:200px;"/>
#> </colgroup>
#> <thead>
#> <tr class="gt_col_headings">
#> <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="Name">Name</th>
#> <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="Credit">Credit</th>
#> <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="Variables">Variables</th>
#> </tr>
#> </thead>
#> <tbody class="gt_table_body">
#> <tr><td headers="Name" class="gt_row gt_left">Freedom House</td>
#> <td headers="Credit" class="gt_row gt_left">Freedom in the World report, FIW 2013-2021</td>
#> <td headers="Variables" class="gt_row gt_left">Democracy Score</td></tr>
#> <tr><td headers="Name" class="gt_row gt_left">Governmental online resources</td>
#> <td headers="Credit" class="gt_row gt_left">Governmental online resources</td>
#> <td headers="Variables" class="gt_row gt_left">Leader Age, Leader Gender[female]</td></tr>
#> <tr><td headers="Name" class="gt_row gt_left">Hanson-Sigman State Capacity</td>
#> <td headers="Credit" class="gt_row gt_left">Hanson, Jonathan; Sigman, Rachel, 2020, "Leviathan's Latent Dimensions: Measuring State Capacity for Comparative Political Research", https://doi.org/10.7910/DVN/IFZXQX, Harvard Dataverse, V1</td>
#> <td headers="Variables" class="gt_row gt_left">State Capacity</td></tr>
#> <tr><td headers="Name" class="gt_row gt_left">Legatum Prosperity Index (LPI)</td>
#> <td headers="Credit" class="gt_row gt_left">Legatum Institute Foundation. 2023 Legatum Prosperity Index (www.prosperity.com)</td>
#> <td headers="Variables" class="gt_row gt_left">Health-system Score</td></tr>
#> <tr><td headers="Name" class="gt_row gt_left">Our World in Data (OWID)</td>
#> <td headers="Credit" class="gt_row gt_left">Hannah Ritchie, Edouard Mathieu, Lucas Rodes-Guirao, Cameron Appel, Charlie Giattino, Esteban Ortiz-Ospina, Joe Hasell, Bobbie Macdonald, Diana Beltekian and Max Roser (2020) - "Coronavirus Pandemic (COVID-19)". Published online at OurWorldInData.org. </td>
#> <td headers="Variables" class="gt_row gt_left">Population Aged 70 or Older, Excess Mortality, Immigration Percentage, New Infection Cases, New Death Cases, New Vaccination (delayed), Stringency Index (delayed), GDP per Capita, Population Size</td></tr>
#> <tr><td headers="Name" class="gt_row gt_left">The World Bank (WDI)</td>
#> <td headers="Credit" class="gt_row gt_left">The World Bank, Urban Population, United Nations Population Division</td>
#> <td headers="Variables" class="gt_row gt_left">Urbanization Percentage</td></tr>
#> </tbody>
#>
#>
#> </table>
#> </div>
descriptive.tex
Wave 1 | Wave 2 | Wave 3 | Wave 4 | Full | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | Male | Female | Male | Female | |
New Infection Cases | 18.7 | 27.0 | 201.8 | 118.4 | 195.3 | 131.8 | 162.2 | 134.3 | 141.9 | 94.4 |
New Death Cases | 1.6 | 2.0 | 3.5 | 1.7 | 3.3 | 1.4 | 2.1 | 0.8 | 2.4 | 1.2 |
Excess Mortality | 8.3 | 6.2 | 18.6 | 7.5 | 9.7 | 1.8 | 11.6 | 8.8 | 11.8 | 5.0 |
Stringency Index (delayed) | 41.5 | 35.7 | 58.9 | 43.4 | 66.9 | 55.4 | 55.6 | 46.8 | 60.1 | 48.2 |
Leader Age | 57.4 | 50.6 | 56.7 | 50.6 | 57.0 | 48.9 | 56.6 | 48.8 | 56.9 | 49.9 |
New Vaccination (delayed) | 0.0 | 0.0 | 17.8 | 9.7 | 2,005.5 | 2,071.1 | 5,219.6 | 6,093.7 | 1,677.4 | 1,889.3 |
Democracy Score | 1.5 | 1.0 | 1.5 | 1.0 | 1.5 | 1.0 | 1.5 | 1.1 | 1.5 | 1.0 |
GDP per Capita | 29.8 | 40.8 | 29.4 | 39.3 | 29.9 | 36.4 | 30.0 | 36.0 | 29.6 | 38.3 |
Health-system Score | 75.7 | 81.4 | 75.7 | 81.1 | 76.1 | 80.4 | 76.1 | 80.4 | 75.8 | 80.9 |
Population Size | 30.9 | 15.3 | 29.3 | 14.8 | 29.7 | 13.4 | 29.7 | 13.5 | 29.7 | 14.3 |
Urbanization Percentage | 72.6 | 80.6 | 72.7 | 77.7 | 73.1 | 76.4 | 73.2 | 76.3 | 72.8 | 77.8 |
Immigration Percentage | 11.1 | 16.4 | 11.1 | 15.4 | 11.4 | 13.8 | 11.4 | 13.7 | 11.2 | 15.0 |
Population Aged 70 or Older | 9.6 | 11.5 | 9.3 | 11.4 | 9.3 | 11.6 | 9.3 | 11.7 | 9.3 | 11.5 |
State Capacity | 1.4 | 2.3 | 1.4 | 2.2 | 1.4 | 2.1 | 1.4 | 2.1 | 1.4 | 2.2 |
dep_by_gender.png
x_name <- c("Week Number (starting 1-Jan-2020)" = "week_num")
x_lim <- range(wl_wave_range("All_C"))
df <- wl_plotdata("Weekly", x_name, wl_dependents()[1], "ALL", "Gender", x_lim, "All_C")
p1a <- wl_plot_xy(df, x_name, wl_dependents()[1], "Gender", "Color") + xlab("")+
theme(legend.direction="horizontal",
legend.position = c(0.15, 0.8))
df <- wl_plotdata("Weekly", x_name, wl_dependents()[2], "ALL", "Gender", x_lim, "All_C")
p1b <- wl_plot_xy(df, x_name, wl_dependents()[2], "Gender", "Color") + xlab("")+
theme(legend.direction="horizontal",
legend.position = c(0.15, 0.8))
df <- wl_plotdata("Weekly", x_name, wl_dependents()[3], "ALL", "Gender", x_lim, "All_C")
p1c <- wl_plot_xy(df, x_name, wl_dependents()[3], "Gender", "Color")+
theme(legend.direction="horizontal",
legend.position = c(0.15, 0.8))
p <- ggarrange(p1a, p1b, p1c,
align = "h", font.label = list(size = 10, face = "bold"),
vjust = 2.5, hjust = -3.5, ncol = 1, nrow = 3)
wl_ggsave("figures/dep_by_gender.png", plot = p, height=150)
cov_f <- wl_covariates(cov_group = "Main coviariates")
m_fc <- wl_wave_regression(
db_type = "Weekly", y_name = wl_dependents()[1], x_var = cov_f,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "calendar", waves = c("All_C"))
m_fd <- wl_wave_regression(
db_type = "Weekly", y_name = wl_dependents()[2], x_var = cov_f,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("All_D"))
m_fe <- wl_wave_regression(
db_type = "Weekly", y_name = wl_dependents()[3], x_var = cov_f,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("All_D"))
performance_full_reg.tex
#>
#> --------------------------------------------------------------------------------
#> New Infection Cases New Death Cases Excess Mortality
#> (1) (2) (3)
#> --------------------------------------------------------------------------------
#> Leader Gender[female] -58.253*** -0.980*** -4.486***
#> (8.836) (0.152) (0.918)
#> Leader Age -0.385 -0.016** 0.032
#> (0.309) (0.005) (0.035)
#> Stringency Index (delayed) 0.629*** 0.014*** -0.176***
#> (0.159) (0.003) (0.018)
#> New Vaccination (delayed) 0.002* -0.0001*** -0.0001
#> (0.001) (0.00002) (0.0001)
#> Democracy Score 2.664 0.644*** 3.255***
#> (8.090) (0.139) (0.932)
#> GDP per Capita 0.481 -0.002 0.023
#> (0.305) (0.005) (0.037)
#> Health-system Score -1.209 -0.063*** -0.761***
#> (0.790) (0.014) (0.097)
#> Population Size -0.014 0.002 -0.001
#> (0.063) (0.001) (0.007)
#> Urbanization Percentage 0.145 -0.012** -0.126***
#> (0.248) (0.004) (0.033)
#> Immigration Percentage 0.222 -0.022* -0.286***
#> (0.505) (0.009) (0.054)
#> Population Aged 70 or Older 4.991*** 0.233*** 0.508***
#> (1.049) (0.018) (0.130)
#> N 4,337 4,864 3,571
#> R2 0.027 0.080 0.138
#> Adjusted R2 0.024 0.078 0.135
#> --------------------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
New Infections interpretation
OLS Linear regression was used to analyze the effects on New
Infection Cases.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
New Infection Cases decreases by 58.25 units assuming all other
covariates stay constant. This represents a change of more than 0.307
standard deviations (SDNew Infection
Cases= 189.7).
The Stringency Index (delayed) covariate has
statistically significant effect. An increase of 1 unit in Stringency
Index (delayed) increases New Infection Cases by 0.6287 units, assuming
all other covariates stay constant. This represents a change of more
than 0.003314 standard deviations (SDNew
Infection Cases= 189.7).
The New Vaccination (delayed) covariate
has statistically significant effect. An increase of 1 unit in New
Vaccination (delayed) increases New Infection Cases by 0.002106 units,
assuming all other covariates stay constant. This represents a change of
more than 1.11e-05 standard deviations (SDNew Infection Cases= 189.7).
The
Population Aged 70 or Older covariate has statistically significant
effect. An increase of 1 unit in Population Aged 70 or Older increases
New Infection Cases by 4.991 units, assuming all other covariates stay
constant. This represents a change of more than 0.02631 standard
deviations (SDNew Infection Cases=
189.7).
New Deaths interpretation
OLS Linear regression was used to analyze the effects on New Death
Cases.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, New Death
Cases decreases by 0.9802 units assuming all other covariates stay
constant. This represents a change of more than 0.2788 standard
deviations (SDNew Death Cases=
3.516).
The Leader Age covariate has statistically significant
effect. An increase of 1 unit in Leader Age decreases New Death Cases by
0.01612 units, assuming all other covariates stay constant. This
represents a change of more than 0.004585 standard deviations (SDNew Death Cases= 3.516).
The Stringency
Index (delayed) covariate has statistically significant effect. An
increase of 1 unit in Stringency Index (delayed) increases New Death
Cases by 0.01442 units, assuming all other covariates stay constant.
This represents a change of more than 0.004102 standard deviations (SDNew Death Cases= 3.516).
The New
Vaccination (delayed) covariate has statistically significant effect. An
increase of 1 unit in New Vaccination (delayed) decreases New Death
Cases by 8.236e-05 units, assuming all other covariates stay constant.
This represents a change of more than 2.342e-05 standard deviations
(SDNew Death Cases= 3.516).
The
Democracy Score covariate has statistically significant effect. An
increase of 1 unit in Democracy Score increases New Death Cases by
0.6441 units, assuming all other covariates stay constant. This
represents a change of more than 0.1832 standard deviations (SDNew Death Cases= 3.516).
The
Health-system Score covariate has statistically significant effect. An
increase of 1 unit in Health-system Score decreases New Death Cases by
0.06253 units, assuming all other covariates stay constant. This
represents a change of more than 0.01778 standard deviations (SDNew Death Cases= 3.516).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage decreases New Death
Cases by 0.01168 units, assuming all other covariates stay constant.
This represents a change of more than 0.003321 standard deviations (SDNew Death Cases= 3.516).
The Immigration
Percentage covariate has statistically significant effect. An increase
of 1 unit in Immigration Percentage decreases New Death Cases by 0.02191
units, assuming all other covariates stay constant. This represents a
change of more than 0.006231 standard deviations (SDNew Death Cases= 3.516).
The Population
Aged 70 or Older covariate has statistically significant effect. An
increase of 1 unit in Population Aged 70 or Older increases New Death
Cases by 0.2327 units, assuming all other covariates stay constant. This
represents a change of more than 0.06618 standard deviations (SDNew Death Cases= 3.516).
Excess Mortality interpretation
OLS Linear regression was used to analyze the effects on Excess Mortality.performance_full.png
title1 <- textGrob(names(wl_dependents())[1], gp = gpar(fontsize = 14))
title2 <- textGrob(names(wl_dependents())[2], gp = gpar(fontsize = 14))
title3 <- textGrob(names(wl_dependents())[3], gp = gpar(fontsize = 14))
p_fc <- wl_plot_coef (model = m_fc[[1]], cov_f, palette = "Color")
p_fd <- wl_plot_coef (model = m_fd[[1]], cov_f, palette = "Color")
p_fe <- wl_plot_coef (model = m_fe[[1]], cov_f, palette = "Color")
p <- ggarrange(title1, title2, title3,
p_fc, p_fd, p_fe,
font.label = list(size = 10, face = "bold"),
heights = c(0.1, 1),
ncol = 3, nrow = 2)
wl_ggsave("figures/performance_full.png", plot = p, width=250)
dep <- wl_dependents()[1]
cov_34f <- wl_covariates(cov_group = "Main coviariates")
cov_12 <- wl_setdiff(cov_34f, c("new_vaccinations_per_mil_delayed"))
m_12 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "calendar", waves = c("Wave_1C", "Wave_2C"))
m_34 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34f,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "calendar", waves = c("Wave_3C", "Wave_4C"))
m_f <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34f,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "calendar", waves = c("All_C"))
cases_reg.tex
#>
#> --------------------------------------------------------------------------------
#> Wave 1 Wave 2 Wave 3 Wave 4 Full
#> (1) (2) (3) (4) (5)
#> --------------------------------------------------------------------------------
#> Leader Gender[female] -12.086** -84.868*** -95.760*** -45.331** -58.253***
#> (3.931) (18.609) (21.159) (16.591) (8.836)
#> Leader Age -0.152 0.836 -1.684* -0.366 -0.385
#> (0.153) (0.633) (0.697) (0.600) (0.309)
#> Stringency Index (delayed) -0.160*** 1.788*** 1.858*** -1.084* 0.629***
#> (0.047) (0.377) (0.525) (0.425) (0.159)
#> New Vaccination (delayed) 0.008** -0.007*** 0.002*
#> (0.003) (0.002) (0.001)
#> Democracy Score -9.481* 0.272 -61.975*** 22.067 2.664
#> (4.131) (16.347) (18.481) (15.477) (8.090)
#> GDP per Capita 0.614*** 1.801** -0.389 0.054 0.481
#> (0.147) (0.616) (0.714) (0.587) (0.305)
#> Health-system Score -0.274 1.520 -4.061* -4.895** -1.209
#> (0.378) (1.588) (1.832) (1.514) (0.790)
#> Population Size 0.091** 0.024 -0.316* -0.108 -0.014
#> (0.028) (0.127) (0.146) (0.122) (0.063)
#> Urbanization Percentage -0.057 -2.008*** 2.372*** 0.990* 0.145
#> (0.130) (0.497) (0.564) (0.466) (0.248)
#> Immigration Percentage -0.128 1.304 -3.934** 1.294 0.222
#> (0.239) (1.025) (1.197) (0.971) (0.505)
#> Population Aged 70 or Older -0.288 12.801*** 8.646*** 2.685 4.991***
#> (0.522) (2.134) (2.403) (1.999) (1.049)
#> N 362 1,325 848 1,060 4,337
#> R2 0.221 0.125 0.136 0.065 0.027
#> Adjusted R2 0.199 0.118 0.124 0.055 0.024
#> --------------------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
Wave 1 interpretation
OLS Linear regression was used to analyze the effects on New
Infection Cases.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
New Infection Cases decreases by 12.09 units assuming all other
covariates stay constant. This represents a change of more than 0.3828
standard deviations (SDNew Infection
Cases= 31.57).
The Stringency Index (delayed) covariate has
statistically significant effect. An increase of 1 unit in Stringency
Index (delayed) decreases New Infection Cases by 0.1596 units, assuming
all other covariates stay constant. This represents a change of more
than 0.005055 standard deviations (SDNew
Infection Cases= 31.57).
The Democracy Score covariate has
statistically significant effect. An increase of 1 unit in Democracy
Score decreases New Infection Cases by 9.481 units, assuming all other
covariates stay constant. This represents a change of more than 0.3003
standard deviations (SDNew Infection
Cases= 31.57).
The GDP per Capita covariate has statistically
significant effect. An increase of 1 unit in GDP per Capita increases
New Infection Cases by 0.6141 units, assuming all other covariates stay
constant. This represents a change of more than 0.01945 standard
deviations (SDNew Infection Cases=
31.57).
The Population Size covariate has statistically significant
effect. An increase of 1 unit in Population Size increases New Infection
Cases by 0.09115 units, assuming all other covariates stay constant.
This represents a change of more than 0.002887 standard deviations (SDNew Infection Cases= 31.57).
Wave 2 interpretation
OLS Linear regression was used to analyze the effects on New
Infection Cases.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
New Infection Cases decreases by 84.87 units assuming all other
covariates stay constant. This represents a change of more than 0.3778
standard deviations (SDNew Infection
Cases= 224.6).
The Stringency Index (delayed) covariate has
statistically significant effect. An increase of 1 unit in Stringency
Index (delayed) increases New Infection Cases by 1.788 units, assuming
all other covariates stay constant. This represents a change of more
than 0.007961 standard deviations (SDNew
Infection Cases= 224.6).
The GDP per Capita covariate has
statistically significant effect. An increase of 1 unit in GDP per
Capita increases New Infection Cases by 1.801 units, assuming all other
covariates stay constant. This represents a change of more than 0.008016
standard deviations (SDNew Infection
Cases= 224.6).
The Urbanization Percentage covariate has
statistically significant effect. An increase of 1 unit in Urbanization
Percentage decreases New Infection Cases by 2.008 units, assuming all
other covariates stay constant. This represents a change of more than
0.008938 standard deviations (SDNew
Infection Cases= 224.6).
The Population Aged 70 or Older
covariate has statistically significant effect. An increase of 1 unit in
Population Aged 70 or Older increases New Infection Cases by 12.8 units,
assuming all other covariates stay constant. This represents a change of
more than 0.05699 standard deviations (SDNew Infection Cases= 224.6).
Wave 3 interpretation
OLS Linear regression was used to analyze the effects on New
Infection Cases.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
New Infection Cases decreases by 95.76 units assuming all other
covariates stay constant. This represents a change of more than 0.4722
standard deviations (SDNew Infection
Cases= 202.8).
The Leader Age covariate has statistically
significant effect. An increase of 1 unit in Leader Age decreases New
Infection Cases by 1.684 units, assuming all other covariates stay
constant. This represents a change of more than 0.008306 standard
deviations (SDNew Infection Cases=
202.8).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
increases New Infection Cases by 1.858 units, assuming all other
covariates stay constant. This represents a change of more than 0.009161
standard deviations (SDNew Infection
Cases= 202.8).
The New Vaccination (delayed) covariate has
statistically significant effect. An increase of 1 unit in New
Vaccination (delayed) increases New Infection Cases by 0.008333 units,
assuming all other covariates stay constant. This represents a change of
more than 4.109e-05 standard deviations (SDNew Infection Cases= 202.8).
The
Democracy Score covariate has statistically significant effect. An
increase of 1 unit in Democracy Score decreases New Infection Cases by
61.98 units, assuming all other covariates stay constant. This
represents a change of more than 0.3056 standard deviations (SDNew Infection Cases= 202.8).
The
Health-system Score covariate has statistically significant effect. An
increase of 1 unit in Health-system Score decreases New Infection Cases
by 4.061 units, assuming all other covariates stay constant. This
represents a change of more than 0.02003 standard deviations (SDNew Infection Cases= 202.8).
The
Population Size covariate has statistically significant effect. An
increase of 1 unit in Population Size decreases New Infection Cases by
0.3161 units, assuming all other covariates stay constant. This
represents a change of more than 0.001559 standard deviations (SDNew Infection Cases= 202.8).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage increases New Infection
Cases by 2.372 units, assuming all other covariates stay constant. This
represents a change of more than 0.0117 standard deviations (SDNew Infection Cases= 202.8).
The
Immigration Percentage covariate has statistically significant effect.
An increase of 1 unit in Immigration Percentage decreases New Infection
Cases by 3.934 units, assuming all other covariates stay constant. This
represents a change of more than 0.0194 standard deviations (SDNew Infection Cases= 202.8).
The
Population Aged 70 or Older covariate has statistically significant
effect. An increase of 1 unit in Population Aged 70 or Older increases
New Infection Cases by 8.646 units, assuming all other covariates stay
constant. This represents a change of more than 0.04264 standard
deviations (SDNew Infection Cases=
202.8).
Wave 4 interpretation
OLS Linear regression was used to analyze the effects on New
Infection Cases.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
New Infection Cases decreases by 45.33 units assuming all other
covariates stay constant. This represents a change of more than 0.2414
standard deviations (SDNew Infection
Cases= 187.8).
The Stringency Index (delayed) covariate has
statistically significant effect. An increase of 1 unit in Stringency
Index (delayed) decreases New Infection Cases by 1.084 units, assuming
all other covariates stay constant. This represents a change of more
than 0.005772 standard deviations (SDNew
Infection Cases= 187.8).
The New Vaccination (delayed) covariate
has statistically significant effect. An increase of 1 unit in New
Vaccination (delayed) decreases New Infection Cases by 0.006707 units,
assuming all other covariates stay constant. This represents a change of
more than 3.572e-05 standard deviations (SDNew Infection Cases= 187.8).
The
Health-system Score covariate has statistically significant effect. An
increase of 1 unit in Health-system Score decreases New Infection Cases
by 4.895 units, assuming all other covariates stay constant. This
represents a change of more than 0.02607 standard deviations (SDNew Infection Cases= 187.8).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage increases New Infection
Cases by 0.9895 units, assuming all other covariates stay constant. This
represents a change of more than 0.00527 standard deviations (SDNew Infection Cases= 187.8).
Full period interpretation
OLS Linear regression was used to analyze the effects on New Infection Cases.cases_waves_reg.png
#
p1 <- wl_plot_coef (model = m_12[[1]], covs = cov_12, palette = "Color")
p2 <- wl_plot_coef (model = m_12[[2]], covs = cov_12, palette = "Color")
p3 <- wl_plot_coef (model = m_34[[1]], covs = cov_34f, palette = "Color")
p4 <- wl_plot_coef (model = m_34[[2]], covs = cov_34f, palette = "Color")
p <- ggarrange(p1, p2, p3, p4,
labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4"),
align = "hv", font.label = list(size = 10, face = "bold"),
vjust = 2.5, hjust = -3.5, ncol = 2, nrow = 2)
wl_ggsave("figures/cases_waves_reg.png", plot = p, height=130)
dep <- wl_dependents()[2]
cov_34f <- wl_covariates(cov_group = "Main coviariates")
cov_12 <- wl_setdiff(cov_34f, c("new_vaccinations_per_mil_delayed"))
m_12 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("Wave_1D", "Wave_2D"))
m_34 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34f,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("Wave_3D", "Wave_4D"))
m_f <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34f,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("All_D"))
deaths_reg.tex
#>
#> -------------------------------------------------------------------------------
#> Wave 1 Wave 2 Wave 3 Wave 4 Full
#> (1) (2) (3) (4) (5)
#> -------------------------------------------------------------------------------
#> Leader Gender[female] -1.618*** -1.236*** -1.440*** -0.245 -0.980***
#> (0.296) (0.360) (0.327) (0.257) (0.152)
#> Leader Age -0.011 0.022 -0.046*** -0.010 -0.016**
#> (0.011) (0.012) (0.011) (0.009) (0.005)
#> Stringency Index (delayed) -0.016*** 0.043*** 0.052*** 0.021** 0.014***
#> (0.003) (0.007) (0.008) (0.006) (0.003)
#> New Vaccination (delayed) -0.0001 -0.0002*** -0.0001***
#> (0.00004) (0.00003) (0.00002)
#> Democracy Score -0.992*** -0.073 0.697* 1.575*** 0.644***
#> (0.293) (0.317) (0.284) (0.234) (0.139)
#> GDP per Capita 0.026* -0.003 -0.019 0.003 -0.002
#> (0.011) (0.012) (0.011) (0.009) (0.005)
#> Health-system Score -0.033 -0.084** -0.113*** -0.088*** -0.063***
#> (0.027) (0.031) (0.028) (0.023) (0.014)
#> Population Size 0.009*** 0.002 0.0001 -0.005** 0.002
#> (0.002) (0.002) (0.002) (0.002) (0.001)
#> Urbanization Percentage 0.007 -0.059*** 0.055*** -0.033*** -0.012**
#> (0.009) (0.010) (0.009) (0.007) (0.004)
#> Immigration Percentage -0.008 0.027 -0.091*** -0.031* -0.022*
#> (0.017) (0.020) (0.019) (0.015) (0.009)
#> Population Aged 70 or Older 0.034 0.546*** 0.187*** 0.281*** 0.233***
#> (0.037) (0.041) (0.037) (0.030) (0.018)
#> N 624 1,166 1,007 1,378 4,864
#> R2 0.180 0.221 0.216 0.235 0.080
#> Adjusted R2 0.167 0.214 0.207 0.228 0.078
#> -------------------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
Wave 1 interpretation
OLS Linear regression was used to analyze the effects on New Death
Cases.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, New Death
Cases decreases by 1.618 units assuming all other covariates stay
constant. This represents a change of more than 0.6446 standard
deviations (SDNew Death Cases=
2.51).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
decreases New Death Cases by 0.01588 units, assuming all other
covariates stay constant. This represents a change of more than 0.006326
standard deviations (SDNew Death Cases=
2.51).
