library(readxl)

ruta_excel <- "C:\\Users\\jdom3\\Desktop\\Datos tesis.xlsx"

Curativo2df <- read_excel(ruta_excel, sheet = 'Curativo - Exp 2 vertical')
Curativo2df
## # A tibble: 143 × 4
##    Numero_petalo Tratamiento           Dia Area_herida
##            <dbl> <chr>               <dbl>       <dbl>
##  1             5 "Control\r\n"           1       0.035
##  2             8 "Control\r\n"           1       0.161
##  3            30 "Control\r\n"           1       0    
##  4            44 "Control\r\n"           1       0.113
##  5            48 "Control\r\n"           1       0.242
##  6            10 "Control comercial"     1       0.202
##  7            26 "Control comercial"     1       0.075
##  8            28 "Control comercial"     1       0.016
##  9            37 "Control comercial"     1       0.109
## 10            40 "Control comercial"     1       0    
## # ℹ 133 more rows
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
dfcu2_100ppm = Curativo2df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="100 ppm")

dfcu2_100ppm <- na.omit(dfcu2_100ppm)
dfcu2_100ppm
## # A tibble: 24 × 4
## # Groups:   Dia, Area_herida [24]
##    Numero_petalo Tratamiento   Dia Area_herida
##            <dbl> <chr>       <dbl>       <dbl>
##  1             3 100 ppm         1       0.114
##  2            15 100 ppm         1       0    
##  3            29 100 ppm         1       0.152
##  4            34 100 ppm         1       0.083
##  5            42 100 ppm         1       0.068
##  6            46 100 ppm         1       0.133
##  7             3 100 ppm         2       0.249
##  8            15 100 ppm         2       0.202
##  9            29 100 ppm         2       0.565
## 10            34 100 ppm         2       0.363
## # ℹ 14 more rows
Boxplotcu2100ppm <- boxplot(dfcu2_100ppm$Area_herida ~ dfcu2_100ppm$Dia, frame.plot=F)

df_cu2100ppm <- dfcu2_100ppm[!(dfcu2_100ppm$Area_herida %in% Boxplotcu2100ppm$out),]
dfcu2100ppmprom <- dfcu2_100ppm %>%
  group_by(Dia) %>%
  summarise(Area_prom_cu2100ppm = mean(Area_herida))
dfcu2_1ppm = Curativo2df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="1 ppm")

dfcu2_1ppm <- na.omit(dfcu2_1ppm)
dfcu2_1ppm
## # A tibble: 36 × 4
## # Groups:   Dia, Area_herida [35]
##    Numero_petalo Tratamiento   Dia Area_herida
##            <dbl> <chr>       <dbl>       <dbl>
##  1             1 1 ppm           1       0.108
##  2             4 1 ppm           1       0.06 
##  3             9 1 ppm           1       0.186
##  4            16 1 ppm           1       0.293
##  5            18 1 ppm           1       0.179
##  6            19 1 ppm           1       0.169
##  7            31 1 ppm           1       0.047
##  8            35 1 ppm           1       0.061
##  9            38 1 ppm           1       0    
## 10             1 1 ppm           2       0.305
## # ℹ 26 more rows
Boxplotcu21ppm <- boxplot(dfcu2_1ppm$Area_herida ~ dfcu2_1ppm$Dia, frame.plot=F)

dfcu2_1ppm <- dfcu2_1ppm[!(dfcu2_1ppm$Area_herida %in% Boxplotcu21ppm$out),]
dfcu21ppmprom <- dfcu2_1ppm %>%
  group_by(Dia) %>%
  summarise(Area_prom_cu21ppm = mean(Area_herida))
dfcu2_50ppm = Curativo2df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="50 ppm")

