library(readxl)

ruta_excel <- "C:\\Users\\jdom3\\Desktop\\Datos tesis.xlsx"

Preventivo2df <- read_excel(ruta_excel, sheet = 'Preventivo - Exp 2 vertical')
Preventivo2df
## # A tibble: 230 × 4
##    Numero_petalo Tratamiento               Dia Area_herida
##            <dbl> <chr>                   <dbl>       <dbl>
##  1             5 "Control\r\n"               1       0    
##  2             6 "Control\r\n"               1       0.08 
##  3             8 "Control\r\n"               1       0.072
##  4            14 "Control\r\n"               1       0    
##  5            22 "Control\r\n"               1       0.122
##  6            30 "Control\r\n"               1       0.132
##  7            39 "Control\r\n"               1       0.134
##  8            44 "Control\r\n"               1       0.05 
##  9            45 "Control\r\n"               1       0.097
## 10            10 "Control comercial\r\n"     1       0.121
## # ℹ 220 more rows
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
dfpr2_100ppm = Preventivo2df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="100 ppm")

dfpr2_100ppm <- na.omit(dfpr2_100ppm)
dfpr2_100ppm
## # A tibble: 50 × 4
## # Groups:   Dia, Area_herida [49]
##    Numero_petalo Tratamiento   Dia Area_herida
##            <dbl> <chr>       <dbl>       <dbl>
##  1             3 100 ppm         1       0.095
##  2            12 100 ppm         1       0    
##  3            15 100 ppm         1       0.111
##  4            24 100 ppm         1       0.131
##  5            27 100 ppm         1       0.12 
##  6            29 100 ppm         1       0.136
##  7            32 100 ppm         1       0.124
##  8            34 100 ppm         1       0.113
##  9            42 100 ppm         1       0.112
## 10            46 100 ppm         1       0.131
## # ℹ 40 more rows
Boxplotpr2100ppm <- boxplot(dfpr2_100ppm$Area_herida ~ dfpr2_100ppm$Dia, frame.plot=F)

dfpr2_100ppm <- dfpr2_100ppm[!(dfpr2_100ppm$Area_herida %in% Boxplotpr2100ppm$out),]
dfpr2100ppmprom <- dfpr2_100ppm %>%
  group_by(Dia) %>%
  summarise(Area_prom_pr2100ppm = mean(Area_herida))
dfpr2_1ppm = Preventivo2df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="1 ppm")

dfpr2_1ppm <- na.omit(dfpr2_1ppm)
dfpr2_1ppm
## # A tibble: 40 × 4
## # Groups:   Dia, Area_herida [39]
##    Numero_petalo Tratamiento   Dia Area_herida
##            <dbl> <chr>       <dbl>       <dbl>
##  1             4 1 ppm           1       0.104
##  2             9 1 ppm           1       0.099
##  3            18 1 ppm           1       0.102
##  4            19 1 ppm           1       0.1  
##  5            21 1 ppm           1       0.076
##  6            31 1 ppm           1       0    
##  7            35 1 ppm           1       0.108
##  8            38 1 ppm           1       0    
##  9             4 1 ppm           2       0.256
## 10             9 1 ppm           2       0.102
## # ℹ 30 more rows
Boxplotpr21ppm <- boxplot(dfpr2_1ppm$Area_herida ~ dfpr2_1ppm$Dia, frame.plot=F)

dfpr2_1ppm <- dfpr2_1ppm[!(dfpr2_1ppm$Area_herida %in% Boxplotpr21ppm$out),]
dfpr21ppmprom <- dfpr2_1ppm %>%
  group_by(Dia) %>%
  summarise(Area_prom_pr21ppm = mean(Area_herida))
dfpr2_50ppm = Preventivo2df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="50 ppm")