The Democracy Score covariate has statistically significant
effect. An increase of 1 unit in Democracy Score decreases New Death
Cases by 0.9922 units, assuming all other covariates stay constant. This
represents a change of more than 0.3954 standard deviations (SDNew Death Cases= 2.51).
The GDP per
Capita covariate has statistically significant effect. An increase of 1
unit in GDP per Capita increases New Death Cases by 0.02647 units,
assuming all other covariates stay constant. This represents a change of
more than 0.01055 standard deviations (SDNew
Death Cases= 2.51).
The Population Size covariate has
statistically significant effect. An increase of 1 unit in Population
Size increases New Death Cases by 0.008759 units, assuming all other
covariates stay constant. This represents a change of more than 0.00349
standard deviations (SDNew Death Cases=
2.51).
Wave 2 interpretation
OLS Linear regression was used to analyze the effects on New Death
Cases.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, New Death
Cases decreases by 1.236 units assuming all other covariates stay
constant. This represents a change of more than 0.2848 standard
deviations (SDNew Death Cases=
4.338).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
increases New Death Cases by 0.04301 units, assuming all other
covariates stay constant. This represents a change of more than 0.009913
standard deviations (SDNew Death Cases=
4.338).
The Health-system Score covariate has statistically
significant effect. An increase of 1 unit in Health-system Score
decreases New Death Cases by 0.0837 units, assuming all other covariates
stay constant. This represents a change of more than 0.01929 standard
deviations (SDNew Death Cases=
4.338).
The Urbanization Percentage covariate has statistically
significant effect. An increase of 1 unit in Urbanization Percentage
decreases New Death Cases by 0.05909 units, assuming all other
covariates stay constant. This represents a change of more than 0.01362
standard deviations (SDNew Death Cases=
4.338).
The Population Aged 70 or Older covariate has statistically
significant effect. An increase of 1 unit in Population Aged 70 or Older
increases New Death Cases by 0.5455 units, assuming all other covariates
stay constant. This represents a change of more than 0.1257 standard
deviations (SDNew Death Cases=
4.338).
Wave 3 interpretation
OLS Linear regression was used to analyze the effects on New Death
Cases.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, New Death
Cases decreases by 1.44 units assuming all other covariates stay
constant. This represents a change of more than 0.4017 standard
deviations (SDNew Death Cases=
3.586).
The Leader Age covariate has statistically significant
effect. An increase of 1 unit in Leader Age decreases New Death Cases by
0.04617 units, assuming all other covariates stay constant. This
represents a change of more than 0.01288 standard deviations (SDNew Death Cases= 3.586).
The Stringency
Index (delayed) covariate has statistically significant effect. An
increase of 1 unit in Stringency Index (delayed) increases New Death
Cases by 0.05154 units, assuming all other covariates stay constant.
This represents a change of more than 0.01438 standard deviations (SDNew Death Cases= 3.586).
The Democracy
Score covariate has statistically significant effect. An increase of 1
unit in Democracy Score increases New Death Cases by 0.6971 units,
assuming all other covariates stay constant. This represents a change of
more than 0.1944 standard deviations (SDNew
Death Cases= 3.586).
The Health-system Score covariate has
statistically significant effect. An increase of 1 unit in Health-system
Score decreases New Death Cases by 0.1125 units, assuming all other
covariates stay constant. This represents a change of more than 0.03138
standard deviations (SDNew Death Cases=
3.586).
The Urbanization Percentage covariate has statistically
significant effect. An increase of 1 unit in Urbanization Percentage
increases New Death Cases by 0.05464 units, assuming all other
covariates stay constant. This represents a change of more than 0.01524
standard deviations (SDNew Death Cases=
3.586).
The Immigration Percentage covariate has statistically
significant effect. An increase of 1 unit in Immigration Percentage
decreases New Death Cases by 0.09114 units, assuming all other
covariates stay constant. This represents a change of more than 0.02542
standard deviations (SDNew Death Cases=
3.586).
The Population Aged 70 or Older covariate has statistically
significant effect. An increase of 1 unit in Population Aged 70 or Older
increases New Death Cases by 0.1872 units, assuming all other covariates
stay constant. This represents a change of more than 0.05222 standard
deviations (SDNew Death Cases=
3.586).
Wave 4 interpretation
OLS Linear regression was used to analyze the effects on New Death
Cases.
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
increases New Death Cases by 0.02057 units, assuming all other
covariates stay constant. This represents a change of more than 0.00598
standard deviations (SDNew Death Cases=
3.441).
The New Vaccination (delayed) covariate has statistically
significant effect. An increase of 1 unit in New Vaccination (delayed)
decreases New Death Cases by 0.0002407 units, assuming all other
covariates stay constant. This represents a change of more than
6.996e-05 standard deviations (SDNew Death
Cases= 3.441).
The Democracy Score covariate has statistically
significant effect. An increase of 1 unit in Democracy Score increases
New Death Cases by 1.575 units, assuming all other covariates stay
constant. This represents a change of more than 0.4577 standard
deviations (SDNew Death Cases=
3.441).
The Health-system Score covariate has statistically
significant effect. An increase of 1 unit in Health-system Score
decreases New Death Cases by 0.08806 units, assuming all other
covariates stay constant. This represents a change of more than 0.0256
standard deviations (SDNew Death Cases=
3.441).
The Population Size covariate has statistically significant
effect. An increase of 1 unit in Population Size decreases New Death
Cases by 0.005279 units, assuming all other covariates stay constant.
This represents a change of more than 0.001534 standard deviations (SDNew Death Cases= 3.441).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage decreases New Death
Cases by 0.03325 units, assuming all other covariates stay constant.
This represents a change of more than 0.009663 standard deviations (SDNew Death Cases= 3.441).
The Immigration
Percentage covariate has statistically significant effect. An increase
of 1 unit in Immigration Percentage decreases New Death Cases by 0.03141
units, assuming all other covariates stay constant. This represents a
change of more than 0.00913 standard deviations (SDNew Death Cases= 3.441).
The Population
Aged 70 or Older covariate has statistically significant effect. An
increase of 1 unit in Population Aged 70 or Older increases New Death
Cases by 0.2814 units, assuming all other covariates stay constant. This
represents a change of more than 0.08179 standard deviations (SDNew Death Cases= 3.441).
Full period interpretation
OLS Linear regression was used to analyze the effects on New Death Cases.deaths_waves_reg.png
#
p1 <- wl_plot_coef (model = m_12[[1]], covs = cov_12, palette = "Color")
p2 <- wl_plot_coef (model = m_12[[2]], covs = cov_12, palette = "Color")
p3 <- wl_plot_coef (model = m_34[[1]], covs = cov_34f, palette = "Color")
p4 <- wl_plot_coef (model = m_34[[2]], covs = cov_34f, palette = "Color")
p <- ggarrange(p1, p2, p3, p4,
labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4"),
align = "hv", font.label = list(size = 10, face = "bold"),
vjust = 2.5, hjust = -3.5, ncol = 2, nrow = 2)
wl_ggsave("figures/deaths_waves_reg.png", plot = p, height=130)
dep <- wl_dependents()[3]
cov_34f <- wl_covariates(cov_group = "Main coviariates")
cov_12 <- wl_setdiff(cov_34f, c("new_vaccinations_per_mil_delayed"))
m_12 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("Wave_1D", "Wave_2D"))
m_34 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34f,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("Wave_3D", "Wave_4D"))
m_f <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34f,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("All_D"))
excess_reg.tex
#>
#> ------------------------------------------------------------------------------
#> Wave 1 Wave 2 Wave 3 Wave 4 Full
#> (1) (2) (3) (4) (5)
#> ------------------------------------------------------------------------------
#> Leader Gender[female] -13.893*** -7.942*** -3.588* 0.839 -4.486***
#> (2.464) (2.263) (1.605) (1.651) (0.918)
#> Leader Age 0.068 0.198* 0.005 0.011 0.032
#> (0.095) (0.085) (0.057) (0.063) (0.035)
#> Stringency Index (delayed) -0.127*** -0.301*** -0.028 -0.071 -0.176***
#> (0.028) (0.052) (0.047) (0.050) (0.018)
#> New Vaccination (delayed) 0.001** -0.001*** -0.0001
#> (0.0002) (0.0002) (0.0001)
#> Democracy Score -10.506*** 0.621 2.697 7.634*** 3.255***
#> (2.568) (2.215) (1.586) (1.685) (0.932)
#> GDP per Capita 0.057 0.202* -0.134* 0.029 0.023
#> (0.104) (0.089) (0.062) (0.067) (0.037)
#> Health-system Score -0.023 -1.174*** -0.991*** -0.876*** -0.761***
#> (0.250) (0.229) (0.166) (0.175) (0.097)
#> Population Size 0.051** -0.001 -0.031* -0.033* -0.001
#> (0.018) (0.017) (0.012) (0.013) (0.007)
#> Urbanization Percentage 0.278** -0.402*** 0.109* -0.214*** -0.126***
#> (0.091) (0.078) (0.055) (0.057) (0.033)
#> Immigration Percentage -0.222 -0.363** -0.424*** -0.308** -0.286***
#> (0.147) (0.130) (0.096) (0.098) (0.054)
#> Population Aged 70 or Older 0.832* 0.612* 0.166 0.525* 0.508***
#> (0.364) (0.309) (0.220) (0.229) (0.130)
#> N 483 851 724 993 3,571
#> R2 0.186 0.208 0.275 0.296 0.138
#> Adjusted R2 0.168 0.198 0.264 0.288 0.135
#> ------------------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
Wave 1 interpretation
OLS Linear regression was used to analyze the effects on Excess
Mortality.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, Excess
Mortality decreases by 13.89 units assuming all other covariates stay
constant. This represents a change of more than 0.7261 standard
deviations (SDExcess Mortality=
19.13).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
decreases Excess Mortality by 0.1266 units, assuming all other
covariates stay constant. This represents a change of more than 0.006618
standard deviations (SDExcess Mortality=
19.13).
The Democracy Score covariate has statistically significant
effect. An increase of 1 unit in Democracy Score decreases Excess
Mortality by 10.51 units, assuming all other covariates stay constant.
This represents a change of more than 0.5491 standard deviations (SDExcess Mortality= 19.13).
The
Population Size covariate has statistically significant effect. An
increase of 1 unit in Population Size increases Excess Mortality by
0.05129 units, assuming all other covariates stay constant. This
represents a change of more than 0.002681 standard deviations (SDExcess Mortality= 19.13).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage increases Excess
Mortality by 0.2776 units, assuming all other covariates stay constant.
This represents a change of more than 0.01451 standard deviations (SDExcess Mortality= 19.13).
The
Population Aged 70 or Older covariate has statistically significant
effect. An increase of 1 unit in Population Aged 70 or Older increases
Excess Mortality by 0.8317 units, assuming all other covariates stay
constant. This represents a change of more than 0.04347 standard
deviations (SDExcess Mortality=
19.13).
Wave 2 interpretation
OLS Linear regression was used to analyze the effects on Excess
Mortality.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, Excess
Mortality decreases by 7.942 units assuming all other covariates stay
constant. This represents a change of more than 0.3179 standard
deviations (SDExcess Mortality=
24.99).
The Leader Age covariate has statistically significant
effect. An increase of 1 unit in Leader Age increases Excess Mortality
by 0.1976 units, assuming all other covariates stay constant. This
represents a change of more than 0.00791 standard deviations (SDExcess Mortality= 24.99).
The
Stringency Index (delayed) covariate has statistically significant
effect. An increase of 1 unit in Stringency Index (delayed) decreases
Excess Mortality by 0.301 units, assuming all other covariates stay
constant. This represents a change of more than 0.01205 standard
deviations (SDExcess Mortality=
24.99).
The GDP per Capita covariate has statistically significant
effect. An increase of 1 unit in GDP per Capita increases Excess
Mortality by 0.2018 units, assuming all other covariates stay constant.
This represents a change of more than 0.008078 standard deviations (SDExcess Mortality= 24.99).
The
Health-system Score covariate has statistically significant effect. An
increase of 1 unit in Health-system Score decreases Excess Mortality by
1.174 units, assuming all other covariates stay constant. This
represents a change of more than 0.047 standard deviations (SDExcess Mortality= 24.99).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage decreases Excess
Mortality by 0.4022 units, assuming all other covariates stay constant.
This represents a change of more than 0.0161 standard deviations (SDExcess Mortality= 24.99).
The
Immigration Percentage covariate has statistically significant effect.
An increase of 1 unit in Immigration Percentage decreases Excess
Mortality by 0.3627 units, assuming all other covariates stay constant.
This represents a change of more than 0.01452 standard deviations (SDExcess Mortality= 24.99).
The
Population Aged 70 or Older covariate has statistically significant
effect. An increase of 1 unit in Population Aged 70 or Older increases
Excess Mortality by 0.6122 units, assuming all other covariates stay
constant. This represents a change of more than 0.0245 standard
deviations (SDExcess Mortality=
24.99).
Wave 3 interpretation
OLS Linear regression was used to analyze the effects on Excess
Mortality.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, Excess
Mortality decreases by 3.588 units assuming all other covariates stay
constant. This represents a change of more than 0.215 standard
deviations (SDExcess Mortality=
16.69).
The New Vaccination (delayed) covariate has statistically
significant effect. An increase of 1 unit in New Vaccination (delayed)
increases Excess Mortality by 0.0005047 units, assuming all other
covariates stay constant. This represents a change of more than
3.024e-05 standard deviations (SDExcess
Mortality= 16.69).
The GDP per Capita covariate has
statistically significant effect. An increase of 1 unit in GDP per
Capita decreases Excess Mortality by 0.134 units, assuming all other
covariates stay constant. This represents a change of more than 0.008032
standard deviations (SDExcess Mortality=
16.69).
The Health-system Score covariate has statistically
significant effect. An increase of 1 unit in Health-system Score
decreases Excess Mortality by 0.991 units, assuming all other covariates
stay constant. This represents a change of more than 0.05938 standard
deviations (SDExcess Mortality=
16.69).
The Population Size covariate has statistically significant
effect. An increase of 1 unit in Population Size decreases Excess
Mortality by 0.03057 units, assuming all other covariates stay constant.
This represents a change of more than 0.001832 standard deviations (SDExcess Mortality= 16.69).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage increases Excess
Mortality by 0.1089 units, assuming all other covariates stay constant.
This represents a change of more than 0.006528 standard deviations (SDExcess Mortality= 16.69).
The
Immigration Percentage covariate has statistically significant effect.
An increase of 1 unit in Immigration Percentage decreases Excess
Mortality by 0.4242 units, assuming all other covariates stay constant.
This represents a change of more than 0.02542 standard deviations (SDExcess Mortality= 16.69).
Wave 4 interpretation
OLS Linear regression was used to analyze the effects on Excess
Mortality.
The New Vaccination (delayed) covariate has statistically
significant effect. An increase of 1 unit in New Vaccination (delayed)
decreases Excess Mortality by 0.001495 units, assuming all other
covariates stay constant. This represents a change of more than
7.471e-05 standard deviations (SDExcess
Mortality= 20.02).
The Democracy Score covariate has
statistically significant effect. An increase of 1 unit in Democracy
Score increases Excess Mortality by 7.634 units, assuming all other
covariates stay constant. This represents a change of more than 0.3814
standard deviations (SDExcess Mortality=
20.02).
The Health-system Score covariate has statistically
significant effect. An increase of 1 unit in Health-system Score
decreases Excess Mortality by 0.8764 units, assuming all other
covariates stay constant. This represents a change of more than 0.04378
standard deviations (SDExcess Mortality=
20.02).
The Population Size covariate has statistically significant
effect. An increase of 1 unit in Population Size decreases Excess
Mortality by 0.0329 units, assuming all other covariates stay constant.
This represents a change of more than 0.001644 standard deviations (SDExcess Mortality= 20.02).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage decreases Excess
Mortality by 0.2143 units, assuming all other covariates stay constant.
This represents a change of more than 0.0107 standard deviations (SDExcess Mortality= 20.02).
The
Immigration Percentage covariate has statistically significant effect.
An increase of 1 unit in Immigration Percentage decreases Excess
Mortality by 0.3077 units, assuming all other covariates stay constant.
This represents a change of more than 0.01537 standard deviations (SDExcess Mortality= 20.02).
The
Population Aged 70 or Older covariate has statistically significant
effect. An increase of 1 unit in Population Aged 70 or Older increases
Excess Mortality by 0.5249 units, assuming all other covariates stay
constant. This represents a change of more than 0.02622 standard
deviations (SDExcess Mortality=
20.02).
Full period interpretation
OLS Linear regression was used to analyze the effects on Excess Mortality.excess_waves_reg.png
#
p1 <- wl_plot_coef (model = m_12[[1]], covs = cov_12, palette = "Color")
p2 <- wl_plot_coef (model = m_12[[2]], covs = cov_12, palette = "Color")
p3 <- wl_plot_coef (model = m_34[[1]], covs = cov_34f, palette = "Color")
p4 <- wl_plot_coef (model = m_34[[2]], covs = cov_34f, palette = "Color")
p <- ggarrange(p1, p2, p3, p4,
labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4"),
align = "hv", font.label = list(size = 10, face = "bold"),
vjust = 2.5, hjust = -3.5, ncol = 2, nrow = 2)
wl_ggsave("figures/excess_waves_reg.png", plot = p, height=130)
gender_coef_summary.png
title1 <- textGrob(names(wl_dependents())[1], gp = gpar(fontsize = 14))
title2 <- textGrob(names(wl_dependents())[2], gp = gpar(fontsize = 14))
title3 <- textGrob(names(wl_dependents())[3], gp = gpar(fontsize = 14))
title4 <- textGrob("Leader Gender Coefficient",gp = gpar(fontsize = 14))
tblank <- textGrob(" ",gp = gpar(fontsize = 14))
p <- ggarrange(title1, title2, title3,
p_cases, p_deaths, p_excess,
tblank,title4, tblank,
font.label = list(size = 10, face = "bold"),
heights = c(0.1, 1, 0.1),
ncol = 3, nrow = 3)
wl_ggsave("figures/gender_coef_summary.png", plot = p, width=250)
order_vars <- c("Relative Infection cases" = "ord_c",
"Relative Death cases" = "ord_d",
"Relative Excess Mortality" = "ord_e")
dep <- order_vars[1]
cov_34f <- wl_covariates(cov_group = "Main coviariates")
cov_12 <- wl_setdiff(cov_34f, c("new_vaccinations_per_mil_delayed"))
m_1 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "calendar", waves = c("Wave_1C"))
m_12 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "calendar", waves = c("Wave_1C", "Wave_2C"))
m_34 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34f,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "calendar", waves = c("Wave_3C", "Wave_4C"))
m_f <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34f,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "calendar", waves = c("All_C"))
relative_cases_reg.tex
#>
#> -----------------------------------------------------------------------------
#> Wave 1 Wave 2 Wave 3 Wave 4 Full
#> (1) (2) (3) (4) (5)
#> -----------------------------------------------------------------------------
#> Leader Gender[female] -4.290* -10.077*** -8.317*** -5.268*** -8.284***
#> (2.091) (1.262) (1.602) (1.474) (0.715)
#> Leader Age -0.121 -0.066 -0.165** -0.144** -0.090***
#> (0.081) (0.043) (0.053) (0.053) (0.025)
#> Stringency Index (delayed) 0.013 0.219*** 0.264*** 0.079* 0.127***
#> (0.025) (0.026) (0.040) (0.038) (0.013)
#> New Vaccination (delayed) 0.001*** -0.001*** -0.0002*
#> (0.0002) (0.0002) (0.0001)
#> Democracy Score -2.496 1.119 -1.832 0.959 0.591
#> (2.197) (1.109) (1.399) (1.375) (0.654)
#> GDP per Capita 0.443*** 0.151*** 0.062 0.229*** 0.160***
#> (0.078) (0.042) (0.054) (0.052) (0.025)
#> Health-system Score -0.629** 0.014 -0.638*** -0.699*** -0.441***
#> (0.201) (0.108) (0.139) (0.135) (0.064)
#> Population Size 0.026 0.014 -0.021 -0.001 0.015**
#> (0.015) (0.009) (0.011) (0.011) (0.005)
#> Urbanization Percentage 0.046 -0.074* 0.165*** 0.034 0.079***
#> (0.069) (0.034) (0.043) (0.041) (0.020)
#> Immigration Percentage -0.088 0.117 -0.260** -0.009 0.024
#> (0.127) (0.070) (0.091) (0.086) (0.041)
#> Population Aged 70 or Older 0.758** 1.024*** 1.218*** 0.188 0.613***
#> (0.278) (0.145) (0.182) (0.178) (0.085)
#> N 362 1,325 848 1,060 4,337
#> R2 0.261 0.213 0.235 0.089 0.109
#> Adjusted R2 0.240 0.207 0.225 0.079 0.107
#> -----------------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
Wave 1 interpretation
OLS Linear regression was used to analyze the effects on Relative
Infection cases.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
Relative Infection cases decreases by 4.29 units assuming all other
covariates stay constant. This represents a change of more than 0.2707
standard deviations (SD[Relative Infection cases]= 15.85).
The GDP
per Capita covariate has statistically significant effect. An increase
of 1 unit in GDP per Capita increases Relative Infection cases by 0.4431
units, assuming all other covariates stay constant. This represents a
change of more than 0.02796 standard deviations (SD[Relative Infection
cases]= 15.85).
The Health-system Score covariate has statistically
significant effect. An increase of 1 unit in Health-system Score
decreases Relative Infection cases by 0.6289 units, assuming all other
covariates stay constant. This represents a change of more than 0.03968
standard deviations (SD[Relative Infection cases]= 15.85).
The
Population Aged 70 or Older covariate has statistically significant
effect. An increase of 1 unit in Population Aged 70 or Older increases
Relative Infection cases by 0.7585 units, assuming all other covariates
stay constant. This represents a change of more than 0.04786 standard
deviations (SD[Relative Infection cases]= 15.85).
Wave 2 interpretation
OLS Linear regression was used to analyze the effects on Relative
Infection cases.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
Relative Infection cases decreases by 10.08 units assuming all other
covariates stay constant. This represents a change of more than 0.6114
standard deviations (SD[Relative Infection cases]= 16.48).
The
Stringency Index (delayed) covariate has statistically significant
effect. An increase of 1 unit in Stringency Index (delayed) increases
Relative Infection cases by 0.2185 units, assuming all other covariates
stay constant. This represents a change of more than 0.01326 standard
deviations (SD[Relative Infection cases]= 16.48).
The GDP per Capita
covariate has statistically significant effect. An increase of 1 unit in
GDP per Capita increases Relative Infection cases by 0.151 units,
assuming all other covariates stay constant. This represents a change of
more than 0.009164 standard deviations (SD[Relative Infection cases]=
16.48).
The Urbanization Percentage covariate has statistically
significant effect. An increase of 1 unit in Urbanization Percentage
decreases Relative Infection cases by 0.07396 units, assuming all other
covariates stay constant. This represents a change of more than 0.004487
standard deviations (SD[Relative Infection cases]= 16.48).
The
Population Aged 70 or Older covariate has statistically significant
effect. An increase of 1 unit in Population Aged 70 or Older increases
Relative Infection cases by 1.024 units, assuming all other covariates
stay constant. This represents a change of more than 0.06213 standard
deviations (SD[Relative Infection cases]= 16.48).
Wave 3 interpretation
OLS Linear regression was used to analyze the effects on Relative
Infection cases.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
Relative Infection cases decreases by 8.317 units assuming all other
covariates stay constant. This represents a change of more than 0.5037
standard deviations (SD[Relative Infection cases]= 16.51).
The
Leader Age covariate has statistically significant effect. An increase
of 1 unit in Leader Age decreases Relative Infection cases by 0.165
units, assuming all other covariates stay constant. This represents a
change of more than 0.009993 standard deviations (SD[Relative Infection
cases]= 16.51).
The Stringency Index (delayed) covariate has
statistically significant effect. An increase of 1 unit in Stringency
Index (delayed) increases Relative Infection cases by 0.2637 units,
assuming all other covariates stay constant. This represents a change of
more than 0.01597 standard deviations (SD[Relative Infection cases]=
16.51).
The New Vaccination (delayed) covariate has statistically
significant effect. An increase of 1 unit in New Vaccination (delayed)
increases Relative Infection cases by 0.00102 units, assuming all other
covariates stay constant. This represents a change of more than
6.179e-05 standard deviations (SD[Relative Infection cases]=
16.51).
The Health-system Score covariate has statistically
significant effect. An increase of 1 unit in Health-system Score
decreases Relative Infection cases by 0.6377 units, assuming all other
covariates stay constant. This represents a change of more than 0.03863
standard deviations (SD[Relative Infection cases]= 16.51).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage increases Relative
Infection cases by 0.1653 units, assuming all other covariates stay
constant. This represents a change of more than 0.01001 standard
deviations (SD[Relative Infection cases]= 16.51).
