NPlantas= round((4635)*(1/(0.5*0.3)))
NPlantas
## [1] 30900
NPlantas=47100
p=0.5
n=ceiling(NPlantas*p*(1-p)/((NPlantas-1)*(0.05/1.96)^2+p*(1-p)));n
## [1] 382
muestras<-sample(1580,124,replace = F);muestras
## [1] 411 184 1220 507 964 842 1433 1214 770 1498 1077 654 338 1038 1098
## [16] 1357 804 175 368 879 916 504 351 688 857 959 95 1551 1010 113
## [31] 235 109 798 270 1425 1492 723 126 238 1198 1337 889 1033 147 1466
## [46] 302 543 1461 387 1257 893 449 1137 405 906 220 221 1020 1477 1163
## [61] 1574 687 289 203 645 762 1392 1391 1467 389 744 192 1062 1047 377
## [76] 1383 125 998 116 997 73 725 390 236 532 118 583 776 1336 528
## [91] 642 734 1140 497 182 383 1559 991 92 268 1044 176 1516 792 1082
## [106] 590 702 248 107 610 295 1166 1217 961 834 1442 217 1396 701 215
## [121] 563 1146 1065 1526
xy<-expand.grid(y=seq(1,55), x=seq(1,4));
plot(xy[muestras,], pch=15,col="red4", main = "Puntos de muestreo Botrytis Colombian Organics");
points(xy[-muestras,], pch=18,col="royalblue2")
muestras<-sample(1580,224,replace = F);muestras
## [1] 1060 1334 292 1186 575 360 651 1556 409 1560 741 1102 1232 1327 627
## [16] 1365 1196 1238 1243 119 1558 467 719 19 203 736 1432 810 1234 665
## [31] 1248 1127 1335 1120 1258 50 1516 1470 811 1191 816 509 636 1 1205
## [46] 303 1366 1176 1038 66 178 656 1524 1573 1224 1501 449 628 1188 630
## [61] 250 1448 1367 954 326 1520 622 763 122 249 534 1472 1450 548 453
## [76] 547 144 1063 225 1265 1058 994 1437 686 1000 1378 254 194 1227 751
## [91] 812 756 1277 1376 540 168 1473 1230 58 1247 1368 796 1100 230 226
## [106] 1084 1383 820 804 1449 461 237 717 197 24 1427 941 639 578 873
## [121] 624 163 369 115 109 140 485 963 1354 515 1513 259 539 1235 772
## [136] 972 513 966 862 28 1566 428 1413 187 1221 1379 1576 995 1322 1314
## [151] 1308 1325 398 1157 561 138 1319 1572 1320 1490 690 909 1506 1499 1547
## [166] 1105 1167 70 419 649 570 164 524 1346 232 1510 899 1241 43 123
## [181] 529 869 1151 11 1116 1351 1229 737 531 1509 711 269 206 653 1098
## [196] 1153 79 1397 1331 124 985 139 1041 991 613 635 89 800 827 9
## [211] 1531 1357 307 358 1344 605 506 1040 202 1394 610 1155 631 1110
xy<-expand.grid(y=seq(1,85), x=seq(1,4));
plot(xy[muestras,], pch=15,col="red4", main = "Puntos de muestreo Botrytis Colombian Organics");
points(xy[-muestras,], pch=18,col="royalblue2")
# Generar las muestras
muestras <- sample(1580, 99, replace = FALSE)
# Crear el grid de puntos
xy <- expand.grid(y = seq(1, 55), x = seq(1, 4))
# Graficar los puntos de muestreo
plot(
xy[muestras,],
pch = 15,
col = "red4",
main = "Puntos de muestreo Botrytis Colombian Organics",
xlab = "Distancia de la cama",
ylab = "Lote EST/COM_1"
)
# Agregar los puntos restantes
points(xy[-muestras,], pch = 18, col = "royalblue2")
# Generar las muestras
muestras <- sample(1580, 84, replace = FALSE)
# Crear el grid de puntos
xy <- expand.grid(y = seq(1, 85), x = seq(1, 4))
# Graficar los puntos de muestreo
plot(
xy[muestras,],
pch = 15,
col = "red4",
main = "Puntos de muestreo Botrytis Colombian Organics",
xlab = "Distancia de la cama",
ylab = "Lote INV/COM_1"
)
# Agregar los puntos restantes
points(xy[-muestras,], pch = 18, col = "royalblue2")
#presente = 1 , Ausente = 0
mode<- function(x){
}
mode(x)
## NULL
# Cargar las librerÃas necesarias
library(ggplot2)
library(tidyr)
library(readxl)
# Cargar los datos desde el archivo Excel
datos <- read_excel("C:/Users/luisc/Downloads/Muestreo_Botrytis.xlsx")
# Filtrar los puntos muestreados
muestras <- which(datos$Muestreo == 1)
# Crear el mapa de calor
ggplot(datos, aes(X, Y, fill = Incidencia)) +
geom_tile() +
scale_fill_gradient(low = "white", high = "red") +
labs(title = "Mapa de calor de incidencia de Botrytis",
x = "Coordenada X",
y = "Coordenada Y") +
theme_minimal() +
geom_point(data = datos[muestras, ], color = "red4", size = 3, shape = 15) +
geom_point(data = datos[-muestras, ], color = "royalblue2", size = 3, shape = 18)
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.