dfpr2_50ppm <- na.omit(dfpr2_50ppm)
dfpr2_50ppm
## # A tibble: 45 × 4
## # Groups:   Dia, Area_herida [43]
##    Numero_petalo Tratamiento   Dia Area_herida
##            <dbl> <chr>       <dbl>       <dbl>
##  1             7 50 ppm          1       0.066
##  2            11 50 ppm          1       0    
##  3            13 50 ppm          1       0.117
##  4            17 50 ppm          1       0.073
##  5            23 50 ppm          1       0.082
##  6            25 50 ppm          1       0.123
##  7            36 50 ppm          1       0.117
##  8            41 50 ppm          1       0.116
##  9            43 50 ppm          1       0.1  
## 10             7 50 ppm          2       0.075
## # ℹ 35 more rows
Boxplotpr250ppm <- boxplot(dfpr2_50ppm$Area_herida ~ dfpr2_50ppm$Dia, frame.plot=F)

dfpr2_50ppm <- dfpr2_50ppm[!(dfpr2_50ppm$Area_herida %in% Boxplotpr250ppm$out),]
dfpr250ppmprom <- dfpr2_50ppm %>%
  group_by(Dia) %>%
  summarise(Area_prom_pr250ppm = mean(Area_herida))
dfpr2_Controlcomercial = Preventivo2df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="Control comercial\r\n")

dfpr2_Controlcomercial <- na.omit(dfpr2_Controlcomercial)
dfpr2_Controlcomercial
## # A tibble: 50 × 4
## # Groups:   Dia, Area_herida [50]
##    Numero_petalo Tratamiento               Dia Area_herida
##            <dbl> <chr>                   <dbl>       <dbl>
##  1            10 "Control comercial\r\n"     1       0.121
##  2            20 "Control comercial\r\n"     1       0.083
##  3            26 "Control comercial\r\n"     1       0.122
##  4            28 "Control comercial\r\n"     1       0.078
##  5            33 "Control comercial\r\n"     1       0.062
##  6            37 "Control comercial\r\n"     1       0.156
##  7            40 "Control comercial\r\n"     1       0.086
##  8            47 "Control comercial\r\n"     1       0.119
##  9            49 "Control comercial\r\n"     1       0    
## 10            50 "Control comercial\r\n"     1       0.116
## # ℹ 40 more rows
Boxplotpr2Controlcomercial <- boxplot(dfpr2_Controlcomercial$Area_herida ~ dfpr2_Controlcomercial$Dia, frame.plot=F)

dfpr2_Controlcomercial <- dfpr2_Controlcomercial[!(dfpr2_Controlcomercial$Area_herida %in% Boxplotpr2Controlcomercial$out),]
dfpr2Controlcomercialprom <- dfpr2_Controlcomercial %>%
  group_by(Dia) %>%
  summarise(Area_prom_pr2Controlcomercial = mean(Area_herida))
dfpr2_Control = Preventivo2df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="Control\r\n")

dfpr2_Control <- na.omit(dfpr2_Control)
dfpr2_Control
## # A tibble: 45 × 4
## # Groups:   Dia, Area_herida [44]
##    Numero_petalo Tratamiento     Dia Area_herida
##            <dbl> <chr>         <dbl>       <dbl>
##  1             5 "Control\r\n"     1       0    
##  2             6 "Control\r\n"     1       0.08 
##  3             8 "Control\r\n"     1       0.072
##  4            14 "Control\r\n"     1       0    
##  5            22 "Control\r\n"     1       0.122
##  6            30 "Control\r\n"     1       0.132
##  7            39 "Control\r\n"     1       0.134
##  8            44 "Control\r\n"     1       0.05 
##  9            45 "Control\r\n"     1       0.097
## 10             5 "Control\r\n"     2       0.066
## # ℹ 35 more rows
Boxplotpr2Control <- boxplot(dfpr2_Control$Area_herida ~ dfpr2_Control$Dia, frame.plot=F)

dfpr2_Control <- dfpr2_Control[!(dfpr2_Control $Area_herida %in% Boxplotpr2Control$out),]
dfpr2Controlprom <- dfpr2_Control %>%
  group_by(Dia) %>%
  summarise(Area_prom_pr2Control = mean(Area_herida))
library(agricolae)
library(ggplot2)
audpcpr2100ppm <- agricolae::audpc(dfpr2100ppmprom$Area_prom_pr2100ppm,dfpr2100ppmprom$Dia)