The Immigration
Percentage covariate has statistically significant effect. An increase
of 1 unit in Immigration Percentage decreases Relative Infection cases
by 0.2597 units, assuming all other covariates stay constant. This
represents a change of more than 0.01573 standard deviations
(SD[Relative Infection cases]= 16.51).
The Population Aged 70 or
Older covariate has statistically significant effect. An increase of 1
unit in Population Aged 70 or Older increases Relative Infection cases
by 1.218 units, assuming all other covariates stay constant. This
represents a change of more than 0.07379 standard deviations
(SD[Relative Infection cases]= 16.51).
Wave 4 interpretation
OLS Linear regression was used to analyze the effects on Relative
Infection cases.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
Relative Infection cases decreases by 5.268 units assuming all other
covariates stay constant. This represents a change of more than 0.3179
standard deviations (SD[Relative Infection cases]= 16.57).
The
Leader Age covariate has statistically significant effect. An increase
of 1 unit in Leader Age decreases Relative Infection cases by 0.144
units, assuming all other covariates stay constant. This represents a
change of more than 0.008692 standard deviations (SD[Relative Infection
cases]= 16.57).
The Stringency Index (delayed) covariate has
statistically significant effect. An increase of 1 unit in Stringency
Index (delayed) increases Relative Infection cases by 0.07899 units,
assuming all other covariates stay constant. This represents a change of
more than 0.004767 standard deviations (SD[Relative Infection cases]=
16.57).
The New Vaccination (delayed) covariate has statistically
significant effect. An increase of 1 unit in New Vaccination (delayed)
decreases Relative Infection cases by 0.0006246 units, assuming all
other covariates stay constant. This represents a change of more than
3.77e-05 standard deviations (SD[Relative Infection cases]=
16.57).
The GDP per Capita covariate has statistically significant
effect. An increase of 1 unit in GDP per Capita increases Relative
Infection cases by 0.2289 units, assuming all other covariates stay
constant. This represents a change of more than 0.01381 standard
deviations (SD[Relative Infection cases]= 16.57).
The Health-system
Score covariate has statistically significant effect. An increase of 1
unit in Health-system Score decreases Relative Infection cases by 0.6992
units, assuming all other covariates stay constant. This represents a
change of more than 0.04219 standard deviations (SD[Relative Infection
cases]= 16.57).
Full period interpretation
OLS Linear regression was used to analyze the effects on Relative Infection cases.relative_cases_full_reg.png
p <- wl_plot_coef (model = m_f[[1]], cov_34f, palette = "Color")
wl_ggsave("figures/relative_cases_full_reg.png", plot = p)
relative_cases_waves_reg.png
#
p1 <- wl_plot_coef (model = m_12[[1]], covs = cov_12, palette = "Color")
p2 <- wl_plot_coef (model = m_12[[2]], covs = cov_12, palette = "Color")
p3 <- wl_plot_coef (model = m_34[[1]], covs = cov_34f, palette = "Color")
p4 <- wl_plot_coef (model = m_34[[2]], covs = cov_34f, palette = "Color")
p <- ggarrange(p1, p2, p3, p4,
labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4"),
align = "hv", font.label = list(size = 10, face = "bold"),
vjust = 2.5, hjust = -3.5, ncol = 2, nrow = 2)
wl_ggsave("figures/relative_cases_waves_reg.png", plot = p, height=130)
dep <- order_vars[2]
cov_34f <- wl_covariates(cov_group = "Main coviariates")
cov_12 <- wl_setdiff(cov_34f, c("new_vaccinations_per_mil_delayed"))
m_12 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("Wave_1D", "Wave_2D"))
m_34 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34f,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("Wave_3D", "Wave_4D"))
m_f <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34f,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("All_D"))
relative_deaths_reg.tex
#>
#> ------------------------------------------------------------------------------
#> Wave 1 Wave 2 Wave 3 Wave 4 Full
#> (1) (2) (3) (4) (5)
#> ------------------------------------------------------------------------------
#> Leader Gender[female] -6.323*** -7.426*** -7.544*** -5.940*** -7.426***
#> (1.629) (1.227) (1.334) (1.128) (0.630)
#> Leader Age -0.004 -0.015 -0.216*** -0.151*** -0.120***
#> (0.061) (0.042) (0.044) (0.040) (0.022)
#> Stringency Index (delayed) 0.092*** 0.247*** 0.295*** 0.220*** 0.188***
#> (0.019) (0.025) (0.033) (0.028) (0.011)
#> New Vaccination (delayed) 0.0003* -0.001*** -0.0003***
#> (0.0002) (0.0001) (0.0001)
#> Democracy Score -2.033 2.332* 4.304*** 5.330*** 3.884***
#> (1.615) (1.080) (1.160) (1.027) (0.575)
#> GDP per Capita 0.369*** 0.005 -0.143** 0.037 0.010
#> (0.059) (0.041) (0.045) (0.040) (0.022)
#> Health-system Score -0.653*** -0.434*** -0.961*** -0.581*** -0.537***
#> (0.151) (0.105) (0.115) (0.102) (0.056)
#> Population Size 0.041*** 0.026** 0.018 0.016* 0.032***
#> (0.011) (0.008) (0.009) (0.008) (0.004)
#> Urbanization Percentage 0.088 -0.154*** 0.122*** -0.234*** -0.055**
#> (0.050) (0.033) (0.036) (0.031) (0.018)
#> Immigration Percentage -0.225* 0.153* -0.250*** -0.066 -0.030
#> (0.096) (0.068) (0.076) (0.065) (0.036)
#> Population Aged 70 or Older 1.203*** 2.265*** 1.676*** 1.355*** 1.396***
#> (0.203) (0.140) (0.152) (0.134) (0.075)
#> N 624 1,166 1,007 1,378 4,864
#> R2 0.264 0.330 0.355 0.307 0.207
#> Adjusted R2 0.252 0.324 0.348 0.301 0.205
#> ------------------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
Wave 1 interpretation
OLS Linear regression was used to analyze the effects on Relative
Death cases.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, Relative Death
cases decreases by 6.323 units assuming all other covariates stay
constant. This represents a change of more than 0.3986 standard
deviations (SD[Relative Death cases]= 15.86).
The Stringency Index
(delayed) covariate has statistically significant effect. An increase of
1 unit in Stringency Index (delayed) increases Relative Death cases by
0.09172 units, assuming all other covariates stay constant. This
represents a change of more than 0.005782 standard deviations
(SD[Relative Death cases]= 15.86).
The GDP per Capita covariate has
statistically significant effect. An increase of 1 unit in GDP per
Capita increases Relative Death cases by 0.3693 units, assuming all
other covariates stay constant. This represents a change of more than
0.02328 standard deviations (SD[Relative Death cases]= 15.86).
The
Health-system Score covariate has statistically significant effect. An
increase of 1 unit in Health-system Score decreases Relative Death cases
by 0.6534 units, assuming all other covariates stay constant. This
represents a change of more than 0.04119 standard deviations
(SD[Relative Death cases]= 15.86).
The Population Size covariate has
statistically significant effect. An increase of 1 unit in Population
Size increases Relative Death cases by 0.04086 units, assuming all other
covariates stay constant. This represents a change of more than 0.002576
standard deviations (SD[Relative Death cases]= 15.86).
The
Immigration Percentage covariate has statistically significant effect.
An increase of 1 unit in Immigration Percentage decreases Relative Death
cases by 0.2247 units, assuming all other covariates stay constant. This
represents a change of more than 0.01417 standard deviations
(SD[Relative Death cases]= 15.86).
The Population Aged 70 or Older
covariate has statistically significant effect. An increase of 1 unit in
Population Aged 70 or Older increases Relative Death cases by 1.203
units, assuming all other covariates stay constant. This represents a
change of more than 0.07581 standard deviations (SD[Relative Death
cases]= 15.86).
Wave 2 interpretation
OLS Linear regression was used to analyze the effects on Relative
Death cases.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, Relative Death
cases decreases by 7.426 units assuming all other covariates stay
constant. This represents a change of more than 0.4515 standard
deviations (SD[Relative Death cases]= 16.45).
The Stringency Index
(delayed) covariate has statistically significant effect. An increase of
1 unit in Stringency Index (delayed) increases Relative Death cases by
0.2468 units, assuming all other covariates stay constant. This
represents a change of more than 0.01501 standard deviations
(SD[Relative Death cases]= 16.45).
The Democracy Score covariate has
statistically significant effect. An increase of 1 unit in Democracy
Score increases Relative Death cases by 2.332 units, assuming all other
covariates stay constant. This represents a change of more than 0.1418
standard deviations (SD[Relative Death cases]= 16.45).
The
Health-system Score covariate has statistically significant effect. An
increase of 1 unit in Health-system Score decreases Relative Death cases
by 0.4335 units, assuming all other covariates stay constant. This
represents a change of more than 0.02636 standard deviations
(SD[Relative Death cases]= 16.45).
The Population Size covariate has
statistically significant effect. An increase of 1 unit in Population
Size increases Relative Death cases by 0.02555 units, assuming all other
covariates stay constant. This represents a change of more than 0.001553
standard deviations (SD[Relative Death cases]= 16.45).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage decreases Relative
Death cases by 0.1544 units, assuming all other covariates stay
constant. This represents a change of more than 0.00939 standard
deviations (SD[Relative Death cases]= 16.45).
The Immigration
Percentage covariate has statistically significant effect. An increase
of 1 unit in Immigration Percentage increases Relative Death cases by
0.153 units, assuming all other covariates stay constant. This
represents a change of more than 0.009305 standard deviations
(SD[Relative Death cases]= 16.45).
The Population Aged 70 or Older
covariate has statistically significant effect. An increase of 1 unit in
Population Aged 70 or Older increases Relative Death cases by 2.265
units, assuming all other covariates stay constant. This represents a
change of more than 0.1377 standard deviations (SD[Relative Death
cases]= 16.45).
Wave 3 interpretation
OLS Linear regression was used to analyze the effects on Relative
Death cases.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, Relative Death
cases decreases by 7.544 units assuming all other covariates stay
constant. This represents a change of more than 0.4556 standard
deviations (SD[Relative Death cases]= 16.56).
The Leader Age
covariate has statistically significant effect. An increase of 1 unit in
Leader Age decreases Relative Death cases by 0.216 units, assuming all
other covariates stay constant. This represents a change of more than
0.01305 standard deviations (SD[Relative Death cases]= 16.56).
The
Stringency Index (delayed) covariate has statistically significant
effect. An increase of 1 unit in Stringency Index (delayed) increases
Relative Death cases by 0.2951 units, assuming all other covariates stay
constant. This represents a change of more than 0.01782 standard
deviations (SD[Relative Death cases]= 16.56).
The New Vaccination
(delayed) covariate has statistically significant effect. An increase of
1 unit in New Vaccination (delayed) increases Relative Death cases by
0.0003071 units, assuming all other covariates stay constant. This
represents a change of more than 1.855e-05 standard deviations
(SD[Relative Death cases]= 16.56).
The Democracy Score covariate has
statistically significant effect. An increase of 1 unit in Democracy
Score increases Relative Death cases by 4.304 units, assuming all other
covariates stay constant. This represents a change of more than 0.2599
standard deviations (SD[Relative Death cases]= 16.56).
The GDP per
Capita covariate has statistically significant effect. An increase of 1
unit in GDP per Capita decreases Relative Death cases by 0.1428 units,
assuming all other covariates stay constant. This represents a change of
more than 0.008624 standard deviations (SD[Relative Death cases]=
16.56).
The Health-system Score covariate has statistically
significant effect. An increase of 1 unit in Health-system Score
decreases Relative Death cases by 0.9606 units, assuming all other
covariates stay constant. This represents a change of more than 0.05802
standard deviations (SD[Relative Death cases]= 16.56).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage increases Relative
Death cases by 0.1216 units, assuming all other covariates stay
constant. This represents a change of more than 0.007342 standard
deviations (SD[Relative Death cases]= 16.56).
The Immigration
Percentage covariate has statistically significant effect. An increase
of 1 unit in Immigration Percentage decreases Relative Death cases by
0.2502 units, assuming all other covariates stay constant. This
represents a change of more than 0.01511 standard deviations
(SD[Relative Death cases]= 16.56).
The Population Aged 70 or Older
covariate has statistically significant effect. An increase of 1 unit in
Population Aged 70 or Older increases Relative Death cases by 1.676
units, assuming all other covariates stay constant. This represents a
change of more than 0.1012 standard deviations (SD[Relative Death
cases]= 16.56).
Wave 4 interpretation
OLS Linear regression was used to analyze the effects on Relative
Death cases.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, Relative Death
cases decreases by 5.94 units assuming all other covariates stay
constant. This represents a change of more than 0.3586 standard
deviations (SD[Relative Death cases]= 16.57).
The Leader Age
covariate has statistically significant effect. An increase of 1 unit in
Leader Age decreases Relative Death cases by 0.1514 units, assuming all
other covariates stay constant. This represents a change of more than
0.009138 standard deviations (SD[Relative Death cases]= 16.57).
The
Stringency Index (delayed) covariate has statistically significant
effect. An increase of 1 unit in Stringency Index (delayed) increases
Relative Death cases by 0.2201 units, assuming all other covariates stay
constant. This represents a change of more than 0.01329 standard
deviations (SD[Relative Death cases]= 16.57).
The New Vaccination
(delayed) covariate has statistically significant effect. An increase of
1 unit in New Vaccination (delayed) decreases Relative Death cases by
0.0009421 units, assuming all other covariates stay constant. This
represents a change of more than 5.687e-05 standard deviations
(SD[Relative Death cases]= 16.57).
The Democracy Score covariate has
statistically significant effect. An increase of 1 unit in Democracy
Score increases Relative Death cases by 5.33 units, assuming all other
covariates stay constant. This represents a change of more than 0.3218
standard deviations (SD[Relative Death cases]= 16.57).
The
Health-system Score covariate has statistically significant effect. An
increase of 1 unit in Health-system Score decreases Relative Death cases
by 0.5814 units, assuming all other covariates stay constant. This
represents a change of more than 0.0351 standard deviations (SD[Relative
Death cases]= 16.57).
The Population Size covariate has
statistically significant effect. An increase of 1 unit in Population
Size increases Relative Death cases by 0.01609 units, assuming all other
covariates stay constant. This represents a change of more than 0.000971
standard deviations (SD[Relative Death cases]= 16.57).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage decreases Relative
Death cases by 0.2339 units, assuming all other covariates stay
constant. This represents a change of more than 0.01412 standard
deviations (SD[Relative Death cases]= 16.57).
The Population Aged 70
or Older covariate has statistically significant effect. An increase of
1 unit in Population Aged 70 or Older increases Relative Death cases by
1.355 units, assuming all other covariates stay constant. This
represents a change of more than 0.08179 standard deviations
(SD[Relative Death cases]= 16.57).
Full period interpretation
OLS Linear regression was used to analyze the effects on Relative Death cases.relative_deaths_full_reg.png
p <- wl_plot_coef (model = m_f[[1]], cov_34f, palette = "Color")
wl_ggsave("figures/relative_deaths_full_reg.png", plot = p)
relative_deaths_waves_reg.png
#
p1 <- wl_plot_coef (model = m_12[[1]], covs = cov_12, palette = "Color")
p2 <- wl_plot_coef (model = m_12[[2]], covs = cov_12, palette = "Color")
p3 <- wl_plot_coef (model = m_34[[1]], covs = cov_34f, palette = "Color")
p4 <- wl_plot_coef (model = m_34[[2]], covs = cov_34f, palette = "Color")
p <- ggarrange(p1, p2, p3, p4,
labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4"),
align = "hv", font.label = list(size = 10, face = "bold"),
vjust = 2.5, hjust = -3.5, ncol = 2, nrow = 2)
wl_ggsave("figures/relative_deaths_waves_reg.png", plot = p, height=130)
dep <- order_vars[3]
cov_34f <- wl_covariates(cov_group = "Main coviariates")
cov_12 <- wl_setdiff(cov_34f, c("new_vaccinations_per_mil_delayed"))
m_12 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("Wave_1D", "Wave_2D"))
m_34 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34f,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("Wave_3D", "Wave_4D"))
m_f <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34f,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("All_D"))
relative_excess_reg.tex
#>
#> -----------------------------------------------------------------------------
#> Wave 1 Wave 2 Wave 3 Wave 4 Full
#> (1) (2) (3) (4) (5)
#> -----------------------------------------------------------------------------
#> Leader Gender[female] -8.515*** -3.708** -1.951 1.032 -2.473***
#> (1.503) (1.131) (1.132) (0.994) (0.543)
#> Leader Age 0.024 0.022 -0.039 0.026 -0.004
#> (0.058) (0.042) (0.040) (0.038) (0.021)
#> Stringency Index (delayed) 0.015 -0.016 0.004 -0.049 -0.009
#> (0.017) (0.026) (0.033) (0.030) (0.010)
#> New Vaccination (delayed) 0.001*** -0.0003** -0.0001
#> (0.0001) (0.0001) (0.0001)
#> Democracy Score -4.264** 0.683 2.520* 4.155*** 2.777***
#> (1.567) (1.107) (1.119) (1.015) (0.551)
#> GDP per Capita 0.127* -0.010 -0.168*** 0.022 -0.010
#> (0.063) (0.044) (0.044) (0.041) (0.022)
#> Health-system Score 0.125 -0.360** -0.702*** -0.560*** -0.400***
#> (0.152) (0.115) (0.117) (0.105) (0.057)
#> Population Size 0.041*** 0.020* -0.005 -0.002 0.013**
#> (0.011) (0.008) (0.008) (0.008) (0.004)
#> Urbanization Percentage 0.135* -0.225*** -0.010 -0.116*** -0.081***
#> (0.056) (0.039) (0.039) (0.035) (0.019)
#> Immigration Percentage -0.224* -0.088 -0.140* -0.193** -0.162***
#> (0.089) (0.065) (0.068) (0.059) (0.032)
#> Population Aged 70 or Older 0.381 0.178 0.179 0.383** 0.315***
#> (0.222) (0.154) (0.155) (0.138) (0.077)
#> N 483 851 724 993 3,571
#> R2 0.157 0.189 0.304 0.222 0.146
#> Adjusted R2 0.139 0.180 0.293 0.213 0.144
#> -----------------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
Wave 1 interpretation
OLS Linear regression was used to analyze the effects on Relative
Excess Mortality.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
Relative Excess Mortality decreases by 8.515 units assuming all other
covariates stay constant. This represents a change of more than 0.697
standard deviations (SDRelative
Excess Mortality= 12.22).
The Democracy Score covariate has
statistically significant effect. An increase of 1 unit in Democracy
Score decreases Relative Excess Mortality by 4.264 units, assuming all
other covariates stay constant. This represents a change of more than
0.349 standard deviations (SDRelative Excess Mortality=
12.22).
The GDP per Capita covariate has statistically significant
effect. An increase of 1 unit in GDP per Capita increases Relative
Excess Mortality by 0.1271 units, assuming all other covariates stay
constant. This represents a change of more than 0.0104 standard
deviations (SDRelative Excess
Mortality= 12.22).
The Population Size covariate has
statistically significant effect. An increase of 1 unit in Population
Size increases Relative Excess Mortality by 0.0414 units, assuming all
other covariates stay constant. This represents a change of more than
0.003389 standard deviations (SDRelative Excess Mortality=
12.22).
The Urbanization Percentage covariate has statistically
significant effect. An increase of 1 unit in Urbanization Percentage
increases Relative Excess Mortality by 0.1348 units, assuming all other
covariates stay constant. This represents a change of more than 0.01103
standard deviations (SDRelative
Excess Mortality= 12.22).
The Immigration Percentage covariate
has statistically significant effect. An increase of 1 unit in
Immigration Percentage decreases Relative Excess Mortality by 0.2235
units, assuming all other covariates stay constant. This represents a
change of more than 0.0183 standard deviations (SDRelative Excess Mortality=
12.22).
Wave 2 interpretation
OLS Linear regression was used to analyze the effects on Relative
Excess Mortality.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
Relative Excess Mortality decreases by 3.708 units assuming all other
covariates stay constant. This represents a change of more than 0.2998
standard deviations (SDRelative
Excess Mortality= 12.37).
The Health-system Score covariate has
statistically significant effect. An increase of 1 unit in Health-system
Score decreases Relative Excess Mortality by 0.3599 units, assuming all
other covariates stay constant. This represents a change of more than
0.0291 standard deviations (SDRelative Excess Mortality=
12.37).
The Population Size covariate has statistically significant
effect. An increase of 1 unit in Population Size increases Relative
Excess Mortality by 0.0197 units, assuming all other covariates stay
constant. This represents a change of more than 0.001593 standard
deviations (SDRelative Excess
Mortality= 12.37).
The Urbanization Percentage covariate has
statistically significant effect. An increase of 1 unit in Urbanization
Percentage decreases Relative Excess Mortality by 0.2254 units, assuming
all other covariates stay constant. This represents a change of more
than 0.01822 standard deviations (SDRelative Excess Mortality=
12.37).
Wave 3 interpretation
OLS Linear regression was used to analyze the effects on Relative
Excess Mortality.
The New Vaccination (delayed) covariate has
statistically significant effect. An increase of 1 unit in New
Vaccination (delayed) increases Relative Excess Mortality by 0.0005779
units, assuming all other covariates stay constant. This represents a
change of more than 4.807e-05 standard deviations (SDRelative Excess Mortality=
12.02).
The Democracy Score covariate has statistically significant
effect. An increase of 1 unit in Democracy Score increases Relative
Excess Mortality by 2.52 units, assuming all other covariates stay
constant. This represents a change of more than 0.2096 standard
deviations (SDRelative Excess
Mortality= 12.02).
The GDP per Capita covariate has
statistically significant effect. An increase of 1 unit in GDP per
Capita decreases Relative Excess Mortality by 0.1679 units, assuming all
other covariates stay constant. This represents a change of more than
0.01396 standard deviations (SDRelative Excess Mortality=
12.02).
The Health-system Score covariate has statistically
significant effect. An increase of 1 unit in Health-system Score
decreases Relative Excess Mortality by 0.7016 units, assuming all other
covariates stay constant. This represents a change of more than 0.05836
standard deviations (SDRelative
Excess Mortality= 12.02).
The Immigration Percentage covariate
has statistically significant effect. An increase of 1 unit in
Immigration Percentage decreases Relative Excess Mortality by 0.1402
units, assuming all other covariates stay constant. This represents a
change of more than 0.01166 standard deviations (SDRelative Excess Mortality=
12.02).
Wave 4 interpretation
OLS Linear regression was used to analyze the effects on Relative
Excess Mortality.
The New Vaccination (delayed) covariate has
statistically significant effect. An increase of 1 unit in New
Vaccination (delayed) decreases Relative Excess Mortality by 0.0003041
units, assuming all other covariates stay constant. This represents a
change of more than 2.564e-05 standard deviations (SDRelative Excess Mortality=
11.86).
The Democracy Score covariate has statistically significant
effect. An increase of 1 unit in Democracy Score increases Relative
Excess Mortality by 4.155 units, assuming all other covariates stay
constant. This represents a change of more than 0.3504 standard
deviations (SDRelative Excess
Mortality= 11.86).
The Health-system Score covariate has
statistically significant effect. An increase of 1 unit in Health-system
Score decreases Relative Excess Mortality by 0.5599 units, assuming all
other covariates stay constant. This represents a change of more than
0.04722 standard deviations (SDRelative Excess Mortality=
11.86).
The Urbanization Percentage covariate has statistically
significant effect. An increase of 1 unit in Urbanization Percentage
decreases Relative Excess Mortality by 0.1156 units, assuming all other
covariates stay constant. This represents a change of more than 0.009745
standard deviations (SDRelative
Excess Mortality= 11.86).
The Immigration Percentage covariate
has statistically significant effect. An increase of 1 unit in
Immigration Percentage decreases Relative Excess Mortality by 0.1926
units, assuming all other covariates stay constant. This represents a
change of more than 0.01624 standard deviations (SDRelative Excess Mortality=
11.86).
The Population Aged 70 or Older covariate has statistically
significant effect. An increase of 1 unit in Population Aged 70 or Older
increases Relative Excess Mortality by 0.3827 units, assuming all other
covariates stay constant. This represents a change of more than 0.03228
standard deviations (SDRelative
Excess Mortality= 11.86).