dfcu2_50ppm <- na.omit(dfcu2_50ppm)
dfcu2_50ppm
## # A tibble: 31 × 4
## # Groups:   Dia, Area_herida [31]
##    Numero_petalo Tratamiento   Dia Area_herida
##            <dbl> <chr>       <dbl>       <dbl>
##  1             2 50 ppm          1       0    
##  2             7 50 ppm          1       0.163
##  3            11 50 ppm          1       0.091
##  4            13 50 ppm          1       0.189
##  5            17 50 ppm          1       0.37 
##  6            23 50 ppm          1       0.06 
##  7            25 50 ppm          1       0.076
##  8            43 50 ppm          1       0.12 
##  9             2 50 ppm          2       0.145
## 10             7 50 ppm          2       0.319
## # ℹ 21 more rows
Boxplotcu250ppm <- boxplot(dfcu2_50ppm$Area_herida ~ dfcu2_50ppm$Dia, frame.plot=F)

dfcu2_50ppm <- dfcu2_50ppm[!(dfcu2_50ppm$Area_herida %in% Boxplotcu250ppm$out),]
dfcu250ppmprom <- dfcu2_50ppm %>%
  group_by(Dia) %>%
  summarise(Area_prom_cu250ppm = mean(Area_herida))
dfcu2_Controlcomercial = Curativo2df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="Control comercial")

dfcu2_Controlcomercial <- na.omit(dfcu2_Controlcomercial)
dfcu2_Controlcomercial
## # A tibble: 32 × 4
## # Groups:   Dia, Area_herida [32]
##    Numero_petalo Tratamiento         Dia Area_herida
##            <dbl> <chr>             <dbl>       <dbl>
##  1            10 Control comercial     1       0.202
##  2            26 Control comercial     1       0.075
##  3            28 Control comercial     1       0.016
##  4            37 Control comercial     1       0.109
##  5            40 Control comercial     1       0    
##  6            47 Control comercial     1       0.151
##  7            49 Control comercial     1       0.171
##  8            50 Control comercial     1       0.168
##  9            10 Control comercial     2       0.919
## 10            26 Control comercial     2       0.338
## # ℹ 22 more rows
Boxplotcu2Controlcomercial <- boxplot(dfcu2_Controlcomercial$Area_herida ~ dfcu2_Controlcomercial$Dia, frame.plot=F)

dfcu2_Controlcomercial <- dfcu2_Controlcomercial[!(dfcu2_Controlcomercial$Area_herida %in% Boxplotcu2Controlcomercial$out),]
dfcu2Controlcomercialprom <- dfcu2_Controlcomercial %>%
  group_by(Dia) %>%
  summarise(Area_prom_cu2Controlcomercial = mean(Area_herida))
dfcu2_Control = Curativo2df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="Control\r\n")

dfcu2_Control <- na.omit(dfcu2_Control)
dfcu2_Control
## # A tibble: 20 × 4
## # Groups:   Dia, Area_herida [20]
##    Numero_petalo Tratamiento     Dia Area_herida
##            <dbl> <chr>         <dbl>       <dbl>
##  1             5 "Control\r\n"     1       0.035
##  2             8 "Control\r\n"     1       0.161
##  3            30 "Control\r\n"     1       0    
##  4            44 "Control\r\n"     1       0.113
##  5            48 "Control\r\n"     1       0.242
##  6             5 "Control\r\n"     2       0.066
##  7             8 "Control\r\n"     2       0.502
##  8            30 "Control\r\n"     2       0    
##  9            44 "Control\r\n"     2       0.303
## 10            48 "Control\r\n"     2       0.736
## 11             5 "Control\r\n"     3       2.32 
## 12             8 "Control\r\n"     3       2.40 
## 13            30 "Control\r\n"     3       0.317
## 14            44 "Control\r\n"     3       4.20 
## 15            48 "Control\r\n"     3       4.02 
## 16             5 "Control\r\n"     4       7.16 
## 17             8 "Control\r\n"     4       6.59 
## 18            30 "Control\r\n"     4       2.87 
## 19            44 "Control\r\n"     4      11.0  
## 20            48 "Control\r\n"     4       9.41
Boxplotcu2Control <- boxplot(dfcu2_Control$Area_herida ~ dfcu2_Control$Dia, frame.plot=F)

dfcu2_Control <- dfcu2_Control[!(dfcu2_Control $Area_herida %in% Boxplotcu2Control),]
dfcu2Controlprom <- dfcu2_Control %>%
  group_by(Dia) %>%
  summarise(Area_prom_cu2Control = mean(Area_herida))
library(agricolae)
library(ggplot2)
audpccu2100ppm <- agricolae::audpc(dfcu2100ppmprom$Area_prom_cu2100ppm,dfcu2100ppmprom$Dia)

