library(readxl)
ruta_excel <- "C:\\Users\\jdom3\\Desktop\\Datos tesis.xlsx"
Conteo_preventivo <- read_excel(ruta_excel, sheet = 'Preventivo - Conteo de conidias')
Conteo_preventivo
## # A tibble: 24 × 3
## Numero_petalo Tratamiento Conteo_conidias
## <dbl> <chr> <dbl>
## 1 5 "Control\r\n" 626000
## 2 8 "Control\r\n" 858000
## 3 22 "Control\r\n" 336000
## 4 39 "Control\r\n" 392000
## 5 26 "Control comercial\r\n" 122000
## 6 28 "Control comercial\r\n" 230000
## 7 37 "Control comercial\r\n" 124000
## 8 40 "Control comercial\r\n" 598000
## 9 47 "Control comercial\r\n" 934000
## 10 3 "100 ppm" 468000
## # ℹ 14 more rows
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Conteoprevprom <- Conteo_preventivo %>%
group_by(Tratamiento) %>%
summarise(Conidias_por_mL= mean(Conteo_conidias))
library(ggplot2)
Grafico_conteo_preventivo <- ggplot(Conteoprevprom, aes(Tratamiento, Conidias_por_mL)) + geom_bar(width = 0.5, stat='identity')
Grafico_conteo_preventivo

ggplot(data = Conteo_preventivo, aes(x = Tratamiento, y = Conteo_conidias, color = Tratamiento)) +
geom_boxplot() +
theme_bw()

anova_conteo_preventivo <- aov(Conteo_preventivo$Conteo_conidias ~ Conteo_preventivo$Tratamiento )
summary(anova_conteo_preventivo)
## Df Sum Sq Mean Sq F value Pr(>F)
## Conteo_preventivo$Tratamiento 4 4.062e+11 1.016e+11 0.829 0.523
## Residuals 19 2.327e+12 1.225e+11
aovconprev_residuals <- residuals(object = anova_conteo_preventivo )
hist(aovconprev_residuals)

shapiro.test(x = aovconprev_residuals)
##
## Shapiro-Wilk normality test
##
## data: aovconprev_residuals
## W = 0.9614, p-value = 0.4673
plot(anova_conteo_preventivo ,2)

bartlett.test(aovconprev_residuals ~ Conteo_preventivo$Tratamiento)
##
## Bartlett test of homogeneity of variances
##
## data: aovconprev_residuals by Conteo_preventivo$Tratamiento
## Bartlett's K-squared = 2.1892, df = 4, p-value = 0.701
plot(aovconprev_residuals , pch = 20)

Tablafinalconprev<- group_by(Conteo_preventivo,Tratamiento) %>%
summarise(mean=mean(Conteo_conidias), sd=sd(Conteo_conidias)) %>%
arrange(desc(mean))
Tablafinalconprev
## # A tibble: 5 × 3
## Tratamiento mean sd
## <chr> <dbl> <dbl>
## 1 "50 ppm" 711200 356541.
## 2 "1 ppm" 639600 474471.
## 3 "Control\r\n" 553000 239001.
## 4 "Control comercial\r\n" 401600 355917.
## 5 "100 ppm" 389200 245004.
ggplot(Tablafinalconprev, aes(x = Tratamiento, y = mean, fill =Tratamiento)) +
geom_bar(stat = "identity", position = "dodge", alpha = 0.5, colour = "gray25") +
geom_errorbar(aes(ymin=mean-sd, ymax=mean+sd), position = position_dodge(0.9), width = 0.25,
show.legend = FALSE, colour = "gray25") +
labs(x="Tratamientos", y="Conidias/mL") +
theme_bw() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) +
scale_fill_grey()