Full period interpretation
OLS Linear regression was used to analyze the effects on Relative Excess Mortality.relative_excess_full_reg.png
p <- wl_plot_coef (model = m_f[[1]], cov_34f, palette = "Color")
wl_ggsave("figures/relative_excess_full_reg.png", plot = p)
relative_excess_waves_reg.png
#
p1 <- wl_plot_coef (model = m_12[[1]], covs = cov_12, palette = "Color")
p2 <- wl_plot_coef (model = m_12[[2]], covs = cov_12, palette = "Color")
p3 <- wl_plot_coef (model = m_34[[1]], covs = cov_34f, palette = "Color")
p4 <- wl_plot_coef (model = m_34[[2]], covs = cov_34f, palette = "Color")
p <- ggarrange(p1, p2, p3, p4,
labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4"),
align = "hv", font.label = list(size = 10, face = "bold"),
vjust = 2.5, hjust = -3.5, ncol = 2, nrow = 2)
wl_ggsave("figures/relative_excess_waves_reg.png", plot = p, height=130)
relative_gender_coef_summary.png
title1 <- textGrob(names(wl_dependents())[1], gp = gpar(fontsize = 14))
title2 <- textGrob(names(wl_dependents())[2], gp = gpar(fontsize = 14))
title3 <- textGrob(names(wl_dependents())[3], gp = gpar(fontsize = 14))
title4 <- textGrob("Leader Gender Coefficient",gp = gpar(fontsize = 14))
tblank <- textGrob(" ",gp = gpar(fontsize = 14))
p <- ggarrange(title1, title2, title3,
p_cases, p_deaths, p_excess,
tblank,title4, tblank,
font.label = list(size = 10, face = "bold"),
heights = c(0.1, 1, 0.1),
ncol = 3, nrow = 3)
wl_ggsave("figures/relative_gender_coef_summary.png", plot = p, width=250)
order_aligned_vars <- c("Infection Cases Order - Wave 1" = "ord_w1c",
"Infection Cases Order - Wave 2" = "ord_w2c",
"Infection Cases Order - Wave 3" = "ord_w3c",
"Infection Cases Order - Wave 4" = "ord_w4c")
cov_34 <- wl_covariates(cov_group = "Main coviariates")
cov_12 <- wl_setdiff(cov_34, c("new_vaccinations_per_mil_delayed"))
dep <- order_aligned_vars[1]
m_1 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "aligned", waves = c("Wave_1AC"))
dep <- order_aligned_vars[2]
m_2 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "aligned", waves = c("Wave_2AC"))
dep <- order_aligned_vars[3]
m_3 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "aligned", waves = c("Wave_3AC"))
dep <- order_aligned_vars[4]
m_4 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "aligned", waves = c("Wave_4AC"))
relative_aligned_cases_reg.tex
#>
#> --------------------------------------------------------------------
#> Wave 1 Wave 2 Wave 3 Wave 4
#> (1) (2) (3) (4)
#> --------------------------------------------------------------------
#> Leader Gender[female] -7.708*** -9.041*** -12.642*** -7.017***
#> (1.728) (1.338) (1.378) (1.426)
#> Leader Age 0.046 -0.001 -0.159*** -0.177***
#> (0.063) (0.047) (0.046) (0.050)
#> Stringency Index (delayed) 0.054** 0.203*** 0.325*** -0.013
#> (0.019) (0.028) (0.033) (0.034)
#> New Vaccination (delayed) 0.0003 -0.001***
#> (0.0002) (0.0002)
#> Democracy Score -4.818** -0.349 -2.718* 0.080
#> (1.594) (1.212) (1.193) (1.295)
#> GDP per Capita 0.312*** 0.124** 0.036 0.149**
#> (0.062) (0.046) (0.046) (0.049)
#> Health-system Score -0.770*** -0.253* -0.657*** -0.622***
#> (0.148) (0.118) (0.119) (0.126)
#> Population Size 0.038*** 0.004 -0.024* -0.009
#> (0.011) (0.009) (0.009) (0.010)
#> Urbanization Percentage 0.289*** -0.046 0.180*** 0.004
#> (0.049) (0.037) (0.037) (0.040)
#> Immigration Percentage -0.146 0.150* -0.198** -0.100
#> (0.101) (0.076) (0.077) (0.081)
#> Population Aged 70 or Older 0.145 1.560*** 1.026*** 0.929***
#> (0.208) (0.158) (0.156) (0.167)
#> N 630 1,113 1,113 1,113
#> R2 0.210 0.238 0.258 0.148
#> Adjusted R2 0.197 0.231 0.251 0.139
#> --------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
Wave 1 interpretation
OLS Linear regression was used to analyze the effects on Infection
Cases Order - Wave 1.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
Infection Cases Order - Wave 1 decreases by 7.708 units assuming all
other covariates stay constant. This represents a change of more than
0.478 standard deviations (SD[Infection Cases Order - Wave 1]=
16.13).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
increases Infection Cases Order - Wave 1 by 0.05409 units, assuming all
other covariates stay constant. This represents a change of more than
0.003354 standard deviations (SD[Infection Cases Order - Wave 1]=
16.13).
The Democracy Score covariate has statistically significant
effect. An increase of 1 unit in Democracy Score decreases Infection
Cases Order - Wave 1 by 4.818 units, assuming all other covariates stay
constant. This represents a change of more than 0.2987 standard
deviations (SD[Infection Cases Order - Wave 1]= 16.13).
The GDP per
Capita covariate has statistically significant effect. An increase of 1
unit in GDP per Capita increases Infection Cases Order - Wave 1 by
0.3124 units, assuming all other covariates stay constant. This
represents a change of more than 0.01937 standard deviations
(SD[Infection Cases Order - Wave 1]= 16.13).
The Health-system Score
covariate has statistically significant effect. An increase of 1 unit in
Health-system Score decreases Infection Cases Order - Wave 1 by 0.7705
units, assuming all other covariates stay constant. This represents a
change of more than 0.04778 standard deviations (SD[Infection Cases
Order - Wave 1]= 16.13).
The Population Size covariate has
statistically significant effect. An increase of 1 unit in Population
Size increases Infection Cases Order - Wave 1 by 0.03821 units, assuming
all other covariates stay constant. This represents a change of more
than 0.002369 standard deviations (SD[Infection Cases Order - Wave 1]=
16.13).
The Urbanization Percentage covariate has statistically
significant effect. An increase of 1 unit in Urbanization Percentage
increases Infection Cases Order - Wave 1 by 0.2888 units, assuming all
other covariates stay constant. This represents a change of more than
0.01791 standard deviations (SD[Infection Cases Order - Wave 1]=
16.13).
Wave 2 interpretation
OLS Linear regression was used to analyze the effects on Infection
Cases Order - Wave 2.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
Infection Cases Order - Wave 2 decreases by 9.041 units assuming all
other covariates stay constant. This represents a change of more than
0.5475 standard deviations (SD[Infection Cases Order - Wave 2]=
16.51).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
increases Infection Cases Order - Wave 2 by 0.2034 units, assuming all
other covariates stay constant. This represents a change of more than
0.01232 standard deviations (SD[Infection Cases Order - Wave 2]=
16.51).
The GDP per Capita covariate has statistically significant
effect. An increase of 1 unit in GDP per Capita increases Infection
Cases Order - Wave 2 by 0.1238 units, assuming all other covariates stay
constant. This represents a change of more than 0.007495 standard
deviations (SD[Infection Cases Order - Wave 2]= 16.51).
The
Health-system Score covariate has statistically significant effect. An
increase of 1 unit in Health-system Score decreases Infection Cases
Order - Wave 2 by 0.2534 units, assuming all other covariates stay
constant. This represents a change of more than 0.01535 standard
deviations (SD[Infection Cases Order - Wave 2]= 16.51).
The
Immigration Percentage covariate has statistically significant effect.
An increase of 1 unit in Immigration Percentage increases Infection
Cases Order - Wave 2 by 0.15 units, assuming all other covariates stay
constant. This represents a change of more than 0.009082 standard
deviations (SD[Infection Cases Order - Wave 2]= 16.51).
The
Population Aged 70 or Older covariate has statistically significant
effect. An increase of 1 unit in Population Aged 70 or Older increases
Infection Cases Order - Wave 2 by 1.56 units, assuming all other
covariates stay constant. This represents a change of more than 0.09448
standard deviations (SD[Infection Cases Order - Wave 2]= 16.51).
Wave 3 interpretation
OLS Linear regression was used to analyze the effects on Infection
Cases Order - Wave 3.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
Infection Cases Order - Wave 3 decreases by 12.64 units assuming all
other covariates stay constant. This represents a change of more than
0.7652 standard deviations (SD[Infection Cases Order - Wave 3]=
16.52).
The Leader Age covariate has statistically significant
effect. An increase of 1 unit in Leader Age decreases Infection Cases
Order - Wave 3 by 0.1594 units, assuming all other covariates stay
constant. This represents a change of more than 0.00965 standard
deviations (SD[Infection Cases Order - Wave 3]= 16.52).
The
Stringency Index (delayed) covariate has statistically significant
effect. An increase of 1 unit in Stringency Index (delayed) increases
Infection Cases Order - Wave 3 by 0.3254 units, assuming all other
covariates stay constant. This represents a change of more than 0.01969
standard deviations (SD[Infection Cases Order - Wave 3]= 16.52).
The
Democracy Score covariate has statistically significant effect. An
increase of 1 unit in Democracy Score decreases Infection Cases Order -
Wave 3 by 2.718 units, assuming all other covariates stay constant. This
represents a change of more than 0.1645 standard deviations
(SD[Infection Cases Order - Wave 3]= 16.52).
The Health-system Score
covariate has statistically significant effect. An increase of 1 unit in
Health-system Score decreases Infection Cases Order - Wave 3 by 0.6574
units, assuming all other covariates stay constant. This represents a
change of more than 0.03979 standard deviations (SD[Infection Cases
Order - Wave 3]= 16.52).
The Population Size covariate has
statistically significant effect. An increase of 1 unit in Population
Size decreases Infection Cases Order - Wave 3 by 0.02392 units, assuming
all other covariates stay constant. This represents a change of more
than 0.001448 standard deviations (SD[Infection Cases Order - Wave 3]=
16.52).
The Urbanization Percentage covariate has statistically
significant effect. An increase of 1 unit in Urbanization Percentage
increases Infection Cases Order - Wave 3 by 0.1804 units, assuming all
other covariates stay constant. This represents a change of more than
0.01092 standard deviations (SD[Infection Cases Order - Wave 3]=
16.52).
The Immigration Percentage covariate has statistically
significant effect. An increase of 1 unit in Immigration Percentage
decreases Infection Cases Order - Wave 3 by 0.1984 units, assuming all
other covariates stay constant. This represents a change of more than
0.01201 standard deviations (SD[Infection Cases Order - Wave 3]=
16.52).
The Population Aged 70 or Older covariate has statistically
significant effect. An increase of 1 unit in Population Aged 70 or Older
increases Infection Cases Order - Wave 3 by 1.026 units, assuming all
other covariates stay constant. This represents a change of more than
0.0621 standard deviations (SD[Infection Cases Order - Wave 3]=
16.52).
Wave 4 interpretation
OLS Linear regression was used to analyze the effects on Infection Cases Order - Wave 4.relative_aligned_cases_waves_reg.png
p1 <- wl_plot_coef (model = m_1[[1]], covs = cov_12, palette = "Color")
p2 <- wl_plot_coef (model = m_2[[1]], covs = cov_12, palette = "Color")
p3 <- wl_plot_coef (model = m_3[[1]], covs = cov_34, palette = "Color")
p4 <- wl_plot_coef (model = m_4[[1]], covs = cov_34, palette = "Color")
p <- ggarrange(p1, p2, p3, p4,
labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4"),
align = "hv", font.label = list(size = 10, face = "bold"),
vjust = 2.5, hjust = -3.5, ncol = 2, nrow = 2)
wl_ggsave("figures/relative_aligned_cases_waves_reg.png", plot = p, height=130)
order_aligned_vars <- c("Death Cases Order - Wave 1" = "ord_w1d",
"Death Cases Order - Wave 2" = "ord_w2d",
"Death Cases Order - Wave 3" = "ord_w3d",
"Death Cases Order - Wave 4" = "ord_w4d")
cov_34 <- wl_covariates(cov_group = "Main coviariates")
cov_12 <- wl_setdiff(cov_34, c("new_vaccinations_per_mil_delayed"))
dep <- order_aligned_vars[1]
m_1 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "aligned", waves = c("Wave_1AD"))
dep <- order_aligned_vars[2]
m_2 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "aligned", waves = c("Wave_2AD"))
dep <- order_aligned_vars[3]
m_3 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "aligned", waves = c("Wave_3AD"))
dep <- order_aligned_vars[4]
m_4 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "aligned", waves = c("Wave_4AD"))
relative_aligned_deaths_reg.tex
#>
#> --------------------------------------------------------------------
#> Wave 1 Wave 2 Wave 3 Wave 4
#> (1) (2) (3) (4)
#> --------------------------------------------------------------------
#> Leader Gender[female] -6.798*** -7.548*** -10.395*** -4.991**
#> (1.670) (1.233) (1.261) (1.706)
#> Leader Age 0.031 -0.019 -0.138** -0.269***
#> (0.060) (0.043) (0.042) (0.057)
#> Stringency Index (delayed) 0.135*** 0.241*** 0.315*** 0.173***
#> (0.020) (0.025) (0.031) (0.043)
#> New Vaccination (delayed) 0.00003 0.001***
#> (0.0002) (0.0003)
#> Democracy Score -3.465* 1.130 3.725*** 9.325***
#> (1.489) (1.114) (1.108) (1.623)
#> GDP per Capita 0.347*** -0.042 0.018 0.076
#> (0.059) (0.042) (0.042) (0.060)
#> Health-system Score -0.608*** -0.708*** -1.108*** -0.704***
#> (0.139) (0.110) (0.110) (0.129)
#> Population Size 0.036*** 0.034*** 0.009 0.022
#> (0.011) (0.009) (0.009) (0.012)
#> Urbanization Percentage 0.159** -0.127*** 0.154*** -0.245***
#> (0.049) (0.034) (0.034) (0.040)
#> Immigration Percentage -0.233* 0.252*** -0.251*** -0.464***
#> (0.097) (0.069) (0.071) (0.103)
#> Population Aged 70 or Older 0.689*** 2.421*** 1.802*** 2.503***
#> (0.191) (0.145) (0.144) (0.187)
#> N 714 1,113 1,113 628
#> R2 0.212 0.339 0.356 0.438
#> Adjusted R2 0.201 0.333 0.349 0.428
#> --------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
Wave 1 interpretation
OLS Linear regression was used to analyze the effects on Death Cases
Order - Wave 1.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
Death Cases Order - Wave 1 decreases by 6.798 units assuming all other
covariates stay constant. This represents a change of more than 0.4253
standard deviations (SD[Death Cases Order - Wave 1]= 15.98).
The
Stringency Index (delayed) covariate has statistically significant
effect. An increase of 1 unit in Stringency Index (delayed) increases
Death Cases Order - Wave 1 by 0.1348 units, assuming all other
covariates stay constant. This represents a change of more than 0.008433
standard deviations (SD[Death Cases Order - Wave 1]= 15.98).
The
Democracy Score covariate has statistically significant effect. An
increase of 1 unit in Democracy Score decreases Death Cases Order - Wave
1 by 3.465 units, assuming all other covariates stay constant. This
represents a change of more than 0.2168 standard deviations (SD[Death
Cases Order - Wave 1]= 15.98).
The GDP per Capita covariate has
statistically significant effect. An increase of 1 unit in GDP per
Capita increases Death Cases Order - Wave 1 by 0.3467 units, assuming
all other covariates stay constant. This represents a change of more
than 0.02169 standard deviations (SD[Death Cases Order - Wave 1]=
15.98).
The Health-system Score covariate has statistically
significant effect. An increase of 1 unit in Health-system Score
decreases Death Cases Order - Wave 1 by 0.6083 units, assuming all other
covariates stay constant. This represents a change of more than 0.03806
standard deviations (SD[Death Cases Order - Wave 1]= 15.98).
The
Population Size covariate has statistically significant effect. An
increase of 1 unit in Population Size increases Death Cases Order - Wave
1 by 0.03643 units, assuming all other covariates stay constant. This
represents a change of more than 0.002279 standard deviations (SD[Death
Cases Order - Wave 1]= 15.98).
The Urbanization Percentage covariate
has statistically significant effect. An increase of 1 unit in
Urbanization Percentage increases Death Cases Order - Wave 1 by 0.1592
units, assuming all other covariates stay constant. This represents a
change of more than 0.009959 standard deviations (SD[Death Cases Order -
Wave 1]= 15.98).
The Immigration Percentage covariate has
statistically significant effect. An increase of 1 unit in Immigration
Percentage decreases Death Cases Order - Wave 1 by 0.233 units, assuming
all other covariates stay constant. This represents a change of more
than 0.01457 standard deviations (SD[Death Cases Order - Wave 1]=
15.98).
The Population Aged 70 or Older covariate has statistically
significant effect. An increase of 1 unit in Population Aged 70 or Older
increases Death Cases Order - Wave 1 by 0.6894 units, assuming all other
covariates stay constant. This represents a change of more than 0.04313
standard deviations (SD[Death Cases Order - Wave 1]= 15.98).
Wave 2 interpretation
OLS Linear regression was used to analyze the effects on Death Cases
Order - Wave 2.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
Death Cases Order - Wave 2 decreases by 7.548 units assuming all other
covariates stay constant. This represents a change of more than 0.4587
standard deviations (SD[Death Cases Order - Wave 2]= 16.46).
The
Stringency Index (delayed) covariate has statistically significant
effect. An increase of 1 unit in Stringency Index (delayed) increases
Death Cases Order - Wave 2 by 0.2408 units, assuming all other
covariates stay constant. This represents a change of more than 0.01463
standard deviations (SD[Death Cases Order - Wave 2]= 16.46).
The
Health-system Score covariate has statistically significant effect. An
increase of 1 unit in Health-system Score decreases Death Cases Order -
Wave 2 by 0.7076 units, assuming all other covariates stay constant.
This represents a change of more than 0.043 standard deviations
(SD[Death Cases Order - Wave 2]= 16.46).
The Population Size
covariate has statistically significant effect. An increase of 1 unit in
Population Size increases Death Cases Order - Wave 2 by 0.03439 units,
assuming all other covariates stay constant. This represents a change of
more than 0.002089 standard deviations (SD[Death Cases Order - Wave 2]=
16.46).
The Urbanization Percentage covariate has statistically
significant effect. An increase of 1 unit in Urbanization Percentage
decreases Death Cases Order - Wave 2 by 0.1267 units, assuming all other
covariates stay constant. This represents a change of more than 0.007698
standard deviations (SD[Death Cases Order - Wave 2]= 16.46).
The
Immigration Percentage covariate has statistically significant effect.
An increase of 1 unit in Immigration Percentage increases Death Cases
Order - Wave 2 by 0.2521 units, assuming all other covariates stay
constant. This represents a change of more than 0.01532 standard
deviations (SD[Death Cases Order - Wave 2]= 16.46).
The Population
Aged 70 or Older covariate has statistically significant effect. An
increase of 1 unit in Population Aged 70 or Older increases Death Cases
Order - Wave 2 by 2.421 units, assuming all other covariates stay
constant. This represents a change of more than 0.1471 standard
deviations (SD[Death Cases Order - Wave 2]= 16.46).
Wave 3 interpretation
OLS Linear regression was used to analyze the effects on Death Cases
Order - Wave 3.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
Death Cases Order - Wave 3 decreases by 10.4 units assuming all other
covariates stay constant. This represents a change of more than 0.6267
standard deviations (SD[Death Cases Order - Wave 3]= 16.59).
The
Leader Age covariate has statistically significant effect. An increase
of 1 unit in Leader Age decreases Death Cases Order - Wave 3 by 0.1378
units, assuming all other covariates stay constant. This represents a
change of more than 0.008305 standard deviations (SD[Death Cases Order -
Wave 3]= 16.59).
The Stringency Index (delayed) covariate has
statistically significant effect. An increase of 1 unit in Stringency
Index (delayed) increases Death Cases Order - Wave 3 by 0.315 units,
assuming all other covariates stay constant. This represents a change of
more than 0.01899 standard deviations (SD[Death Cases Order - Wave 3]=
16.59).
The Democracy Score covariate has statistically significant
effect. An increase of 1 unit in Democracy Score increases Death Cases
Order - Wave 3 by 3.725 units, assuming all other covariates stay
constant. This represents a change of more than 0.2246 standard
deviations (SD[Death Cases Order - Wave 3]= 16.59).
The
Health-system Score covariate has statistically significant effect. An
increase of 1 unit in Health-system Score decreases Death Cases Order -
Wave 3 by 1.108 units, assuming all other covariates stay constant. This
represents a change of more than 0.06678 standard deviations (SD[Death
Cases Order - Wave 3]= 16.59).
The Urbanization Percentage covariate
has statistically significant effect. An increase of 1 unit in
Urbanization Percentage increases Death Cases Order - Wave 3 by 0.1539
units, assuming all other covariates stay constant. This represents a
change of more than 0.009277 standard deviations (SD[Death Cases Order -
Wave 3]= 16.59).
The Immigration Percentage covariate has
statistically significant effect. An increase of 1 unit in Immigration
Percentage decreases Death Cases Order - Wave 3 by 0.2511 units,
assuming all other covariates stay constant. This represents a change of
more than 0.01514 standard deviations (SD[Death Cases Order - Wave 3]=
16.59).
The Population Aged 70 or Older covariate has statistically
significant effect. An increase of 1 unit in Population Aged 70 or Older
increases Death Cases Order - Wave 3 by 1.802 units, assuming all other
covariates stay constant. This represents a change of more than 0.1086
standard deviations (SD[Death Cases Order - Wave 3]= 16.59).
Wave 4 interpretation
OLS Linear regression was used to analyze the effects on Death Cases Order - Wave 4.relative_aligned_deaths_waves_reg.png
p1 <- wl_plot_coef (model = m_1[[1]], covs = cov_12, palette = "Color")
p2 <- wl_plot_coef (model = m_2[[1]], covs = cov_12, palette = "Color")
p3 <- wl_plot_coef (model = m_3[[1]], covs = cov_34, palette = "Color")
p4 <- wl_plot_coef (model = m_4[[1]], covs = cov_34, palette = "Color")
p <- ggarrange(p1, p2, p3, p4,
labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4"),
align = "hv", font.label = list(size = 10, face = "bold"),
vjust = 2.5, hjust = -3.5, ncol = 2, nrow = 2)
wl_ggsave("figures/relative_aligned_deaths_waves_reg.png", plot = p, height=130)
order_aligned_vars <- c("Death Cases Order - Wave 1" = "ord_w1e",
"Death Cases Order - Wave 2" = "ord_w2e",
"Death Cases Order - Wave 3" = "ord_w3e",
"Death Cases Order - Wave 4" = "ord_w4e")
cov_34 <- wl_covariates(cov_group = "Main coviariates")
cov_12 <- wl_setdiff(cov_34, c("new_vaccinations_per_mil_delayed"))
dep <- order_aligned_vars[1]
m_1 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "aligned", waves = c("Wave_1AD"))
dep <- order_aligned_vars[2]
m_2 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "aligned", waves = c("Wave_2AD"))
dep <- order_aligned_vars[3]
m_3 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "aligned", waves = c("Wave_3AD"))
dep <- order_aligned_vars[4]
m_4 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "aligned", waves = c("Wave_4AD"))
relative_aligned_excess_reg.tex
#>
#> -------------------------------------------------------------------
#> Wave 1 Wave 2 Wave 3 Wave 4
#> (1) (2) (3) (4)
#> -------------------------------------------------------------------
#> Leader Gender[female] -7.725*** -4.186*** -4.716*** 0.148
#> (1.402) (1.016) (1.055) (1.336)
#> Leader Age 0.108* -0.004 0.034 -0.099
#> (0.053) (0.040) (0.037) (0.052)
#> Stringency Index (delayed) 0.001 -0.036 -0.061* -0.093*
#> (0.016) (0.024) (0.030) (0.042)
#> New Vaccination (delayed) 0.0004*** 0.0001
#> (0.0001) (0.0002)
#> Democracy Score -4.435*** 1.271 -1.115 3.952**
#> (1.333) (1.032) (1.023) (1.353)
#> GDP per Capita 0.131* 0.052 -0.092* 0.045
#> (0.058) (0.041) (0.040) (0.054)
#> Health-system Score -0.424** -0.707*** -0.716*** -0.682***
#> (0.129) (0.107) (0.108) (0.116)
#> Population Size 0.026** 0.013 0.004 -0.005
#> (0.010) (0.008) (0.008) (0.011)
#> Urbanization Percentage 0.190*** -0.220*** 0.016 -0.121**
#> (0.049) (0.036) (0.036) (0.041)
#> Immigration Percentage -0.201* -0.086 -0.252*** -0.289***
#> (0.083) (0.060) (0.061) (0.084)
#> Population Aged 70 or Older 0.495** 0.412** 0.059 0.483**
#> (0.191) (0.142) (0.143) (0.169)
#> N 532 816 804 396
#> R2 0.153 0.265 0.288 0.393
#> Adjusted R2 0.137 0.256 0.278 0.375
#> -------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
Wave 1 interpretation
OLS Linear regression was used to analyze the effects on Death Cases
Order - Wave 1.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
Death Cases Order - Wave 1 decreases by 7.725 units assuming all other
covariates stay constant. This represents a change of more than 0.6776
standard deviations (SD[Death Cases Order - Wave 1]= 11.4).
The
Leader Age covariate has statistically significant effect. An increase
of 1 unit in Leader Age increases Death Cases Order - Wave 1 by 0.1083
units, assuming all other covariates stay constant. This represents a
change of more than 0.009504 standard deviations (SD[Death Cases Order -
Wave 1]= 11.4).
The Democracy Score covariate has statistically
significant effect. An increase of 1 unit in Democracy Score decreases
Death Cases Order - Wave 1 by 4.435 units, assuming all other covariates
stay constant. This represents a change of more than 0.389 standard
deviations (SD[Death Cases Order - Wave 1]= 11.4).