Graficocu2100ppm <- ggplot(dfcu2100ppmprom, aes(Dia, Area_prom_cu2100ppm)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_cu2100ppm),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2, y = 2.5, label = paste("AUDPC", round(audpccu2100ppm,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal()  + labs(x="Día", y= "Área promedio afectada", title = "100 ppm")

Graficocu2100ppm

audpccu21ppm <- agricolae::audpc(dfcu21ppmprom$Area_prom_cu21ppm,dfcu21ppmprom$Dia)

Graficocu21ppm <- ggplot(dfcu21ppmprom, aes(Dia, Area_prom_cu21ppm)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_cu21ppm),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2, y = 2.5, label = paste("AUDPC", round(audpccu21ppm,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal() +  labs(x="Día", y= "Área promedio afectada", title = "1 ppm")
Graficocu21ppm

audpccu250ppm <- agricolae::audpc(dfcu250ppmprom$Area_prom_cu250ppm,dfcu250ppmprom$Dia)

Graficocu250ppm <- ggplot(dfcu250ppmprom, aes(Dia, Area_prom_cu250ppm)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_cu250ppm),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2, y = 2.5, label = paste("AUDPC", round(audpccu250ppm,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal()  + labs(x="Día", y= "Área promedio afectada", title = "50 ppm")
Graficocu250ppm

audpccu2Controlcomercial <- agricolae::audpc(dfcu2Controlcomercialprom$Area_prom_cu2Controlcomercial,dfcu2Controlcomercialprom$Dia)

Graficocu2Controlcomercial <- ggplot(dfcu2Controlcomercialprom, aes(Dia, Area_prom_cu2Controlcomercial)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_cu2Controlcomercial),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2, y = 2.5, label = paste("AUDPC", round(audpccu2Controlcomercial,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal() +  labs(x="Día", y= "Área promedio afectada", title = "Control comercial")
Graficocu2Controlcomercial

audpccu2Control <- agricolae::audpc(dfcu2Controlprom$Area_prom_cu2Control,dfcu2Controlprom$Dia)

Graficocu2Control <- ggplot(dfcu2Controlprom, aes(Dia, Area_prom_cu2Control)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_cu2Control),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2, y = 2.5, label = paste("AUDPC", round(audpccu2Control,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal() +  labs(x="Día", y= "Área promedio afectada", title = "Control")
Graficocu2Control

barplotcu2 <- data.frame(
"Tratamiento" = as.factor(c("100 ppm","50 ppm", "1 ppm","Control comercial", "Control" )), "AUDPC" = c(audpccu2100ppm,audpccu250ppm,audpccu21ppm,audpccu2Controlcomercial,audpccu2Control))

barplotcu2 <- as.data.frame(barplotcu2)
barplotcu2
##         Tratamiento    AUDPC
## 1           100 ppm 7.594917
## 2            50 ppm 6.834000
## 3             1 ppm 6.510611
## 4 Control comercial 9.904563
## 5           Control 6.730300
barplotcu2f <-ggplot(barplotcu2, aes(Tratamiento, AUDPC)) + geom_bar(width = 0.5, stat='identity') 
 barplotcu2f

library(patchwork)
Combcu2_plot <- Graficocu21ppm+Graficocu250ppm+Graficocu2100ppm+Graficocu2Controlcomercial+Graficocu2Control+barplotcu2f
Combcu2_plot