Graficopr2100ppm <- ggplot(dfpr2100ppmprom, aes(Dia, Area_prom_pr2100ppm)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_pr2100ppm),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2.5, y = 2.5, label = paste("AUDPC", round(audpcpr2100ppm,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal()  + labs(x="Día", y= "Área promedio afectada", title = "100 ppm")
Graficopr2100ppm

audpcpr21ppm <- agricolae::audpc(dfpr21ppmprom$Area_prom_pr21ppm,dfpr21ppmprom$Dia)

Graficopr21ppm <- ggplot(dfpr21ppmprom, aes(Dia, Area_prom_pr21ppm)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_pr21ppm),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2.5, y = 2.5, label = paste("AUDPC", round(audpcpr21ppm,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal()  + labs(x="Día", y= "Área promedio afectada", title = "1 ppm")
Graficopr21ppm

audpcpr250ppm <- agricolae::audpc(dfpr250ppmprom$Area_prom_pr250ppm,dfpr250ppmprom$Dia)

Graficopr250ppm <- ggplot(dfpr250ppmprom, aes(Dia, Area_prom_pr250ppm)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_pr250ppm),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2.5, y = 2.5, label = paste("AUDPC", round(audpcpr250ppm,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal()  + labs(x="Día", y= "Área promedio afectada", title = "50 ppm")
Graficopr250ppm

audpcpr2Controlcomercial <- agricolae::audpc(dfpr2Controlcomercialprom$Area_prom_pr2Controlcomercial,dfpr2Controlcomercialprom$Dia)

Graficopr2Controlcomercial <- ggplot(dfpr2Controlcomercialprom, aes(Dia, Area_prom_pr2Controlcomercial)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_pr2Controlcomercial),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2.5, y = 2.5, label = paste("AUDPC", round(audpcpr2Controlcomercial,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal()  + labs(x="Día", y= "Área promedio afectada", title = "Control comercial")
Graficopr2Controlcomercial

audpcpr2Control <- agricolae::audpc(dfpr2Controlprom$Area_prom_pr2Control,dfpr2Controlprom$Dia )

Graficopr2Control <- ggplot(dfpr2Controlprom, aes(Dia, Area_prom_pr2Control)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_pr2Control),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2.5, y = 2.5, label = paste("AUDPC", round(audpcpr2Control,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal() +  labs(x="Día", y= "Área promedio afectada", title = "Control")
Graficopr2Control

barplotpr2 <- data.frame(
"Tratamiento" = as.factor(c("100 ppm","50 ppm", "1 ppm","Control comercial", "Control" )), "AUDPC" = c(audpcpr2100ppm,audpcpr250ppm,audpcpr21ppm,audpcpr2Controlcomercial,audpcpr2Control))

barplotpr2 <- as.data.frame(barplotpr2)
barplotpr2
##         Tratamiento     AUDPC
## 1           100 ppm 10.629278
## 2            50 ppm 10.153958
## 3             1 ppm  9.187812
## 4 Control comercial 11.615089
## 5           Control  9.289729
barplotpr2f <-ggplot(barplotpr2, aes(Tratamiento, AUDPC)) + geom_bar(width = 0.5, stat='identity') 
 barplotpr2f

library(patchwork)
Combpr2_plot <- Graficopr21ppm+Graficopr250ppm+Graficopr2100ppm+Graficopr2Controlcomercial+Graficopr2Control+barplotpr2f
Combpr2_plot