The GDP per
Capita covariate has statistically significant effect. An increase of 1
unit in GDP per Capita increases Death Cases Order - Wave 1 by 0.1309
units, assuming all other covariates stay constant. This represents a
change of more than 0.01149 standard deviations (SD[Death Cases Order -
Wave 1]= 11.4).
The Health-system Score covariate has statistically
significant effect. An increase of 1 unit in Health-system Score
decreases Death Cases Order - Wave 1 by 0.4243 units, assuming all other
covariates stay constant. This represents a change of more than 0.03722
standard deviations (SD[Death Cases Order - Wave 1]= 11.4).
The
Population Size covariate has statistically significant effect. An
increase of 1 unit in Population Size increases Death Cases Order - Wave
1 by 0.02645 units, assuming all other covariates stay constant. This
represents a change of more than 0.00232 standard deviations (SD[Death
Cases Order - Wave 1]= 11.4).
The Urbanization Percentage covariate
has statistically significant effect. An increase of 1 unit in
Urbanization Percentage increases Death Cases Order - Wave 1 by 0.1895
units, assuming all other covariates stay constant. This represents a
change of more than 0.01662 standard deviations (SD[Death Cases Order -
Wave 1]= 11.4).
The Immigration Percentage covariate has
statistically significant effect. An increase of 1 unit in Immigration
Percentage decreases Death Cases Order - Wave 1 by 0.2006 units,
assuming all other covariates stay constant. This represents a change of
more than 0.0176 standard deviations (SD[Death Cases Order - Wave 1]=
11.4).
The Population Aged 70 or Older covariate has statistically
significant effect. An increase of 1 unit in Population Aged 70 or Older
increases Death Cases Order - Wave 1 by 0.4953 units, assuming all other
covariates stay constant. This represents a change of more than 0.04344
standard deviations (SD[Death Cases Order - Wave 1]= 11.4).
Wave 2 interpretation
OLS Linear regression was used to analyze the effects on Death Cases
Order - Wave 2.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
Death Cases Order - Wave 2 decreases by 4.186 units assuming all other
covariates stay constant. This represents a change of more than 0.3564
standard deviations (SD[Death Cases Order - Wave 2]= 11.75).
The
Health-system Score covariate has statistically significant effect. An
increase of 1 unit in Health-system Score decreases Death Cases Order -
Wave 2 by 0.7068 units, assuming all other covariates stay constant.
This represents a change of more than 0.06017 standard deviations
(SD[Death Cases Order - Wave 2]= 11.75).
The Urbanization Percentage
covariate has statistically significant effect. An increase of 1 unit in
Urbanization Percentage decreases Death Cases Order - Wave 2 by 0.2196
units, assuming all other covariates stay constant. This represents a
change of more than 0.01869 standard deviations (SD[Death Cases Order -
Wave 2]= 11.75).
The Population Aged 70 or Older covariate has
statistically significant effect. An increase of 1 unit in Population
Aged 70 or Older increases Death Cases Order - Wave 2 by 0.4122 units,
assuming all other covariates stay constant. This represents a change of
more than 0.03509 standard deviations (SD[Death Cases Order - Wave 2]=
11.75).
Wave 3 interpretation
OLS Linear regression was used to analyze the effects on Death Cases
Order - Wave 3.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
Death Cases Order - Wave 3 decreases by 4.716 units assuming all other
covariates stay constant. This represents a change of more than 0.4089
standard deviations (SD[Death Cases Order - Wave 3]= 11.53).
The
Stringency Index (delayed) covariate has statistically significant
effect. An increase of 1 unit in Stringency Index (delayed) decreases
Death Cases Order - Wave 3 by 0.0612 units, assuming all other
covariates stay constant. This represents a change of more than 0.005307
standard deviations (SD[Death Cases Order - Wave 3]= 11.53).
The New
Vaccination (delayed) covariate has statistically significant effect. An
increase of 1 unit in New Vaccination (delayed) increases Death Cases
Order - Wave 3 by 0.0004461 units, assuming all other covariates stay
constant. This represents a change of more than 3.868e-05 standard
deviations (SD[Death Cases Order - Wave 3]= 11.53).
The GDP per
Capita covariate has statistically significant effect. An increase of 1
unit in GDP per Capita decreases Death Cases Order - Wave 3 by 0.09225
units, assuming all other covariates stay constant. This represents a
change of more than 0.008 standard deviations (SD[Death Cases Order -
Wave 3]= 11.53).
The Health-system Score covariate has statistically
significant effect. An increase of 1 unit in Health-system Score
decreases Death Cases Order - Wave 3 by 0.7155 units, assuming all other
covariates stay constant. This represents a change of more than 0.06205
standard deviations (SD[Death Cases Order - Wave 3]= 11.53).
The
Immigration Percentage covariate has statistically significant effect.
An increase of 1 unit in Immigration Percentage decreases Death Cases
Order - Wave 3 by 0.2515 units, assuming all other covariates stay
constant. This represents a change of more than 0.02181 standard
deviations (SD[Death Cases Order - Wave 3]= 11.53).
Wave 4 interpretation
OLS Linear regression was used to analyze the effects on Death Cases Order - Wave 4.relative_aligned_excess_waves_reg.png
p1 <- wl_plot_coef (model = m_1[[1]], covs = cov_12, palette = "Color")
p2 <- wl_plot_coef (model = m_2[[1]], covs = cov_12, palette = "Color")
p3 <- wl_plot_coef (model = m_3[[1]], covs = cov_34, palette = "Color")
p4 <- wl_plot_coef (model = m_4[[1]], covs = cov_34, palette = "Color")
p <- ggarrange(p1, p2, p3, p4,
labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4"),
align = "hv", font.label = list(size = 10, face = "bold"),
vjust = 2.5, hjust = -3.5, ncol = 2, nrow = 2)
wl_ggsave("figures/relative_aligned_excess_waves_reg.png", plot = p, height=130)
relative_aligned_gender_coef_summary.png
title1 <- textGrob(names(wl_dependents())[1], gp = gpar(fontsize = 14))
title2 <- textGrob(names(wl_dependents())[2], gp = gpar(fontsize = 14))
title3 <- textGrob(names(wl_dependents())[3], gp = gpar(fontsize = 14))
title4 <- textGrob("Leader Gender Coefficient",gp = gpar(fontsize = 14))
tblank <- textGrob(" ",gp = gpar(fontsize = 14))
p <- ggarrange(title1, title2, title3,
p_cases, p_deaths, p_excess,
tblank,title4, tblank,
font.label = list(size = 10, face = "bold"),
heights = c(0.1, 1, 0.1),
ncol = 3, nrow = 3)
wl_ggsave("figures/relative_aligned_gender_coef_summary.png", plot = p, width=250)
cov_f <- wl_covariates(cov_group = "Capacity covariates")
m_fc <- wl_wave_regression(
db_type = "Weekly", y_name = wl_dependents()[1], x_var = cov_f,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "calendar", waves = c("All_C"))
m_fd <- wl_wave_regression(
db_type = "Weekly", y_name = wl_dependents()[2], x_var = cov_f,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("All_D"))
m_fe <- wl_wave_regression(
db_type = "Weekly", y_name = wl_dependents()[3], x_var = cov_f,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("All_D"))
capacity_reg.tex
#>
#> -------------------------------------------------------------------------------
#> New Infection Cases New Death Cases Excess Mortality
#> (1) (2) (3)
#> -------------------------------------------------------------------------------
#> Leader Gender[female] -49.960*** -1.033*** -1.857
#> (9.692) (0.171) (1.014)
#> Leader Age -0.903** -0.030*** -0.027
#> (0.323) (0.006) (0.037)
#> Stringency Index (delayed) 0.615*** 0.013*** -0.176***
#> (0.165) (0.003) (0.018)
#> New Vaccination (delayed) 0.003* -0.0001*** -0.0002
#> (0.001) (0.00002) (0.0001)
#> Democracy Score -17.250* 0.162 1.347
#> (7.981) (0.141) (0.930)
#> Population Size 0.098 0.005*** 0.022***
#> (0.062) (0.001) (0.007)
#> Urbanization Percentage 0.361 -0.013** -0.168***
#> (0.259) (0.005) (0.035)
#> Immigration Percentage 0.990 -0.042*** -0.275***
#> (0.531) (0.009) (0.056)
#> State capacity -11.646 0.200 -6.744***
#> (8.221) (0.144) (1.084)
#> N 4,018 4,505 3,279
#> R2 0.019 0.042 0.128
#> Adjusted R2 0.016 0.040 0.126
#> -------------------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
Capacity: New Infections interpretation
OLS Linear regression was used to analyze the effects on New
Infection Cases.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
New Infection Cases decreases by 49.96 units assuming all other
covariates stay constant. This represents a change of more than 0.2633
standard deviations (SDNew Infection
Cases= 189.7).
The Leader Age covariate has statistically
significant effect. An increase of 1 unit in Leader Age decreases New
Infection Cases by 0.9027 units, assuming all other covariates stay
constant. This represents a change of more than 0.004758 standard
deviations (SDNew Infection Cases=
189.7).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
increases New Infection Cases by 0.6148 units, assuming all other
covariates stay constant. This represents a change of more than 0.003241
standard deviations (SDNew Infection
Cases= 189.7).
The New Vaccination (delayed) covariate has
statistically significant effect. An increase of 1 unit in New
Vaccination (delayed) increases New Infection Cases by 0.002649 units,
assuming all other covariates stay constant. This represents a change of
more than 1.396e-05 standard deviations (SDNew Infection Cases= 189.7).
The
Democracy Score covariate has statistically significant effect. An
increase of 1 unit in Democracy Score decreases New Infection Cases by
17.25 units, assuming all other covariates stay constant. This
represents a change of more than 0.09092 standard deviations (SDNew Infection Cases= 189.7).
Capacity: New Deaths interpretation
OLS Linear regression was used to analyze the effects on New Death
Cases.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, New Death
Cases decreases by 1.033 units assuming all other covariates stay
constant. This represents a change of more than 0.2939 standard
deviations (SDNew Death Cases=
3.516).
The Leader Age covariate has statistically significant
effect. An increase of 1 unit in Leader Age decreases New Death Cases by
0.02971 units, assuming all other covariates stay constant. This
represents a change of more than 0.00845 standard deviations (SDNew Death Cases= 3.516).
The Stringency
Index (delayed) covariate has statistically significant effect. An
increase of 1 unit in Stringency Index (delayed) increases New Death
Cases by 0.01304 units, assuming all other covariates stay constant.
This represents a change of more than 0.003709 standard deviations (SDNew Death Cases= 3.516).
The New
Vaccination (delayed) covariate has statistically significant effect. An
increase of 1 unit in New Vaccination (delayed) decreases New Death
Cases by 8.837e-05 units, assuming all other covariates stay constant.
This represents a change of more than 2.513e-05 standard deviations
(SDNew Death Cases= 3.516).
The
Population Size covariate has statistically significant effect. An
increase of 1 unit in Population Size increases New Death Cases by
0.004591 units, assuming all other covariates stay constant. This
represents a change of more than 0.001306 standard deviations (SDNew Death Cases= 3.516).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage decreases New Death
Cases by 0.01297 units, assuming all other covariates stay constant.
This represents a change of more than 0.00369 standard deviations (SDNew Death Cases= 3.516).
The Immigration
Percentage covariate has statistically significant effect. An increase
of 1 unit in Immigration Percentage decreases New Death Cases by 0.04244
units, assuming all other covariates stay constant. This represents a
change of more than 0.01207 standard deviations (SDNew Death Cases= 3.516).
Capacity: Excess Mortality interpretation
OLS Linear regression was used to analyze the effects on Excess Mortality.capacity_full_reg.png
p_fc <- wl_plot_coef (model = m_fc[[1]], cov_f, palette = "Color")
p_fd <- wl_plot_coef (model = m_fd[[1]], cov_f, palette = "Color")
p_fe <- wl_plot_coef (model = m_fe[[1]], cov_f, palette = "Color")
p <- ggarrange(p_fc, p_fd, p_fe,
labels = names(wl_dependents()),
align = "hv", font.label = list(size = 10, face = "bold"),
hjust = -0.15, ncol = 3, nrow = 1)
wl_ggsave("figures/capacity_full_reg.png", plot = p, width=250)
dep <- wl_dependents()[1]
cov_34f <- wl_covariates(cov_group = "Capacity covariates")
cov_12 <- wl_setdiff(cov_34f, c("new_vaccinations_per_mil_delayed"))
m_12 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "calendar", waves = c("Wave_1C", "Wave_2C"))
m_34 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34f,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "calendar", waves = c("Wave_3C", "Wave_4C"))
m_f <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34f,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "calendar", waves = c("All_C"))
capacity_cases_reg.tex
#>
#> ----------------------------------------------------------------------------------
#> Wave 1 Wave 2 Wave 3 Wave 4 Full
#> (1) (2) (3) (4) (5)
#> ----------------------------------------------------------------------------------
#> Leader Gender[female] -13.932** -98.362*** -46.504* -29.980 -49.960***
#> (4.368) (20.705) (23.110) (17.574) (9.692)
#> Leader Age -0.166 1.162 -2.792*** -1.574** -0.903**
#> (0.162) (0.671) (0.722) (0.605) (0.323)
#> Stringency Index (delayed) -0.121* 2.030*** 2.469*** -1.913*** 0.615***
#> (0.050) (0.402) (0.525) (0.435) (0.165)
#> New Vaccination (delayed) 0.014*** -0.006** 0.003*
#> (0.003) (0.002) (0.001)
#> Democracy Score -8.009* -32.595* -100.984*** 1.146 -17.250*
#> (3.985) (16.225) (18.234) (15.263) (7.981)
#> Population Size 0.120*** 0.129 -0.106 0.089 0.098
#> (0.026) (0.128) (0.143) (0.120) (0.062)
#> Urbanization Percentage -0.105 -2.476*** 2.417*** 1.846*** 0.361
#> (0.129) (0.534) (0.587) (0.478) (0.259)
#> Immigration Percentage 0.459 -1.077 -3.768** 5.960*** 0.990
#> (0.240) (1.116) (1.217) (0.991) (0.531)
#> State capacity 6.325 104.774*** -65.859*** -103.750*** -11.646
#> (4.164) (16.871) (18.640) (15.883) (8.221)
#> N 343 1,225 784 980 4,018
#> R2 0.182 0.088 0.148 0.114 0.019
#> Adjusted R2 0.162 0.082 0.138 0.106 0.016
#> ----------------------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
Wave 1 interpretation
OLS Linear regression was used to analyze the effects on New
Infection Cases.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
New Infection Cases decreases by 13.93 units assuming all other
covariates stay constant. This represents a change of more than 0.4413
standard deviations (SDNew Infection
Cases= 31.57).
The Stringency Index (delayed) covariate has
statistically significant effect. An increase of 1 unit in Stringency
Index (delayed) decreases New Infection Cases by 0.1209 units, assuming
all other covariates stay constant. This represents a change of more
than 0.00383 standard deviations (SDNew
Infection Cases= 31.57).
The Democracy Score covariate has
statistically significant effect. An increase of 1 unit in Democracy
Score decreases New Infection Cases by 8.009 units, assuming all other
covariates stay constant. This represents a change of more than 0.2537
standard deviations (SDNew Infection
Cases= 31.57).
The Population Size covariate has statistically
significant effect. An increase of 1 unit in Population Size increases
New Infection Cases by 0.1199 units, assuming all other covariates stay
constant. This represents a change of more than 0.003799 standard
deviations (SDNew Infection Cases=
31.57).
Wave 2 interpretation
OLS Linear regression was used to analyze the effects on New
Infection Cases.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
New Infection Cases decreases by 98.36 units assuming all other
covariates stay constant. This represents a change of more than 0.4379
standard deviations (SDNew Infection
Cases= 224.6).
The Stringency Index (delayed) covariate has
statistically significant effect. An increase of 1 unit in Stringency
Index (delayed) increases New Infection Cases by 2.03 units, assuming
all other covariates stay constant. This represents a change of more
than 0.009036 standard deviations (SDNew
Infection Cases= 224.6).
The Democracy Score covariate has
statistically significant effect. An increase of 1 unit in Democracy
Score decreases New Infection Cases by 32.59 units, assuming all other
covariates stay constant. This represents a change of more than 0.1451
standard deviations (SDNew Infection
Cases= 224.6).
The Urbanization Percentage covariate has
statistically significant effect. An increase of 1 unit in Urbanization
Percentage decreases New Infection Cases by 2.476 units, assuming all
other covariates stay constant. This represents a change of more than
0.01102 standard deviations (SDNew
Infection Cases= 224.6).
The State capacity covariate has
statistically significant effect. An increase of 1 unit in State
capacity increases New Infection Cases by 104.8 units, assuming all
other covariates stay constant. This represents a change of more than
0.4664 standard deviations (SDNew
Infection Cases= 224.6).
Wave 3 interpretation
OLS Linear regression was used to analyze the effects on New
Infection Cases.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
New Infection Cases decreases by 46.5 units assuming all other
covariates stay constant. This represents a change of more than 0.2293
standard deviations (SDNew Infection
Cases= 202.8).
The Leader Age covariate has statistically
significant effect. An increase of 1 unit in Leader Age decreases New
Infection Cases by 2.792 units, assuming all other covariates stay
constant. This represents a change of more than 0.01377 standard
deviations (SDNew Infection Cases=
202.8).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
increases New Infection Cases by 2.469 units, assuming all other
covariates stay constant. This represents a change of more than 0.01218
standard deviations (SDNew Infection
Cases= 202.8).
The New Vaccination (delayed) covariate has
statistically significant effect. An increase of 1 unit in New
Vaccination (delayed) increases New Infection Cases by 0.01377 units,
assuming all other covariates stay constant. This represents a change of
more than 6.791e-05 standard deviations (SDNew Infection Cases= 202.8).
The
Democracy Score covariate has statistically significant effect. An
increase of 1 unit in Democracy Score decreases New Infection Cases by
101 units, assuming all other covariates stay constant. This represents
a change of more than 0.498 standard deviations (SDNew Infection Cases= 202.8).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage increases New Infection
Cases by 2.417 units, assuming all other covariates stay constant. This
represents a change of more than 0.01192 standard deviations (SDNew Infection Cases= 202.8).
The
Immigration Percentage covariate has statistically significant effect.
An increase of 1 unit in Immigration Percentage decreases New Infection
Cases by 3.768 units, assuming all other covariates stay constant. This
represents a change of more than 0.01858 standard deviations (SDNew Infection Cases= 202.8).
The
State capacity covariate has statistically significant effect. An
increase of 1 unit in State capacity decreases New Infection Cases by
65.86 units, assuming all other covariates stay constant. This
represents a change of more than 0.3248 standard deviations (SDNew Infection Cases= 202.8).
Wave 4 interpretation
OLS Linear regression was used to analyze the effects on New
Infection Cases.
The Leader Age covariate has statistically
significant effect. An increase of 1 unit in Leader Age decreases New
Infection Cases by 1.574 units, assuming all other covariates stay
constant. This represents a change of more than 0.008383 standard
deviations (SDNew Infection Cases=
187.8).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
decreases New Infection Cases by 1.913 units, assuming all other
covariates stay constant. This represents a change of more than 0.01019
standard deviations (SDNew Infection
Cases= 187.8).
The New Vaccination (delayed) covariate has
statistically significant effect. An increase of 1 unit in New
Vaccination (delayed) decreases New Infection Cases by 0.006237 units,
assuming all other covariates stay constant. This represents a change of
more than 3.322e-05 standard deviations (SDNew Infection Cases= 187.8).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage increases New Infection
Cases by 1.846 units, assuming all other covariates stay constant. This
represents a change of more than 0.009832 standard deviations (SDNew Infection Cases= 187.8).
The
Immigration Percentage covariate has statistically significant effect.
An increase of 1 unit in Immigration Percentage increases New Infection
Cases by 5.96 units, assuming all other covariates stay constant. This
represents a change of more than 0.03174 standard deviations (SDNew Infection Cases= 187.8).
The
State capacity covariate has statistically significant effect. An
increase of 1 unit in State capacity decreases New Infection Cases by
103.7 units, assuming all other covariates stay constant. This
represents a change of more than 0.5526 standard deviations (SDNew Infection Cases= 187.8).
Full period interpretation
OLS Linear regression was used to analyze the effects on New Infection Cases.capacity_cases_waves_reg.png
#
p1 <- wl_plot_coef (model = m_12[[1]], covs = cov_12, palette = "Color")
p2 <- wl_plot_coef (model = m_12[[2]], covs = cov_12, palette = "Color")
p3 <- wl_plot_coef (model = m_34[[1]], covs = cov_34f, palette = "Color")
p4 <- wl_plot_coef (model = m_34[[2]], covs = cov_34f, palette = "Color")
p <- ggarrange(p1, p2, p3, p4,
labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4"),
align = "hv", font.label = list(size = 10, face = "bold"),
vjust = 2.5, hjust = -3.5, ncol = 2, nrow = 2)
wl_ggsave("figures/capacity_cases_waves_reg.png", plot = p, height=130)
dep <- wl_dependents()[2]
cov_34f <- wl_covariates(cov_group = "Capacity covariates")
cov_12 <- wl_setdiff(cov_34f, c("new_vaccinations_per_mil_delayed"))
m_12 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("Wave_1D", "Wave_2D"))
m_34 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34f,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("Wave_3D", "Wave_4D"))
m_f <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34f,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("All_D"))
capacity_deaths_reg.tex
#>
#> ------------------------------------------------------------------------------
#> Wave 1 Wave 2 Wave 3 Wave 4 Full
#> (1) (2) (3) (4) (5)
#> ------------------------------------------------------------------------------
#> Leader Gender[female] -1.776*** -1.874*** -0.743* -0.268 -1.033***
#> (0.332) (0.424) (0.360) (0.289) (0.171)
#> Leader Age -0.017 0.013 -0.068*** -0.027** -0.030***
#> (0.012) (0.014) (0.011) (0.010) (0.006)
#> Stringency Index (delayed) -0.015*** 0.048*** 0.060*** 0.013 0.013***
#> (0.004) (0.008) (0.008) (0.007) (0.003)
#> New Vaccination (delayed) 0.00001 -0.0003*** -0.0001***
#> (0.00004) (0.00003) (0.00002)
#> Democracy Score -0.935** -0.771* 0.118 0.952*** 0.162
#> (0.288) (0.333) (0.284) (0.244) (0.141)
#> Population Size 0.010*** 0.005* 0.004 -0.001 0.005***
#> (0.002) (0.003) (0.002) (0.002) (0.001)
#> Urbanization Percentage 0.006 -0.079*** 0.053*** -0.033*** -0.013**
#> (0.009) (0.011) (0.009) (0.008) (0.005)
#> Immigration Percentage 0.037* -0.089*** -0.117*** -0.044** -0.042***
#> (0.018) (0.023) (0.019) (0.016) (0.009)
#> State capacity 0.164 2.515*** -1.279*** 0.136 0.200
#> (0.301) (0.340) (0.292) (0.260) (0.144)
#> N 585 1,078 931 1,274 4,505
#> R2 0.173 0.128 0.217 0.181 0.042
#> Adjusted R2 0.161 0.121 0.210 0.175 0.040
#> ------------------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
Wave 1 interpretation
OLS Linear regression was used to analyze the effects on New Death
Cases.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, New Death
Cases decreases by 1.776 units assuming all other covariates stay
constant. This represents a change of more than 0.7078 standard
deviations (SDNew Death Cases=
2.51).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
decreases New Death Cases by 0.01472 units, assuming all other
covariates stay constant. This represents a change of more than 0.005865
standard deviations (SDNew Death Cases=
2.51).
The Democracy Score covariate has statistically significant
effect. An increase of 1 unit in Democracy Score decreases New Death
Cases by 0.935 units, assuming all other covariates stay constant. This
represents a change of more than 0.3726 standard deviations (SDNew Death Cases= 2.51).
The Population
Size covariate has statistically significant effect. An increase of 1
unit in Population Size increases New Death Cases by 0.01008 units,
assuming all other covariates stay constant. This represents a change of
more than 0.004015 standard deviations (SDNew
Death Cases= 2.51).
The Immigration Percentage covariate has
statistically significant effect. An increase of 1 unit in Immigration
Percentage increases New Death Cases by 0.03709 units, assuming all
other covariates stay constant. This represents a change of more than
0.01478 standard deviations (SDNew Death
Cases= 2.51).
Wave 2 interpretation
OLS Linear regression was used to analyze the effects on New Death
Cases.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, New Death
Cases decreases by 1.874 units assuming all other covariates stay
constant. This represents a change of more than 0.432 standard
deviations (SDNew Death Cases=
4.338).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
increases New Death Cases by 0.04829 units, assuming all other
covariates stay constant. This represents a change of more than 0.01113
standard deviations (SDNew Death Cases=
4.338).
The Democracy Score covariate has statistically significant
effect. An increase of 1 unit in Democracy Score decreases New Death
Cases by 0.7714 units, assuming all other covariates stay constant. This
represents a change of more than 0.1778 standard deviations (SDNew Death Cases= 4.338).
The Population
Size covariate has statistically significant effect. An increase of 1
unit in Population Size increases New Death Cases by 0.00519 units,
assuming all other covariates stay constant. This represents a change of
more than 0.001196 standard deviations (SDNew
Death Cases= 4.338).
The Urbanization Percentage covariate has
statistically significant effect. An increase of 1 unit in Urbanization
Percentage decreases New Death Cases by 0.0785 units, assuming all other
covariates stay constant. This represents a change of more than 0.01809
standard deviations (SDNew Death Cases=
4.338).
The Immigration Percentage covariate has statistically
significant effect. An increase of 1 unit in Immigration Percentage
decreases New Death Cases by 0.08913 units, assuming all other
covariates stay constant. This represents a change of more than 0.02054
standard deviations (SDNew Death Cases=
4.338).
The State capacity covariate has statistically significant
effect. An increase of 1 unit in State capacity increases New Death
Cases by 2.515 units, assuming all other covariates stay constant. This
represents a change of more than 0.5796 standard deviations (SDNew Death Cases= 4.338).
Wave 3 interpretation
OLS Linear regression was used to analyze the effects on New Death
Cases.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, New Death
Cases decreases by 0.7428 units assuming all other covariates stay
constant. This represents a change of more than 0.2072 standard
deviations (SDNew Death Cases=
3.586).
The Leader Age covariate has statistically significant
effect. An increase of 1 unit in Leader Age decreases New Death Cases by
0.06766 units, assuming all other covariates stay constant. This
represents a change of more than 0.01887 standard deviations (SDNew Death Cases= 3.586).
The Stringency
Index (delayed) covariate has statistically significant effect. An
increase of 1 unit in Stringency Index (delayed) increases New Death
Cases by 0.06 units, assuming all other covariates stay constant. This
represents a change of more than 0.01674 standard deviations (SDNew Death Cases= 3.586).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage increases New Death
Cases by 0.05282 units, assuming all other covariates stay constant.
This represents a change of more than 0.01473 standard deviations (SDNew Death Cases= 3.586).
The Immigration
Percentage covariate has statistically significant effect. An increase
of 1 unit in Immigration Percentage decreases New Death Cases by 0.1166
units, assuming all other covariates stay constant. This represents a
change of more than 0.03251 standard deviations (SDNew Death Cases= 3.586).
The State
capacity covariate has statistically significant effect. An increase of
1 unit in State capacity decreases New Death Cases by 1.279 units,
assuming all other covariates stay constant. This represents a change of
more than 0.3567 standard deviations (SDNew
Death Cases= 3.586).
Wave 4 interpretation
OLS Linear regression was used to analyze the effects on New Death
Cases.
The Leader Age covariate has statistically significant
effect. An increase of 1 unit in Leader Age decreases New Death Cases by
0.02668 units, assuming all other covariates stay constant. This
represents a change of more than 0.007754 standard deviations (SDNew Death Cases= 3.441).
The New
Vaccination (delayed) covariate has statistically significant effect. An
increase of 1 unit in New Vaccination (delayed) decreases New Death
Cases by 0.0002866 units, assuming all other covariates stay constant.
This represents a change of more than 8.33e-05 standard deviations (SDNew Death Cases= 3.441).
The Democracy
Score covariate has statistically significant effect. An increase of 1
unit in Democracy Score increases New Death Cases by 0.9517 units,
assuming all other covariates stay constant. This represents a change of
more than 0.2766 standard deviations (SDNew
Death Cases= 3.441).
The Urbanization Percentage covariate has
statistically significant effect. An increase of 1 unit in Urbanization
Percentage decreases New Death Cases by 0.0328 units, assuming all other
covariates stay constant. This represents a change of more than 0.009534
standard deviations (SDNew Death Cases=
3.441).
The Immigration Percentage covariate has statistically
significant effect. An increase of 1 unit in Immigration Percentage
decreases New Death Cases by 0.04399 units, assuming all other
covariates stay constant. This represents a change of more than 0.01279
standard deviations (SDNew Death Cases=
3.441).
Full period interpretation
OLS Linear regression was used to analyze the effects on New Death Cases.capacity_deaths_waves_reg.png
p1 <- wl_plot_coef (model = m_12[[1]], covs = cov_12, palette = "Color")
p2 <- wl_plot_coef (model = m_12[[2]], covs = cov_12, palette = "Color")
p3 <- wl_plot_coef (model = m_34[[1]], covs = cov_34f, palette = "Color")
p4 <- wl_plot_coef (model = m_34[[2]], covs = cov_34f, palette = "Color")
p <- ggarrange(p1, p2, p3, p4,
labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4"),
align = "hv", font.label = list(size = 10, face = "bold"),
vjust = 2.5, hjust = -3.5, ncol = 2, nrow = 2)
wl_ggsave("figures/capacity_deaths_waves_reg.png", plot = p, height=130)
dep <- wl_dependents()[3]
cov_34f <- wl_covariates(cov_group = "Capacity covariates")
cov_12 <- wl_setdiff(cov_34f, c("new_vaccinations_per_mil_delayed"))
m_12 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("Wave_1D", "Wave_2D"))
m_34 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34f,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("Wave_3D", "Wave_4D"))
m_f <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34f,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("All_D"))
capacity_excess_reg.tex
#>
#> ------------------------------------------------------------------------------
#> Wave 1 Wave 2 Wave 3 Wave 4 Full
#> (1) (2) (3) (4) (5)
#> ------------------------------------------------------------------------------
#> Leader Gender[female] -14.728*** -5.053* 0.950 3.474* -1.857
#> (2.853) (2.565) (1.676) (1.727) (1.014)
#> Leader Age -0.011 0.226* -0.141* -0.052 -0.027
#> (0.103) (0.091) (0.059) (0.065) (0.037)
#> Stringency Index (delayed) -0.114*** -0.284*** -0.013 -0.068 -0.176***
#> (0.030) (0.054) (0.046) (0.050) (0.018)
#> New Vaccination (delayed) 0.0005* -0.002*** -0.0002
#> (0.0002) (0.0002) (0.0001)
#> Democracy Score -12.220*** -1.323 0.900 5.313** 1.347
#> (2.551) (2.246) (1.548) (1.649) (0.930)
#> Population Size 0.058*** 0.037* -0.005 -0.009 0.022***
#> (0.016) (0.016) (0.011) (0.012) (0.007)
#> Urbanization Percentage 0.280** -0.595*** 0.149** -0.222*** -0.168***
#> (0.096) (0.085) (0.057) (0.060) (0.035)
#> Immigration Percentage -0.115 -0.438** -0.387*** -0.264** -0.275***
#> (0.149) (0.136) (0.095) (0.099) (0.056)
#> State capacity 1.169 -2.675 -16.807*** -7.100*** -6.744***
#> (3.036) (2.603) (1.815) (1.946) (1.084)
#> N 450 780 663 909 3,279
#> R2 0.174 0.201 0.311 0.295 0.128
#> Adjusted R2 0.159 0.192 0.302 0.288 0.126
#> ------------------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
Wave 1 interpretation
OLS Linear regression was used to analyze the effects on Excess
Mortality.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, Excess
Mortality decreases by 14.73 units assuming all other covariates stay
constant. This represents a change of more than 0.7698 standard
deviations (SDExcess Mortality=
19.13).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
decreases Excess Mortality by 0.1143 units, assuming all other
covariates stay constant. This represents a change of more than 0.005973
standard deviations (SDExcess Mortality=
19.13).
The Democracy Score covariate has statistically significant
effect. An increase of 1 unit in Democracy Score decreases Excess
Mortality by 12.22 units, assuming all other covariates stay constant.
This represents a change of more than 0.6387 standard deviations (SDExcess Mortality= 19.13).
The
Population Size covariate has statistically significant effect. An
increase of 1 unit in Population Size increases Excess Mortality by
0.05781 units, assuming all other covariates stay constant. This
represents a change of more than 0.003021 standard deviations (SDExcess Mortality= 19.13).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage increases Excess
Mortality by 0.2805 units, assuming all other covariates stay constant.
This represents a change of more than 0.01466 standard deviations (SDExcess Mortality= 19.13).
Wave 2 interpretation
OLS Linear regression was used to analyze the effects on Excess
Mortality.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, Excess
Mortality decreases by 5.053 units assuming all other covariates stay
constant. This represents a change of more than 0.2022 standard
deviations (SDExcess Mortality=
24.99).
The Leader Age covariate has statistically significant
effect. An increase of 1 unit in Leader Age increases Excess Mortality
by 0.2264 units, assuming all other covariates stay constant. This
represents a change of more than 0.00906 standard deviations (SDExcess Mortality= 24.99).
The
Stringency Index (delayed) covariate has statistically significant
effect. An increase of 1 unit in Stringency Index (delayed) decreases
Excess Mortality by 0.2845 units, assuming all other covariates stay
constant. This represents a change of more than 0.01139 standard
deviations (SDExcess Mortality=
24.99).
The Population Size covariate has statistically significant
effect. An increase of 1 unit in Population Size increases Excess
Mortality by 0.03732 units, assuming all other covariates stay constant.
This represents a change of more than 0.001494 standard deviations (SDExcess Mortality= 24.99).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage decreases Excess
Mortality by 0.5955 units, assuming all other covariates stay constant.
This represents a change of more than 0.02383 standard deviations (SDExcess Mortality= 24.99).
The
Immigration Percentage covariate has statistically significant effect.
An increase of 1 unit in Immigration Percentage decreases Excess
Mortality by 0.4376 units, assuming all other covariates stay constant.
This represents a change of more than 0.01751 standard deviations (SDExcess Mortality= 24.99).
Wave 3 interpretation
OLS Linear regression was used to analyze the effects on Excess
Mortality.
The Leader Age covariate has statistically significant
effect. An increase of 1 unit in Leader Age decreases Excess Mortality
by 0.1409 units, assuming all other covariates stay constant. This
represents a change of more than 0.00844 standard deviations (SDExcess Mortality= 16.69).
The New
Vaccination (delayed) covariate has statistically significant effect. An
increase of 1 unit in New Vaccination (delayed) increases Excess
Mortality by 0.0004678 units, assuming all other covariates stay
constant. This represents a change of more than 2.803e-05 standard
deviations (SDExcess Mortality=
16.69).
The Urbanization Percentage covariate has statistically
significant effect. An increase of 1 unit in Urbanization Percentage
increases Excess Mortality by 0.1487 units, assuming all other
covariates stay constant. This represents a change of more than 0.008912
standard deviations (SDExcess Mortality=
16.69).
The Immigration Percentage covariate has statistically
significant effect. An increase of 1 unit in Immigration Percentage
decreases Excess Mortality by 0.3872 units, assuming all other
covariates stay constant. This represents a change of more than 0.0232
standard deviations (SDExcess Mortality=
16.69).
The State capacity covariate has statistically significant
effect. An increase of 1 unit in State capacity decreases Excess
Mortality by 16.81 units, assuming all other covariates stay constant.
This represents a change of more than 1.007 standard deviations (SDExcess Mortality= 16.69).
Wave 4 interpretation
OLS Linear regression was used to analyze the effects on Excess
Mortality.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, Excess
Mortality increases by 3.474 units assuming all other covariates stay
constant. This represents a change of more than 0.1735 standard
deviations (SDExcess Mortality=
20.02).
The New Vaccination (delayed) covariate has statistically
significant effect. An increase of 1 unit in New Vaccination (delayed)
decreases Excess Mortality by 0.001816 units, assuming all other
covariates stay constant. This represents a change of more than
9.073e-05 standard deviations (SDExcess
Mortality= 20.02).
The Democracy Score covariate has
statistically significant effect. An increase of 1 unit in Democracy
Score increases Excess Mortality by 5.313 units, assuming all other
covariates stay constant. This represents a change of more than 0.2654
standard deviations (SDExcess Mortality=
20.02).
The Urbanization Percentage covariate has statistically
significant effect. An increase of 1 unit in Urbanization Percentage
decreases Excess Mortality by 0.222 units, assuming all other covariates
stay constant. This represents a change of more than 0.01109 standard
deviations (SDExcess Mortality=
20.02).
The Immigration Percentage covariate has statistically
significant effect. An increase of 1 unit in Immigration Percentage
decreases Excess Mortality by 0.2641 units, assuming all other
covariates stay constant. This represents a change of more than 0.0132
standard deviations (SDExcess Mortality=
20.02).
The State capacity covariate has statistically significant
effect. An increase of 1 unit in State capacity decreases Excess
Mortality by 7.1 units, assuming all other covariates stay constant.
This represents a change of more than 0.3547 standard deviations (SDExcess Mortality= 20.02).
Full period interpretation
OLS Linear regression was used to analyze the effects on Excess Mortality.capacity_excess_waves_reg.png
p1 <- wl_plot_coef (model = m_12[[1]], covs = cov_12, palette = "Color")
p2 <- wl_plot_coef (model = m_12[[2]], covs = cov_12, palette = "Color")
p3 <- wl_plot_coef (model = m_34[[1]], covs = cov_34f, palette = "Color")
p4 <- wl_plot_coef (model = m_34[[2]], covs = cov_34f, palette = "Color")
p <- ggarrange(p1, p2, p3, p4,
labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4"),
align = "hv", font.label = list(size = 10, face = "bold"),
vjust = 2.5, hjust = -3.5, ncol = 2, nrow = 2)
wl_ggsave("figures/capacity_excess_waves_reg.png", plot = p, height=130)
# Important:
# change saverds to TRUE in order to re-calculate all regression models
# change saverds to FALSE in order to save time when re-running
models <- wl_polls_ml_olm(out = NULL, saverds = FALSE)
pub_support_reg.tex
s1q1 | s2q1 | s3q1 | s1q2 | s2q2 | s3q2 | |
---|---|---|---|---|---|---|
Totally oppose|Tend to oppose | -19.7*** | -10.3*** | -5.53*** | |||
Tend to oppose|Tend to support | -18.3*** | -8.78*** | -4.02*** | |||
Tend to support|Totally support | -15.9*** | -6.31*** | -1.55 | |||
pm_genderFemale | -0.0773 | 0.315*** | 0.34*** | 0.695*** | 1.05*** | 0.964*** |
pm_age | -0.0165*** | -0.00382* | -0.00676*** | -0.00462** | -0.00177 | 0.00577*** |
stringency_delayed | 0.00504 | 0.00914*** | 0.015*** | 0.0275*** | 0.0175*** | 0.0207*** |
fh_score | -1.24*** | -1*** | -0.732*** | -0.818*** | -0.888*** | -0.197** |
gdp_per_capita | 0.0569*** | 0.0108*** | 0.0129*** | 0.0273*** | -0.00386 | 0.0138*** |
lpi_health_score | -0.259*** | -0.107*** | -0.0612*** | -0.145*** | -0.0824*** | 0.0051 |
population | -0.00248* | -7.85e-05 | -0.00221* | -0.0209*** | -0.0123*** | -0.0132*** |
wdi_urbanization | 0.0159*** | 0.0167*** | 0.0108*** | 0.00219 | 0.00293 | 0.00167 |
immigrants_pct | -0.047*** | 0.0102** | 0.00372 | -0.00761 | 0.0301*** | 0.0122*** |
aged_70_older | 0.161*** | -0.0523*** | 0.0201* | 0.0649*** | -0.117*** | 0.0515*** |
Not at all satisfied|Not very satisfied | -11.6*** | -9.96*** | 1.05 | |||
Not very satisfied|Fairly satisfied | -10.2*** | -8.54*** | 2.61** | |||
Fairly satisfied|Very satisfied | -7.92*** | -6.28*** | 5*** | |||
SD (Intercept age_r) | 0.0737 | 0.529 | 0.458 | 0.0748 | 0.434 | 0.5 |
SD (Intercept gender) | 0.064 | 0 | 0.0422 | 0.121 | 0.314 | 0 |
SD (Intercept social_grade) | 0.0265 | 0.0422 | 0.0486 | 0.0652 | 0.0458 | 0.0233 |
SD (Intercept work_status) | 0.101 | 0.107 | 0.0955 | 0.166 | 0.0298 | 0.0999 |
N | 17593 | 20255 | 20177 | 17593 | 20255 | 20177 |
* p < 0.05, ** p < 0.01, *** p < 0.001 | ||||||
pub_support_prob.png
p <- wl_public_support_plot_probs(models)
wl_ggsave("figures/pub_support_prob.png", plot = p, height=50)
cov_if <- wl_covariates(cov_group = "Main coviariates")
cov_if <- c(cov_if[2:length(cov_if)], cov_if[1]) # Re-arrange covariates so we have pm_gender last interaction term for plot_model
interaction <- c("Health System Score x Gender" = "pm_gender*lpi_health_score") #"capacity*pm_gender"
m_ic <- wl_wave_regression(
db_type = "Weekly", y_name = wl_dependents()[1], x_var = cov_if,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "calendar", waves = c("All_C"), interaction=interaction, arrange=FALSE)
m_id <- wl_wave_regression(
db_type = "Weekly", y_name = wl_dependents()[2], x_var = cov_if,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("All_D"), interaction=interaction, arrange=FALSE)
m_ie <- wl_wave_regression(
db_type = "Weekly", y_name = wl_dependents()[3], x_var = cov_if,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("All_D"), interaction=interaction, arrange=FALSE)
effectiveness_health_reg.tex
#>
#> -------------------------------------------------------------------------
#> Infection Cases Death Cases Excess Mortality
#> (1) (2) (3)
#> -------------------------------------------------------------------------
#> Leader Age 0.176 -0.010 0.065
#> (0.308) (0.005) (0.035)
#> Stringency Index (delayed) 0.522*** 0.014*** -0.176***
#> (0.156) (0.003) (0.017)
#> New Vaccination (delayed) 0.001 -0.0001*** -0.0002
#> (0.001) (0.00002) (0.0001)
#> Democracy Score -5.267 0.558*** 2.563**
#> (7.995) (0.138) (0.930)
#> GDP per Capita 0.721* 0.0003 0.056
#> (0.301) (0.005) (0.037)
#> Health-system Score 1.120 -0.037** -0.611***
#> (0.804) (0.014) (0.098)
#> Population Size -0.022 0.002 -0.002
#> (0.062) (0.001) (0.007)
#> Urbanization Percentage 0.205 -0.011** -0.116***
#> (0.244) (0.004) (0.033)
#> Immigration Percentage -0.354 -0.027** -0.339***
#> (0.500) (0.009) (0.054)
#> Population Aged 70 or Older 1.394 0.193*** 0.277*
#> (1.078) (0.019) (0.133)
#> Leader Gender[female] 2,893.188*** 30.518*** 181.131***
#> (252.894) (4.295) (25.250)
#> Health System Score x Gender -36.549*** -0.390*** -2.310***
#> (3.130) (0.053) (0.314)
#> N 4,337 4,864 3,571
#> R2 0.057 0.090 0.151
#> Adjusted R2 0.054 0.088 0.148
#> -------------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
effectiveness_health_system_score.png
x_label <- x_label <- wl_replace_by_name(cov_if, "lpi_health_score")
p_ic <- wl_plot_interaction(m_ic[[1]], interaction, "Color") +
theme(legend.position = "none") + labs(title = "") +
ylab(names(wl_dependents()[1])) + xlab(x_label)
p_id <- wl_plot_interaction(m_id[[1]], interaction, "Color") +
theme(legend.position = "none") + labs(title = "") +
ylab(names(wl_dependents()[2])) + xlab(x_label)
p_ie <- wl_plot_interaction(m_ie[[1]], interaction, "Color") +
theme(legend.position = c(0.7, 0.8)) + labs(title = "") +
ylab(names(wl_dependents()[3])) + xlab(x_label)
p <- ggarrange(p_ic, p_id, p_ie,
labels = c("New Infection Cases", "New Death Cases", "Excess Mortality"),
font.label = list(size = 10, face = "bold"),
ncol = 3, nrow = 1)
wl_ggsave("figures/effectiveness_health_system_score.png", plot = p)
cov_if <- wl_covariates(cov_group = "Capacity covariates")
cov_if <- c(cov_if[2:length(cov_if)], cov_if[1]) # Re-arrange covariates so we have pm_gender last interaction term for plot_model
interaction <- c("State Capacity x Gender" = "pm_gender*capacity")
m_ic <- wl_wave_regression(
db_type = "Weekly", y_name = wl_dependents()[1], x_var = cov_if,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "calendar", waves = c("All_C"), interaction=interaction, arrange=FALSE)
m_id <- wl_wave_regression(
db_type = "Weekly", y_name = wl_dependents()[2], x_var = cov_if,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("All_D"), interaction=interaction, arrange=FALSE)
m_ie <- wl_wave_regression(
db_type = "Weekly", y_name = wl_dependents()[3], x_var = cov_if,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("All_D"), interaction=interaction, arrange=FALSE)
effectiveness_capacity_reg.tex
#>
#> -----------------------------------------------------------------------
#> Infection Cases Death Cases Excess Mortality
#> (1) (2) (3)
#> -----------------------------------------------------------------------
#> Leader Age -0.968** -0.031*** -0.013
#> (0.322) (0.006) (0.037)
#> Stringency Index (delayed) 0.739*** 0.015*** -0.169***
#> (0.166) (0.003) (0.018)
#> New Vaccination (delayed) 0.002* -0.0001*** -0.0002
#> (0.001) (0.00002) (0.0001)
#> Democracy Score -10.146 0.280* 1.640
#> (8.049) (0.142) (0.930)
#> Population Size 0.072 0.004*** 0.019**
#> (0.062) (0.001) (0.007)
#> Urbanization Percentage 0.388 -0.012** -0.161***
#> (0.258) (0.005) (0.035)
#> Immigration Percentage 1.041* -0.042*** -0.306***
#> (0.529) (0.009) (0.056)
#> State capacity -0.146 0.395** -5.005***
#> (8.438) (0.148) (1.151)
#> Leader Gender[female] 181.419*** 2.871*** 19.472***
#> (42.072) (0.733) (4.969)
#> State Capacity x Gender -109.554*** -1.861*** -9.891***
#> (19.389) (0.340) (2.256)
#> N 4,018 4,505 3,279
#> R2 0.026 0.048 0.133
#> Adjusted R2 0.024 0.046 0.131
#> -----------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
effectiveness_state_capacity.png
x_label <- wl_replace_by_name(cov_if, "capacity")
p_ic <- wl_plot_interaction(m_ic[[1]], interaction, "Color") +
theme(legend.position = "none") + labs(title = "") +
ylab(names(wl_dependents()[1])) + xlab(x_label)
p_id <- wl_plot_interaction(m_id[[1]], interaction, "Color") +
theme(legend.position = "none") + labs(title = "") +
ylab(names(wl_dependents()[2])) + xlab(x_label)
p_ie <- wl_plot_interaction(m_ie[[1]], interaction, "Color") +
theme(legend.position = c(0.7, 0.8)) + labs(title = "") +
ylab(names(wl_dependents()[3])) + xlab(x_label)
p <- ggarrange(p_ic, p_id, p_ie,
labels = c("New Infection Cases", "New Death Cases", "Excess Mortality"),
font.label = list(size = 10, face = "bold"),
ncol = 3, nrow = 1)
wl_ggsave("figures/effectiveness_state_capacity.png", plot = p)
dep <- wl_dependents()[1]
cov_34 <- wl_covariates(cov_group = "Main coviariates")
cov_12 <- wl_setdiff(cov_34, c("new_vaccinations_per_mil_delayed"))
m_12 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "aligned", waves = c("Wave_1AC", "Wave_2AC"))
m_34 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "aligned", waves = c("Wave_3AC", "Wave_4AC"))
aligned_cases_reg.tex
#>
#> -------------------------------------------------------------------------
#> Wave 1 Wave 2 Wave 3 Wave 4
#> (1) (2) (3) (4)
#> -------------------------------------------------------------------------
#> Leader Gender[female] -17.383*** -94.776*** -138.459*** -116.154***
#> (5.007) (21.622) (20.628) (29.780)
#> Leader Age 0.487** 0.933 -1.081 -3.578***
#> (0.183) (0.762) (0.683) (1.051)
#> Stringency Index (delayed) 0.049 1.315** 2.570*** -2.735***
#> (0.056) (0.446) (0.494) (0.719)
#> New Vaccination (delayed) -0.004 -0.023***
#> (0.003) (0.003)
#> Democracy Score -20.265*** -35.962 -65.710*** -85.946**
#> (4.618) (19.581) (17.856) (27.058)
#> GDP per Capita 0.313 1.963** -0.003 2.662**
#> (0.180) (0.736) (0.684) (1.026)
#> Health-system Score -1.120** -1.360 -3.209 -5.733*
#> (0.429) (1.914) (1.775) (2.632)
#> Population Size 0.128*** -0.007 -0.363* -0.265
#> (0.033) (0.152) (0.141) (0.213)
#> Urbanization Percentage 0.802*** -2.303*** 2.101*** -0.182
#> (0.142) (0.594) (0.553) (0.826)
#> Immigration Percentage -0.484 0.838 -3.644** -5.165**
#> (0.294) (1.221) (1.146) (1.682)
#> Population Aged 70 or Older -2.286*** 16.916*** 7.950*** 8.290*
#> (0.603) (2.546) (2.334) (3.487)
#> N 630 1,113 1,113 1,113
#> R2 0.171 0.133 0.133 0.127
#> Adjusted R2 0.158 0.125 0.124 0.118
#> -------------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
Wave 1 interpretation
OLS Linear regression was used to analyze the effects on New
Infection Cases.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
New Infection Cases decreases by 17.38 units assuming all other
covariates stay constant. This represents a change of more than 0.4228
standard deviations (SDNew Infection
Cases= 41.12).
The Leader Age covariate has statistically
significant effect. An increase of 1 unit in Leader Age increases New
Infection Cases by 0.4866 units, assuming all other covariates stay
constant. This represents a change of more than 0.01184 standard
deviations (SDNew Infection Cases=
41.12).
The Democracy Score covariate has statistically significant
effect. An increase of 1 unit in Democracy Score decreases New Infection
Cases by 20.26 units, assuming all other covariates stay constant. This
represents a change of more than 0.4929 standard deviations (SDNew Infection Cases= 41.12).
The
Health-system Score covariate has statistically significant effect. An
increase of 1 unit in Health-system Score decreases New Infection Cases
by 1.12 units, assuming all other covariates stay constant. This
represents a change of more than 0.02723 standard deviations (SDNew Infection Cases= 41.12).
The
Population Size covariate has statistically significant effect. An
increase of 1 unit in Population Size increases New Infection Cases by
0.1282 units, assuming all other covariates stay constant. This
represents a change of more than 0.003118 standard deviations (SDNew Infection Cases= 41.12).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage increases New Infection
Cases by 0.8017 units, assuming all other covariates stay constant. This
represents a change of more than 0.0195 standard deviations (SDNew Infection Cases= 41.12).
The
Population Aged 70 or Older covariate has statistically significant
effect. An increase of 1 unit in Population Aged 70 or Older decreases
New Infection Cases by 2.286 units, assuming all other covariates stay
constant. This represents a change of more than 0.0556 standard
deviations (SDNew Infection Cases=
41.12).
Wave 2 interpretation
OLS Linear regression was used to analyze the effects on New
Infection Cases.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
New Infection Cases decreases by 94.78 units assuming all other
covariates stay constant. This represents a change of more than 0.3837
standard deviations (SDNew Infection
Cases= 247).
The Stringency Index (delayed) covariate has
statistically significant effect. An increase of 1 unit in Stringency
Index (delayed) increases New Infection Cases by 1.315 units, assuming
all other covariates stay constant. This represents a change of more
than 0.005325 standard deviations (SDNew
Infection Cases= 247).
The GDP per Capita covariate has
statistically significant effect. An increase of 1 unit in GDP per
Capita increases New Infection Cases by 1.963 units, assuming all other
covariates stay constant. This represents a change of more than 0.007948
standard deviations (SDNew Infection
Cases= 247).
The Urbanization Percentage covariate has
statistically significant effect. An increase of 1 unit in Urbanization
Percentage decreases New Infection Cases by 2.303 units, assuming all
other covariates stay constant. This represents a change of more than
0.009323 standard deviations (SDNew
Infection Cases= 247).
The Population Aged 70 or Older covariate
has statistically significant effect. An increase of 1 unit in
Population Aged 70 or Older increases New Infection Cases by 16.92
units, assuming all other covariates stay constant. This represents a
change of more than 0.06849 standard deviations (SDNew Infection Cases= 247).
Wave 3 interpretation
OLS Linear regression was used to analyze the effects on New
Infection Cases.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
New Infection Cases decreases by 138.5 units assuming all other
covariates stay constant. This represents a change of more than 0.6129
standard deviations (SDNew Infection
Cases= 225.9).
The Stringency Index (delayed) covariate has
statistically significant effect. An increase of 1 unit in Stringency
Index (delayed) increases New Infection Cases by 2.57 units, assuming
all other covariates stay constant. This represents a change of more
than 0.01138 standard deviations (SDNew
Infection Cases= 225.9).
The Democracy Score covariate has
statistically significant effect. An increase of 1 unit in Democracy
Score decreases New Infection Cases by 65.71 units, assuming all other
covariates stay constant. This represents a change of more than 0.2909
standard deviations (SDNew Infection
Cases= 225.9).
The Population Size covariate has statistically
significant effect. An increase of 1 unit in Population Size decreases
New Infection Cases by 0.3629 units, assuming all other covariates stay
constant. This represents a change of more than 0.001607 standard
deviations (SDNew Infection Cases=
225.9).
The Urbanization Percentage covariate has statistically
significant effect. An increase of 1 unit in Urbanization Percentage
increases New Infection Cases by 2.101 units, assuming all other
covariates stay constant. This represents a change of more than 0.009303
standard deviations (SDNew Infection
Cases= 225.9).
The Immigration Percentage covariate has
statistically significant effect. An increase of 1 unit in Immigration
Percentage decreases New Infection Cases by 3.644 units, assuming all
other covariates stay constant. This represents a change of more than
0.01613 standard deviations (SDNew
Infection Cases= 225.9).
The Population Aged 70 or Older
covariate has statistically significant effect. An increase of 1 unit in
Population Aged 70 or Older increases New Infection Cases by 7.95 units,
assuming all other covariates stay constant. This represents a change of
more than 0.03519 standard deviations (SDNew Infection Cases= 225.9).
Wave 4 interpretation
OLS Linear regression was used to analyze the effects on New Infection Cases.aligned_cases_waves_reg.png
p1 <- wl_plot_coef (model = m_12[[1]], covs = cov_12, palette = "Color")
p2 <- wl_plot_coef (model = m_12[[2]], covs = cov_12, palette = "Color")
p3 <- wl_plot_coef (model = m_34[[1]], covs = cov_34, palette = "Color")
p4 <- wl_plot_coef (model = m_34[[2]], covs = cov_34, palette = "Color")
p <- ggarrange(p1, p2, p3, p4,
labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4"),
align = "hv", font.label = list(size = 10, face = "bold"),
vjust = 2.5, hjust = -3.5, ncol = 2, nrow = 2)
wl_ggsave("figures/aligned_cases_waves_reg.png", plot = p, height=130)
dep <- wl_dependents()[2]
cov_34 <- wl_covariates(cov_group = "Main coviariates")
cov_12 <- wl_setdiff(cov_34, c("new_vaccinations_per_mil_delayed"))
m_12 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "aligned", waves = c("Wave_1AD", "Wave_2AD"))
m_34 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "aligned", waves = c("Wave_3AD", "Wave_4AD"))
aligned_deaths_reg.tex
#>
#> -------------------------------------------------------------------
#> Wave 1 Wave 2 Wave 3 Wave 4
#> (1) (2) (3) (4)
#> -------------------------------------------------------------------
#> Leader Gender[female] -1.720*** -1.252*** -2.391*** -1.494**
#> (0.293) (0.378) (0.365) (0.526)
#> Leader Age -0.006 0.004 -0.022 -0.021
#> (0.011) (0.013) (0.012) (0.018)
#> Stringency Index (delayed) -0.012*** 0.037*** 0.047*** 0.025
#> (0.003) (0.008) (0.009) (0.013)
#> New Vaccination (delayed) -0.0002*** 0.00003
#> (0.00004) (0.0001)
#> Democracy Score -0.829** -0.132 0.139 3.038***
#> (0.261) (0.342) (0.321) (0.501)
#> GDP per Capita 0.023* -0.008 0.012 0.001
#> (0.010) (0.013) (0.012) (0.018)
#> Health-system Score -0.030 -0.103** -0.184*** -0.073
#> (0.024) (0.034) (0.032) (0.040)
#> Population Size 0.008*** 0.008** -0.0002 -0.008*
#> (0.002) (0.003) (0.003) (0.004)
#> Urbanization Percentage 0.023** -0.056*** 0.046*** -0.023
#> (0.009) (0.010) (0.010) (0.012)
#> Immigration Percentage -0.016 0.028 -0.112*** -0.099**
#> (0.017) (0.021) (0.020) (0.032)
#> Population Aged 70 or Older -0.025 0.504*** 0.306*** 0.559***
#> (0.034) (0.044) (0.042) (0.058)
#> N 714 1,113 1,113 628
#> R2 0.143 0.184 0.200 0.267
#> Adjusted R2 0.131 0.176 0.192 0.254
#> -------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
Wave 1 interpretation
OLS Linear regression was used to analyze the effects on New Death
Cases.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, New Death
Cases decreases by 1.72 units assuming all other covariates stay
constant. This represents a change of more than 0.6919 standard
deviations (SDNew Death Cases=
2.486).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
decreases New Death Cases by 0.01157 units, assuming all other
covariates stay constant. This represents a change of more than 0.004653
standard deviations (SDNew Death Cases=
2.486).
The Democracy Score covariate has statistically significant
effect. An increase of 1 unit in Democracy Score decreases New Death
Cases by 0.8292 units, assuming all other covariates stay constant. This
represents a change of more than 0.3336 standard deviations (SDNew Death Cases= 2.486).
The GDP per
Capita covariate has statistically significant effect. An increase of 1
unit in GDP per Capita increases New Death Cases by 0.0234 units,
assuming all other covariates stay constant. This represents a change of
more than 0.009413 standard deviations (SDNew
Death Cases= 2.486).
The Population Size covariate has
statistically significant effect. An increase of 1 unit in Population
Size increases New Death Cases by 0.008303 units, assuming all other
covariates stay constant. This represents a change of more than 0.00334
standard deviations (SDNew Death Cases=
2.486).
The Urbanization Percentage covariate has statistically
significant effect. An increase of 1 unit in Urbanization Percentage
increases New Death Cases by 0.02347 units, assuming all other
covariates stay constant. This represents a change of more than 0.009443
standard deviations (SDNew Death Cases=
2.486).
Wave 2 interpretation
OLS Linear regression was used to analyze the effects on New Death
Cases.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, New Death
Cases decreases by 1.252 units assuming all other covariates stay
constant. This represents a change of more than 0.2819 standard
deviations (SDNew Death Cases=
4.442).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
increases New Death Cases by 0.03733 units, assuming all other
covariates stay constant. This represents a change of more than 0.008405
standard deviations (SDNew Death Cases=
4.442).
The Health-system Score covariate has statistically
significant effect. An increase of 1 unit in Health-system Score
decreases New Death Cases by 0.1034 units, assuming all other covariates
stay constant. This represents a change of more than 0.02328 standard
deviations (SDNew Death Cases=
4.442).
The Population Size covariate has statistically significant
effect. An increase of 1 unit in Population Size increases New Death
Cases by 0.007619 units, assuming all other covariates stay constant.
This represents a change of more than 0.001715 standard deviations (SDNew Death Cases= 4.442).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage decreases New Death
Cases by 0.05619 units, assuming all other covariates stay constant.
This represents a change of more than 0.01265 standard deviations (SDNew Death Cases= 4.442).
The Population
Aged 70 or Older covariate has statistically significant effect. An
increase of 1 unit in Population Aged 70 or Older increases New Death
Cases by 0.5036 units, assuming all other covariates stay constant. This
represents a change of more than 0.1134 standard deviations (SDNew Death Cases= 4.442).
Wave 3 interpretation
OLS Linear regression was used to analyze the effects on New Death
Cases.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, New Death
Cases decreases by 2.391 units assuming all other covariates stay
constant. This represents a change of more than 0.5668 standard
deviations (SDNew Death Cases=
4.218).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
increases New Death Cases by 0.04746 units, assuming all other
covariates stay constant. This represents a change of more than 0.01125
standard deviations (SDNew Death Cases=
4.218).
The New Vaccination (delayed) covariate has statistically
significant effect. An increase of 1 unit in New Vaccination (delayed)
decreases New Death Cases by 0.0001633 units, assuming all other
covariates stay constant. This represents a change of more than
3.871e-05 standard deviations (SDNew Death
Cases= 4.218).
The Health-system Score covariate has
statistically significant effect. An increase of 1 unit in Health-system
Score decreases New Death Cases by 0.1841 units, assuming all other
covariates stay constant. This represents a change of more than 0.04365
standard deviations (SDNew Death Cases=
4.218).
The Urbanization Percentage covariate has statistically
significant effect. An increase of 1 unit in Urbanization Percentage
increases New Death Cases by 0.04599 units, assuming all other
covariates stay constant. This represents a change of more than 0.0109
standard deviations (SDNew Death Cases=
4.218).
The Immigration Percentage covariate has statistically
significant effect. An increase of 1 unit in Immigration Percentage
decreases New Death Cases by 0.1117 units, assuming all other covariates
stay constant. This represents a change of more than 0.02648 standard
deviations (SDNew Death Cases=
4.218).
The Population Aged 70 or Older covariate has statistically
significant effect. An increase of 1 unit in Population Aged 70 or Older
increases New Death Cases by 0.3063 units, assuming all other covariates
stay constant. This represents a change of more than 0.0726 standard
deviations (SDNew Death Cases=
4.218).
Wave 4 interpretation
OLS Linear regression was used to analyze the effects on New Death Cases.aligned_deaths_waves_reg.png
p1 <- wl_plot_coef (model = m_12[[1]], covs = cov_12, palette = "Color")
p2 <- wl_plot_coef (model = m_12[[2]], covs = cov_12, palette = "Color")
p3 <- wl_plot_coef (model = m_34[[1]], covs = cov_34, palette = "Color")
p4 <- wl_plot_coef (model = m_34[[2]], covs = cov_34, palette = "Color")
p <- ggarrange(p1, p2, p3, p4,
labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4"),
align = "hv", font.label = list(size = 10, face = "bold"),
vjust = 2.5, hjust = -3.5, ncol = 2, nrow = 2)
wl_ggsave("figures/aligned_deaths_waves_reg.png", plot = p, height=130)
dep <- wl_dependents()[3]
cov_34 <- wl_covariates(cov_group = "Main coviariates")
cov_12 <- wl_setdiff(cov_34, c("new_vaccinations_per_mil_delayed"))
m_12 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "aligned", waves = c("Wave_1AD", "Wave_2AD"))
m_34 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "aligned", waves = c("Wave_3AD", "Wave_4AD"))
aligned_excess_reg.tex
#>
#> --------------------------------------------------------------------
#> Wave 1 Wave 2 Wave 3 Wave 4
#> (1) (2) (3) (4)
#> --------------------------------------------------------------------
#> Leader Gender[female] -12.677*** -7.894*** -8.598*** -3.367
#> (2.451) (2.316) (1.781) (3.342)
#> Leader Age 0.091 0.153 0.112 -0.216
#> (0.092) (0.090) (0.063) (0.130)
#> Stringency Index (delayed) -0.109*** -0.298*** -0.138** -0.102
#> (0.028) (0.055) (0.051) (0.105)
#> New Vaccination (delayed) 0.0001 -0.002**
#> (0.0002) (0.001)
#> Democracy Score -9.900*** 0.690 -4.049* 12.020***
#> (2.331) (2.352) (1.727) (3.385)
#> GDP per Capita 0.077 0.180 -0.027 0.087
#> (0.101) (0.093) (0.068) (0.134)
#> Health-system Score -0.491* -1.340*** -1.332*** -0.772**
#> (0.226) (0.244) (0.182) (0.291)
#> Population Size 0.042* 0.002 -0.009 -0.044
#> (0.017) (0.018) (0.013) (0.027)
#> Urbanization Percentage 0.280** -0.408*** 0.082 -0.360***
#> (0.086) (0.081) (0.060) (0.103)
#> Immigration Percentage -0.251 -0.338* -0.685*** -0.609**
#> (0.145) (0.136) (0.103) (0.210)
#> Population Aged 70 or Older 0.487 0.463 -0.320 0.449
#> (0.334) (0.324) (0.242) (0.423)
#> N 532 816 804 396
#> R2 0.143 0.219 0.307 0.344
#> Adjusted R2 0.127 0.209 0.297 0.325
#> --------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
Wave 1 interpretation
OLS Linear regression was used to analyze the effects on Excess
Mortality.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, Excess
Mortality decreases by 12.68 units assuming all other covariates stay
constant. This represents a change of more than 0.6874 standard
deviations (SDExcess Mortality=
18.44).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
decreases Excess Mortality by 0.1087 units, assuming all other
covariates stay constant. This represents a change of more than 0.005895
standard deviations (SDExcess Mortality=
18.44).
The Democracy Score covariate has statistically significant
effect. An increase of 1 unit in Democracy Score decreases Excess
Mortality by 9.9 units, assuming all other covariates stay constant.
This represents a change of more than 0.5368 standard deviations (SDExcess Mortality= 18.44).
The
Health-system Score covariate has statistically significant effect. An
increase of 1 unit in Health-system Score decreases Excess Mortality by
0.4913 units, assuming all other covariates stay constant. This
represents a change of more than 0.02664 standard deviations (SDExcess Mortality= 18.44).
The
Population Size covariate has statistically significant effect. An
increase of 1 unit in Population Size increases Excess Mortality by
0.04169 units, assuming all other covariates stay constant. This
represents a change of more than 0.00226 standard deviations (SDExcess Mortality= 18.44).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage increases Excess
Mortality by 0.2799 units, assuming all other covariates stay constant.
This represents a change of more than 0.01518 standard deviations (SDExcess Mortality= 18.44).
Wave 2 interpretation
OLS Linear regression was used to analyze the effects on Excess
Mortality.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, Excess
Mortality decreases by 7.894 units assuming all other covariates stay
constant. This represents a change of more than 0.3044 standard
deviations (SDExcess Mortality=
25.93).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
decreases Excess Mortality by 0.2983 units, assuming all other
covariates stay constant. This represents a change of more than 0.0115
standard deviations (SDExcess Mortality=
25.93).
The Health-system Score covariate has statistically
significant effect. An increase of 1 unit in Health-system Score
decreases Excess Mortality by 1.34 units, assuming all other covariates
stay constant. This represents a change of more than 0.05168 standard
deviations (SDExcess Mortality=
25.93).
The Urbanization Percentage covariate has statistically
significant effect. An increase of 1 unit in Urbanization Percentage
decreases Excess Mortality by 0.4084 units, assuming all other
covariates stay constant. This represents a change of more than 0.01575
standard deviations (SDExcess Mortality=
25.93).
The Immigration Percentage covariate has statistically
significant effect. An increase of 1 unit in Immigration Percentage
decreases Excess Mortality by 0.3383 units, assuming all other
covariates stay constant. This represents a change of more than 0.01305
standard deviations (SDExcess Mortality=
25.93).
Wave 3 interpretation
OLS Linear regression was used to analyze the effects on Excess
Mortality.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, Excess
Mortality decreases by 8.598 units assuming all other covariates stay
constant. This represents a change of more than 0.4352 standard
deviations (SDExcess Mortality=
19.76).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
decreases Excess Mortality by 0.1379 units, assuming all other
covariates stay constant. This represents a change of more than 0.006977
standard deviations (SDExcess Mortality=
19.76).
The Democracy Score covariate has statistically significant
effect. An increase of 1 unit in Democracy Score decreases Excess
Mortality by 4.049 units, assuming all other covariates stay constant.
This represents a change of more than 0.2049 standard deviations (SDExcess Mortality= 19.76).
The
Health-system Score covariate has statistically significant effect. An
increase of 1 unit in Health-system Score decreases Excess Mortality by
1.332 units, assuming all other covariates stay constant. This
represents a change of more than 0.06742 standard deviations (SDExcess Mortality= 19.76).
The
Immigration Percentage covariate has statistically significant effect.
An increase of 1 unit in Immigration Percentage decreases Excess
Mortality by 0.6845 units, assuming all other covariates stay constant.
This represents a change of more than 0.03464 standard deviations (SDExcess Mortality= 19.76).
Wave 4 interpretation
OLS Linear regression was used to analyze the effects on Excess Mortality.aligned_excess_waves_reg.png
p1 <- wl_plot_coef (model = m_12[[1]], covs = cov_12, palette = "Color")
p2 <- wl_plot_coef (model = m_12[[2]], covs = cov_12, palette = "Color")
p3 <- wl_plot_coef (model = m_34[[1]], covs = cov_34, palette = "Color")
p4 <- wl_plot_coef (model = m_34[[2]], covs = cov_34, palette = "Color")
p <- ggarrange(p1, p2, p3, p4,
labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4"),
align = "hv", font.label = list(size = 10, face = "bold"),
vjust = 2.5, hjust = -3.5, ncol = 2, nrow = 2)
wl_ggsave("figures/aligned_excess_waves_reg.png", plot = p, height=130)
dep <- wl_dependents()[1]
cov_34 <- wl_covariates(cov_group = "Capacity covariates")
cov_12 <- wl_setdiff(cov_34, c("new_vaccinations_per_mil_delayed"))
m_12 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "aligned", waves = c("Wave_1AC", "Wave_2AC"))
m_34 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "aligned", waves = c("Wave_3AC", "Wave_4AC"))
capacity_aligned_cases_reg.tex
#>
#> -----------------------------------------------------------------------
#> Wave 1 Wave 2 Wave 3 Wave 4
#> (1) (2) (3) (4)
#> -----------------------------------------------------------------------
#> Leader Gender[female] -14.849** -97.462*** -109.530*** -124.752***
#> (5.744) (24.187) (22.933) (32.636)
#> Leader Age 0.598** 1.130 -1.646* -4.295***
#> (0.201) (0.802) (0.720) (1.099)
#> Stringency Index (delayed) 0.096 1.629*** 3.037*** -3.699***
#> (0.060) (0.478) (0.506) (0.783)
#> New Vaccination (delayed) -0.003 -0.024***
#> (0.003) (0.004)
#> Democracy Score -10.203* -71.794*** -91.054*** -94.504***
#> (4.754) (19.489) (17.987) (27.630)
#> Population Size 0.126*** 0.183 -0.201 -0.086
#> (0.033) (0.153) (0.142) (0.218)
#> Urbanization Percentage 0.655*** -3.301*** 1.794** 0.541
#> (0.149) (0.637) (0.587) (0.891)
#> Immigration Percentage 0.092 -1.984 -3.568** -0.003
#> (0.315) (1.334) (1.215) (1.816)
#> State capacity -6.556 107.662*** -22.833 -4.853
#> (5.238) (19.890) (18.219) (29.635)
#> N 594 1,029 1,029 1,029
#> R2 0.126 0.094 0.120 0.119
#> Adjusted R2 0.114 0.086 0.112 0.111
#> -----------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
Wave 1 interpretation
OLS Linear regression was used to analyze the effects on New
Infection Cases.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
New Infection Cases decreases by 14.85 units assuming all other
covariates stay constant. This represents a change of more than 0.3612
standard deviations (SDNew Infection
Cases= 41.12).
The Leader Age covariate has statistically
significant effect. An increase of 1 unit in Leader Age increases New
Infection Cases by 0.5978 units, assuming all other covariates stay
constant. This represents a change of more than 0.01454 standard
deviations (SDNew Infection Cases=
41.12).
The Democracy Score covariate has statistically significant
effect. An increase of 1 unit in Democracy Score decreases New Infection
Cases by 10.2 units, assuming all other covariates stay constant. This
represents a change of more than 0.2482 standard deviations (SDNew Infection Cases= 41.12).
The
Population Size covariate has statistically significant effect. An
increase of 1 unit in Population Size increases New Infection Cases by
0.1258 units, assuming all other covariates stay constant. This
represents a change of more than 0.003059 standard deviations (SDNew Infection Cases= 41.12).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage increases New Infection
Cases by 0.6545 units, assuming all other covariates stay constant. This
represents a change of more than 0.01592 standard deviations (SDNew Infection Cases= 41.12).
Wave 2 interpretation
OLS Linear regression was used to analyze the effects on New
Infection Cases.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
New Infection Cases decreases by 97.46 units assuming all other
covariates stay constant. This represents a change of more than 0.3946
standard deviations (SDNew Infection
Cases= 247).
The Stringency Index (delayed) covariate has
statistically significant effect. An increase of 1 unit in Stringency
Index (delayed) increases New Infection Cases by 1.629 units, assuming
all other covariates stay constant. This represents a change of more
than 0.006596 standard deviations (SDNew
Infection Cases= 247).
The Democracy Score covariate has
statistically significant effect. An increase of 1 unit in Democracy
Score decreases New Infection Cases by 71.79 units, assuming all other
covariates stay constant. This represents a change of more than 0.2907
standard deviations (SDNew Infection
Cases= 247).
The Urbanization Percentage covariate has
statistically significant effect. An increase of 1 unit in Urbanization
Percentage decreases New Infection Cases by 3.301 units, assuming all
other covariates stay constant. This represents a change of more than
0.01337 standard deviations (SDNew
Infection Cases= 247).
The State capacity covariate has
statistically significant effect. An increase of 1 unit in State
capacity increases New Infection Cases by 107.7 units, assuming all
other covariates stay constant. This represents a change of more than
0.4359 standard deviations (SDNew
Infection Cases= 247).
Wave 3 interpretation
OLS Linear regression was used to analyze the effects on New
Infection Cases.
The Leader Gender[female] covariate has
statistically significant effect. When Leader Gender[female] is Female,
New Infection Cases decreases by 109.5 units assuming all other
covariates stay constant. This represents a change of more than 0.4849
standard deviations (SDNew Infection
Cases= 225.9).
The Leader Age covariate has statistically
significant effect. An increase of 1 unit in Leader Age decreases New
Infection Cases by 1.646 units, assuming all other covariates stay
constant. This represents a change of more than 0.007285 standard
deviations (SDNew Infection Cases=
225.9).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
increases New Infection Cases by 3.037 units, assuming all other
covariates stay constant. This represents a change of more than 0.01344
standard deviations (SDNew Infection
Cases= 225.9).
The Democracy Score covariate has statistically
significant effect. An increase of 1 unit in Democracy Score decreases
New Infection Cases by 91.05 units, assuming all other covariates stay
constant. This represents a change of more than 0.4031 standard
deviations (SDNew Infection Cases=
225.9).
The Urbanization Percentage covariate has statistically
significant effect. An increase of 1 unit in Urbanization Percentage
increases New Infection Cases by 1.794 units, assuming all other
covariates stay constant. This represents a change of more than 0.007941
standard deviations (SDNew Infection
Cases= 225.9).
The Immigration Percentage covariate has
statistically significant effect. An increase of 1 unit in Immigration
Percentage decreases New Infection Cases by 3.568 units, assuming all
other covariates stay constant. This represents a change of more than
0.0158 standard deviations (SDNew
Infection Cases= 225.9).
Wave 4 interpretation
OLS Linear regression was used to analyze the effects on New Infection Cases.capacity_aligned_cases_waves_reg.png
p1 <- wl_plot_coef (model = m_12[[1]], covs = cov_12, palette = "Color")
p2 <- wl_plot_coef (model = m_12[[2]], covs = cov_12, palette = "Color")
p3 <- wl_plot_coef (model = m_34[[1]], covs = cov_34, palette = "Color")
p4 <- wl_plot_coef (model = m_34[[2]], covs = cov_34, palette = "Color")
p <- ggarrange(p1, p2, p3, p4,
labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4"),
align = "hv", font.label = list(size = 10, face = "bold"),
vjust = 2.5, hjust = -3.5, ncol = 2, nrow = 2)
wl_ggsave("figures/capacity_aligned_cases_waves_reg.png", plot = p, height=130)
dep <- wl_dependents()[2]
cov_34 <- wl_covariates(cov_group = "Capacity covariates")
cov_12 <- wl_setdiff(cov_34, c("new_vaccinations_per_mil_delayed"))
m_12 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "aligned", waves = c("Wave_1AD", "Wave_2AD"))
m_34 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "aligned", waves = c("Wave_3AD", "Wave_4AD"))
capacity_aligned_deaths_reg.tex
#>
#> -------------------------------------------------------------------
#> Wave 1 Wave 2 Wave 3 Wave 4
#> (1) (2) (3) (4)
#> -------------------------------------------------------------------
#> Leader Gender[female] -1.637*** -1.640*** -2.008*** -1.128
#> (0.324) (0.441) (0.415) (0.576)
#> Leader Age -0.016 -0.010 -0.039** -0.056**
#> (0.011) (0.015) (0.013) (0.020)
#> Stringency Index (delayed) -0.011** 0.037*** 0.061*** 0.001
#> (0.004) (0.008) (0.009) (0.015)
#> New Vaccination (delayed) -0.0002*** -0.00005
#> (0.0001) (0.0001)
#> Democracy Score -0.769** -0.687 -0.314 2.671***
#> (0.266) (0.354) (0.331) (0.542)
#> Population Size 0.010*** 0.011*** 0.006* -0.006
#> (0.002) (0.003) (0.003) (0.004)
#> Urbanization Percentage 0.027** -0.074*** 0.026* -0.010
#> (0.009) (0.012) (0.011) (0.015)
#> Immigration Percentage 0.043* -0.074** -0.125*** -0.137***
#> (0.017) (0.024) (0.022) (0.040)
#> State capacity -0.407 1.951*** -0.229 1.361*
#> (0.274) (0.360) (0.334) (0.548)
#> N 675 1,029 1,029 582
#> R2 0.141 0.101 0.146 0.131
#> Adjusted R2 0.131 0.094 0.139 0.118
#> -------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
Wave 1 interpretation
OLS Linear regression was used to analyze the effects on New Death
Cases.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, New Death
Cases decreases by 1.637 units assuming all other covariates stay
constant. This represents a change of more than 0.6587 standard
deviations (SDNew Death Cases=
2.486).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
decreases New Death Cases by 0.01093 units, assuming all other
covariates stay constant. This represents a change of more than 0.004399
standard deviations (SDNew Death Cases=
2.486).
The Democracy Score covariate has statistically significant
effect. An increase of 1 unit in Democracy Score decreases New Death
Cases by 0.7691 units, assuming all other covariates stay constant. This
represents a change of more than 0.3094 standard deviations (SDNew Death Cases= 2.486).
The Population
Size covariate has statistically significant effect. An increase of 1
unit in Population Size increases New Death Cases by 0.009635 units,
assuming all other covariates stay constant. This represents a change of
more than 0.003876 standard deviations (SDNew
Death Cases= 2.486).
The Urbanization Percentage covariate has
statistically significant effect. An increase of 1 unit in Urbanization
Percentage increases New Death Cases by 0.02717 units, assuming all
other covariates stay constant. This represents a change of more than
0.01093 standard deviations (SDNew Death
Cases= 2.486).
The Immigration Percentage covariate has
statistically significant effect. An increase of 1 unit in Immigration
Percentage increases New Death Cases by 0.04317 units, assuming all
other covariates stay constant. This represents a change of more than
0.01737 standard deviations (SDNew Death
Cases= 2.486).
Wave 2 interpretation
OLS Linear regression was used to analyze the effects on New Death
Cases.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, New Death
Cases decreases by 1.64 units assuming all other covariates stay
constant. This represents a change of more than 0.3692 standard
deviations (SDNew Death Cases=
4.442).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
increases New Death Cases by 0.03739 units, assuming all other
covariates stay constant. This represents a change of more than 0.008418
standard deviations (SDNew Death Cases=
4.442).
The Population Size covariate has statistically significant
effect. An increase of 1 unit in Population Size increases New Death
Cases by 0.01084 units, assuming all other covariates stay constant.
This represents a change of more than 0.00244 standard deviations (SDNew Death Cases= 4.442).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage decreases New Death
Cases by 0.07368 units, assuming all other covariates stay constant.
This represents a change of more than 0.01659 standard deviations (SDNew Death Cases= 4.442).
The Immigration
Percentage covariate has statistically significant effect. An increase
of 1 unit in Immigration Percentage decreases New Death Cases by 0.07421
units, assuming all other covariates stay constant. This represents a
change of more than 0.01671 standard deviations (SDNew Death Cases= 4.442).
The State
capacity covariate has statistically significant effect. An increase of
1 unit in State capacity increases New Death Cases by 1.951 units,
assuming all other covariates stay constant. This represents a change of
more than 0.4391 standard deviations (SDNew
Death Cases= 4.442).
Wave 3 interpretation
OLS Linear regression was used to analyze the effects on New Death
Cases.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, New Death
Cases decreases by 2.008 units assuming all other covariates stay
constant. This represents a change of more than 0.476 standard
deviations (SDNew Death Cases=
4.218).
The Leader Age covariate has statistically significant
effect. An increase of 1 unit in Leader Age decreases New Death Cases by
0.03863 units, assuming all other covariates stay constant. This
represents a change of more than 0.009156 standard deviations (SDNew Death Cases= 4.218).
The Stringency
Index (delayed) covariate has statistically significant effect. An
increase of 1 unit in Stringency Index (delayed) increases New Death
Cases by 0.06126 units, assuming all other covariates stay constant.
This represents a change of more than 0.01452 standard deviations (SDNew Death Cases= 4.218).
The New
Vaccination (delayed) covariate has statistically significant effect. An
increase of 1 unit in New Vaccination (delayed) decreases New Death
Cases by 0.0001786 units, assuming all other covariates stay constant.
This represents a change of more than 4.233e-05 standard deviations
(SDNew Death Cases= 4.218).
The
Population Size covariate has statistically significant effect. An
increase of 1 unit in Population Size increases New Death Cases by
0.005755 units, assuming all other covariates stay constant. This
represents a change of more than 0.001364 standard deviations (SDNew Death Cases= 4.218).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage increases New Death
Cases by 0.02568 units, assuming all other covariates stay constant.
This represents a change of more than 0.006088 standard deviations (SDNew Death Cases= 4.218).
The Immigration
Percentage covariate has statistically significant effect. An increase
of 1 unit in Immigration Percentage decreases New Death Cases by 0.1254
units, assuming all other covariates stay constant. This represents a
change of more than 0.02972 standard deviations (SDNew Death Cases= 4.218).
Wave 4 interpretation
OLS Linear regression was used to analyze the effects on New Death Cases.capacity_aligned_deaths.png
p1 <- wl_plot_coef (model = m_12[[1]], covs = cov_12, palette = "Color")
p2 <- wl_plot_coef (model = m_12[[2]], covs = cov_12, palette = "Color")
p3 <- wl_plot_coef (model = m_34[[1]], covs = cov_34, palette = "Color")
p4 <- wl_plot_coef (model = m_34[[2]], covs = cov_34, palette = "Color")
p <- ggarrange(p1, p2, p3, p4,
labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4"),
align = "hv", font.label = list(size = 10, face = "bold"),
vjust = 2.5, hjust = -3.5, ncol = 2, nrow = 2)
wl_ggsave("figures/capacity_aligned_deaths.png", plot = p, height=130)
dep <- wl_dependents()[3]
cov_34 <- wl_covariates(cov_group = "Capacity covariates")
cov_12 <- wl_setdiff(cov_34, c("new_vaccinations_per_mil_delayed"))
m_12 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_12,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "aligned", waves = c("Wave_1AD", "Wave_2AD"))
m_34 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_34,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "aligned", waves = c("Wave_3AD", "Wave_4AD"))
capacity_aligned_excess_reg.tex
#>
#> -------------------------------------------------------------------
#> Wave 1 Wave 2 Wave 3 Wave 4
#> (1) (2) (3) (4)
#> -------------------------------------------------------------------
#> Leader Gender[female] -12.149*** -3.710 -4.490* -2.690
#> (2.791) (2.598) (1.956) (3.249)
#> Leader Age 0.018 0.176 0.038 -0.256
#> (0.099) (0.096) (0.069) (0.135)
#> Stringency Index (delayed) -0.103*** -0.274*** -0.157** -0.179
#> (0.029) (0.056) (0.053) (0.102)
#> New Vaccination (delayed) -0.0002 -0.002**
#> (0.0002) (0.001)
#> Democracy Score -10.200*** -0.777 -4.323* 10.397**
#> (2.395) (2.371) (1.778) (3.563)
#> Population Size 0.054*** 0.042* 0.023 -0.017
#> (0.016) (0.017) (0.012) (0.026)
#> Urbanization Percentage 0.265** -0.605*** 0.044 -0.313**
#> (0.090) (0.088) (0.066) (0.111)
#> Immigration Percentage -0.093 -0.396** -0.602*** -0.548*
#> (0.146) (0.142) (0.109) (0.243)
#> State capacity -2.778 -5.444* -15.320*** -7.338
#> (2.862) (2.668) (2.081) (4.178)
#> N 499 748 736 367
#> R2 0.132 0.215 0.287 0.326
#> Adjusted R2 0.118 0.207 0.278 0.309
#> -------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
Wave 1 interpretation
OLS Linear regression was used to analyze the effects on Excess
Mortality.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, Excess
Mortality decreases by 12.15 units assuming all other covariates stay
constant. This represents a change of more than 0.6587 standard
deviations (SDExcess Mortality=
18.44).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
decreases Excess Mortality by 0.1035 units, assuming all other
covariates stay constant. This represents a change of more than 0.00561
standard deviations (SDExcess Mortality=
18.44).
The Democracy Score covariate has statistically significant
effect. An increase of 1 unit in Democracy Score decreases Excess
Mortality by 10.2 units, assuming all other covariates stay constant.
This represents a change of more than 0.5531 standard deviations (SDExcess Mortality= 18.44).
The
Population Size covariate has statistically significant effect. An
increase of 1 unit in Population Size increases Excess Mortality by
0.05353 units, assuming all other covariates stay constant. This
represents a change of more than 0.002902 standard deviations (SDExcess Mortality= 18.44).
The
Urbanization Percentage covariate has statistically significant effect.
An increase of 1 unit in Urbanization Percentage increases Excess
Mortality by 0.2645 units, assuming all other covariates stay constant.
This represents a change of more than 0.01434 standard deviations (SDExcess Mortality= 18.44).
Wave 2 interpretation
OLS Linear regression was used to analyze the effects on Excess
Mortality.
The Stringency Index (delayed) covariate has
statistically significant effect. An increase of 1 unit in Stringency
Index (delayed) decreases Excess Mortality by 0.2745 units, assuming all
other covariates stay constant. This represents a change of more than
0.01058 standard deviations (SDExcess
Mortality= 25.93).
The Population Size covariate has
statistically significant effect. An increase of 1 unit in Population
Size increases Excess Mortality by 0.04225 units, assuming all other
covariates stay constant. This represents a change of more than 0.001629
standard deviations (SDExcess Mortality=
25.93).
The Urbanization Percentage covariate has statistically
significant effect. An increase of 1 unit in Urbanization Percentage
decreases Excess Mortality by 0.6053 units, assuming all other
covariates stay constant. This represents a change of more than 0.02334
standard deviations (SDExcess Mortality=
25.93).
The Immigration Percentage covariate has statistically
significant effect. An increase of 1 unit in Immigration Percentage
decreases Excess Mortality by 0.3961 units, assuming all other
covariates stay constant. This represents a change of more than 0.01527
standard deviations (SDExcess Mortality=
25.93).
The State capacity covariate has statistically significant
effect. An increase of 1 unit in State capacity decreases Excess
Mortality by 5.444 units, assuming all other covariates stay constant.
This represents a change of more than 0.2099 standard deviations (SDExcess Mortality= 25.93).
Wave 3 interpretation
OLS Linear regression was used to analyze the effects on Excess
Mortality.
The Leader Gender[female] covariate has statistically
significant effect. When Leader Gender[female] is Female, Excess
Mortality decreases by 4.49 units assuming all other covariates stay
constant. This represents a change of more than 0.2272 standard
deviations (SDExcess Mortality=
19.76).
The Stringency Index (delayed) covariate has statistically
significant effect. An increase of 1 unit in Stringency Index (delayed)
decreases Excess Mortality by 0.1568 units, assuming all other
covariates stay constant. This represents a change of more than 0.007935
standard deviations (SDExcess Mortality=
19.76).
The Democracy Score covariate has statistically significant
effect. An increase of 1 unit in Democracy Score decreases Excess
Mortality by 4.323 units, assuming all other covariates stay constant.
This represents a change of more than 0.2188 standard deviations (SDExcess Mortality= 19.76).
The
Immigration Percentage covariate has statistically significant effect.
An increase of 1 unit in Immigration Percentage decreases Excess
Mortality by 0.6016 units, assuming all other covariates stay constant.
This represents a change of more than 0.03045 standard deviations (SDExcess Mortality= 19.76).
The State
capacity covariate has statistically significant effect. An increase of
1 unit in State capacity decreases Excess Mortality by 15.32 units,
assuming all other covariates stay constant. This represents a change of
more than 0.7753 standard deviations (SDExcess Mortality= 19.76).
Wave 4 interpretation
OLS Linear regression was used to analyze the effects on Excess Mortality.capacity_aligned_excess.png
p1 <- wl_plot_coef (model = m_12[[1]], covs = cov_12, palette = "Color")
p2 <- wl_plot_coef (model = m_12[[2]], covs = cov_12, palette = "Color")
p3 <- wl_plot_coef (model = m_34[[1]], covs = cov_34, palette = "Color")
p4 <- wl_plot_coef (model = m_34[[2]], covs = cov_34, palette = "Color")
p <- ggarrange(p1, p2, p3, p4,
labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4"),
align = "hv", font.label = list(size = 10, face = "bold"),
vjust = 2.5, hjust = -3.5, ncol = 2, nrow = 2)
wl_ggsave("figures/capacity_aligned_excess.png", plot = p, height=130)
cov_fr1 <- wl_covariates(cov_group = "Main coviariates") %>%
wl_setdiff(c("stringency_delayed", "new_vaccinations_per_mil_delayed")) %>%
c("Stringency Index (delayed 4)" = "stringency_delayed_r1",
"New Vaccination (delayed 4)" = "new_vaccinations_per_mil_delayed_r1")
cov_fr2 <- wl_covariates(cov_group = "Main coviariates") %>%
wl_setdiff(c("stringency_delayed", "new_vaccinations_per_mil_delayed")) %>%
c("Stringency Index (delayed 8)" = "stringency_delayed_r2",
"New Vaccination (delayed 8)" = "new_vaccinations_per_mil_delayed_r2")
dep <- wl_dependents()[1]
m_fcr1 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_fr1,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "calendar", waves = c("All_C"))
m_fcr2 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_fr2,
country_list = wl_countries(), model_type = "OLS", data_type = "cases",
align_type = "calendar", waves = c("All_C"))
dep <- wl_dependents()[2]
m_fdr1 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_fr1,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("All_D"))
m_fdr2 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_fr2,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("All_D"))
dep <- wl_dependents()[3]
m_fer1 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_fr1,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("All_D"))
m_fer2 <- wl_wave_regression(
db_type = "Weekly", y_name = dep, x_var = cov_fr2,
country_list = wl_countries(), model_type = "OLS", data_type = "deaths",
align_type = "calendar", waves = c("All_D"))
delay_4_reg.tex
#>
#> ---------------------------------------------------------------------------------
#> New Infection Cases New Death Cases Excess Mortality
#> (1) (2) (3)
#> ---------------------------------------------------------------------------------
#> Leader Gender[female] -54.289*** -0.794*** -3.743***
#> (8.696) (0.149) (0.922)
#> Leader Age -0.412 -0.017*** 0.014
#> (0.303) (0.005) (0.035)
#> Democracy Score 2.445 0.611*** 3.474***
#> (7.938) (0.136) (0.934)
#> GDP per Capita 0.490 0.0001 0.042
#> (0.299) (0.005) (0.037)
#> Health-system Score -1.284 -0.066*** -0.758***
#> (0.776) (0.013) (0.097)
#> Population Size -0.007 0.002 -0.002
#> (0.062) (0.001) (0.007)
#> Urbanization Percentage 0.134 -0.011** -0.124***
#> (0.243) (0.004) (0.033)
#> Immigration Percentage 0.247 -0.023** -0.291***
#> (0.496) (0.008) (0.054)
#> Population Aged 70 or Older 5.015*** 0.238*** 0.519***
#> (1.029) (0.018) (0.130)
#> Stringency Index (delayed 4) 0.853*** 0.030*** -0.085***
#> (0.159) (0.003) (0.018)
#> New Vaccination (delayed 4) 0.004*** -0.00003* -0.00003
#> (0.001) (0.00002) (0.0001)
#> N 4,419 4,935 3,629
#> R2 0.033 0.091 0.113
#> Adjusted R2 0.030 0.089 0.111
#> ---------------------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
delay_8_reg.tex
#>
#> ---------------------------------------------------------------------------------
#> New Infection Cases New Death Cases Excess Mortality
#> (1) (2) (3)
#> ---------------------------------------------------------------------------------
#> Leader Gender[female] -61.801*** -1.115*** -4.837***
#> (9.021) (0.154) (0.914)
#> Leader Age -0.361 -0.015** 0.047
#> (0.315) (0.005) (0.035)
#> Democracy Score 2.709 0.682*** 3.333***
#> (8.257) (0.141) (0.929)
#> GDP per Capita 0.481 -0.004 0.017
#> (0.311) (0.005) (0.037)
#> Health-system Score -1.212 -0.060*** -0.778***
#> (0.807) (0.014) (0.096)
#> Population Size -0.015 0.002 -0.001
#> (0.064) (0.001) (0.007)
#> Urbanization Percentage 0.165 -0.012** -0.133***
#> (0.253) (0.004) (0.033)
#> Immigration Percentage 0.222 -0.021* -0.297***
#> (0.516) (0.009) (0.054)
#> Population Aged 70 or Older 5.052*** 0.232*** 0.472***
#> (1.071) (0.018) (0.130)
#> Stringency Index (delayed 8) 0.458** 0.003 -0.219***
#> (0.162) (0.003) (0.017)
#> New Vaccination (delayed 8) 0.001 -0.0001*** -0.0001
#> (0.001) (0.00002) (0.0001)
#> N 4,231 4,761 3,493
#> R2 0.025 0.082 0.162
#> Adjusted R2 0.022 0.080 0.159
#> ---------------------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
outlier_reg.tex
#>
#> ------------------------------------------------------------------
#> Infections Deaths Excess Mortality
#> (1) (2) (3)
#> ------------------------------------------------------------------
#> Leader Gender[female] -64.438*** -0.959*** -4.247***
#> (8.690) (0.151) (0.899)
#> Leader Age -0.467 -0.018*** 0.029
#> (0.308) (0.005) (0.035)
#> Stringency Index (delayed) 0.593*** 0.013*** -0.186***
#> (0.158) (0.003) (0.017)
#> New Vaccination (delayed) 0.002 -0.0001*** -0.0002
#> (0.001) (0.00002) (0.0001)
#> Democracy Score 1.367 0.630*** 3.144***
#> (8.107) (0.140) (0.934)
#> GDP per Capita 0.510 -0.001 0.021
#> (0.306) (0.005) (0.037)
#> Health-system Score -1.288 -0.068*** -0.790***
#> (0.789) (0.014) (0.097)
#> Population Size -0.022 0.002 -0.002
#> (0.063) (0.001) (0.007)
#> Urbanization Percentage 0.259 -0.008 -0.102**
#> (0.242) (0.004) (0.031)
#> Immigration Percentage 0.160 -0.023** -0.291***
#> (0.506) (0.009) (0.054)
#> Population Aged 70 or Older 4.991*** 0.235*** 0.539***
#> (1.051) (0.018) (0.130)
#> N 4,421 4,958 3,665
#> R2 0.029 0.075 0.135
#> Adjusted R2 0.026 0.073 0.133
#> ------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
cov_list <- wl_covariates(cov_group = "Timing covariates")
p_list <- c("w1c_peak_week","w2c_peak_week","w1d_peak_week","w2d_peak_week")
country_list <- wl_countries()
ld_db <- wl_ld_prepare_cox_aligned(country_list, c("country", cov_list, p_list))
Wave 1 Surival Curve.png
sfit <- survfit(w1_surv ~ pm_gender, data=ld_db)
p <- wl_surv_plot_fit(sfit, "Wave 1")
wl_ggsave("figures/Wave 1 Surival Curve.png", plot = p)
Wave 2 Surival Curve.png
sfit <- survfit(w2_surv ~ pm_gender, data=ld_db)
p <- wl_surv_plot_fit(sfit, "Wave 2")
wl_ggsave("figures/Wave 2 Surival Curve.png", plot = p)
Lockdown timing regression.tex
#>
#> -------------------------------------------
#> Wave 1 Wave 2
#> (1) (2)
#> -------------------------------------------
#> Leader Gender[female] 0.282 0.310
#> (0.710) (0.693)
#> Leader Age 0.978 0.985
#> (0.020) (0.022)
#> Democracy Score 1.401 1.324
#> (0.525) (0.527)
#> GDP per Capita 1.024 1.001
#> (0.027) (0.028)
#> Health-system Score 0.983 0.946
#> (0.045) (0.051)
#> Population Size 0.999 1.004
#> (0.003) (0.003)
#> Urbanization Percentage 0.988 0.997
#> (0.017) (0.017)
#> Immigration Percentage 0.985 1.091*
#> (0.034) (0.037)
#> Population Aged 70 or Older 0.924 0.966
#> (0.066) (0.072)
#> State capacity 0.938 0.951
#> (0.654) (0.808)
#> N 50 50
#> R2 0.241 0.259
#> -------------------------------------------
#> *p < .05; **p < .01; ***p < .001
#> All estimates are exponentiated.
Wave 1 Lockdown Timing Regression.png
p_title <- paste("Wave 1", m_title)
p <- wl_cox_print_model(scox1, ld_db, p_title)
wl_ggsave("figures/Wave 1 Lockdown Timing Regression.png", plot = p)
Wave 2 Lockdown Timing Regression.png
p_title <- paste("Wave 2", m_title)
p <- wl_cox_print_model(scox2, ld_db, p_title)
wl_ggsave("figures/Wave 2 Lockdown Timing Regression.png", plot = p)
Lockdown Stringency regression table.tex
#>
#> ---------------------------------------------
#> Wave 1 Wave 2
#> (1) (2)
#> ---------------------------------------------
#> Leader Gender[female] 0.341*** 0.309***
#> (0.313) (0.188)
#> Leader Age 0.981 0.973***
#> (0.011) (0.007)
#> Democracy Score 2.182** 1.180
#> (0.284) (0.154)
#> GDP per Capita 0.987 1.050***
#> (0.014) (0.008)
#> Health-system Score 0.943* 0.976
#> (0.028) (0.015)
#> Population Size 0.996 1.005***
#> (0.002) (0.001)
#> Urbanization Percentage 1.015 1.032***
#> (0.009) (0.005)
#> Immigration Percentage 1.068*** 1.017
#> (0.018) (0.010)
#> Population Aged 70 or Older 1.045 0.902***
#> (0.038) (0.023)
#> State capacity 0.406* 0.331***
#> (0.408) (0.227)
#> 1.029*** 1.000
#> (0.006) (0.0004)
#> 1.047 1.202***
#> (0.057) (0.024)
#> N 463 1,225
#> ---------------------------------------------
#> *p < .05; **p < .01; ***p < .001
#> All estimates are exponentiated.