library(readxl)

ruta_excel <- "C:\\Users\\jdom3\\Desktop\\Datos tesis.xlsx"

Curativo1df <- read_excel(ruta_excel, sheet = 'Curativo - Exp 1 vertical')
Curativo1df
## # A tibble: 288 × 4
##    Numero_petalo Tratamiento               Dia Area_herida
##            <dbl> <chr>                   <dbl>       <dbl>
##  1             7 "Control comercial\r\n"     1       0.159
##  2            18 "Control comercial\r\n"     1       0.21 
##  3            22 "Control comercial\r\n"     1       0.122
##  4            28 "Control comercial\r\n"     1       0.103
##  5            45 "Control comercial\r\n"     1       0.141
##  6            58 "Control comercial\r\n"     1       0.102
##  7            71 "Control comercial\r\n"     1       0.147
##  8            83 "Control comercial\r\n"     1       0.205
##  9            96 "Control comercial\r\n"     1       0.207
## 10             4 "100 ppm"                   1       0.097
## # ℹ 278 more rows
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
dfcu_100ppm = Curativo1df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="100 ppm")

dfcu_100ppm <- na.omit(dfcu_100ppm)
dfcu_100ppm
## # A tibble: 54 × 4
## # Groups:   Dia, Area_herida [54]
##    Numero_petalo Tratamiento   Dia Area_herida
##            <dbl> <chr>       <dbl>       <dbl>
##  1             4 100 ppm         1       0.097
##  2            13 100 ppm         1       0.171
##  3            35 100 ppm         1       0.2  
##  4            55 100 ppm         1       0.16 
##  5            74 100 ppm         1       0.148
##  6            75 100 ppm         1       0.107
##  7            86 100 ppm         1       0.116
##  8            88 100 ppm         1       0.095
##  9            93 100 ppm         1       0.18 
## 10             4 100 ppm         2       0.308
## # ℹ 44 more rows
Boxplotcu100ppm <- boxplot(dfcu_100ppm$Area_herida ~ dfcu_100ppm$Dia, frame.plot=F)

df_cu100ppm <- dfcu_100ppm[!(dfcu_100ppm$Area_herida %in% Boxplotcu100ppm$out),]
dfcu100ppmprom <- dfcu_100ppm %>%
  group_by(Dia) %>%
  summarise(Area_prom_cu100ppm = mean(Area_herida))
dfcu_1ppm = Curativo1df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="1 ppm")

dfcu_1ppm <- na.omit(dfcu_1ppm)
dfcu_1ppm
## # A tibble: 60 × 4
## # Groups:   Dia, Area_herida [60]
##    Numero_petalo Tratamiento   Dia Area_herida
##            <dbl> <chr>       <dbl>       <dbl>
##  1            23 1 ppm           1       0.159
##  2            24 1 ppm           1       0.149
##  3            38 1 ppm           1       0.178
##  4            39 1 ppm           1       0.115
##  5            40 1 ppm           1       0.128
##  6            42 1 ppm           1       0.118
##  7            50 1 ppm           1       0.223
##  8            57 1 ppm           1       0.119
##  9            70 1 ppm           1       0.202
## 10            99 1 ppm           1       0.135
## # ℹ 50 more rows
Boxplotcu1ppm <- boxplot(dfcu_1ppm$Area_herida ~ dfcu_1ppm$Dia, frame.plot=F)

dfcu_1ppm <- dfcu_1ppm[!(dfcu_1ppm$Area_herida %in% Boxplotcu1ppm$out),]
dfcu1ppmprom <- dfcu_1ppm %>%
  group_by(Dia) %>%
  summarise(Area_prom_cu1ppm = mean(Area_herida))
dfcu_50ppm = Curativo1df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="50 ppm")

dfcu_50ppm <- na.omit(dfcu_50ppm)
dfcu_50ppm
## # A tibble: 60 × 4
## # Groups:   Dia, Area_herida [59]
##    Numero_petalo Tratamiento   Dia Area_herida
##            <dbl> <chr>       <dbl>       <dbl>
##  1             1 50 ppm          1       0.218
##  2             2 50 ppm          1       0.167
##  3             8 50 ppm          1       0.224
##  4            15 50 ppm          1       0.049
##  5            16 50 ppm          1       0.227
##  6            19 50 ppm          1       0    
##  7            51 50 ppm          1       0.238
##  8            77 50 ppm          1       0.144
##  9            89 50 ppm          1       0.193
## 10           100 50 ppm          1       0.133
## # ℹ 50 more rows
Boxplotcu50ppm <- boxplot(dfcu_50ppm$Area_herida ~ dfcu_50ppm$Dia, frame.plot=F)

dfcu_50ppm <- dfcu_50ppm[!(dfcu_50ppm$Area_herida %in% Boxplotcu50ppm$out),]
dfcu50ppmprom <- dfcu_50ppm %>%
  group_by(Dia) %>%
  summarise(Area_prom_cu50ppm = mean(Area_herida))
dfcu_Controlcomercial = Curativo1df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="Control comercial\r\n")

dfcu_Controlcomercial <- na.omit(dfcu_Controlcomercial)
dfcu_Controlcomercial
## # A tibble: 54 × 4
## # Groups:   Dia, Area_herida [54]
##    Numero_petalo Tratamiento               Dia Area_herida
##            <dbl> <chr>                   <dbl>       <dbl>
##  1             7 "Control comercial\r\n"     1       0.159
##  2            18 "Control comercial\r\n"     1       0.21 
##  3            22 "Control comercial\r\n"     1       0.122
##  4            28 "Control comercial\r\n"     1       0.103
##  5            45 "Control comercial\r\n"     1       0.141
##  6            58 "Control comercial\r\n"     1       0.102
##  7            71 "Control comercial\r\n"     1       0.147
##  8            83 "Control comercial\r\n"     1       0.205
##  9            96 "Control comercial\r\n"     1       0.207
## 10             7 "Control comercial\r\n"     2       0.371
## # ℹ 44 more rows
BoxplotcuControlcomercial <- boxplot(dfcu_Controlcomercial$Area_herida ~ dfcu_Controlcomercial$Dia, frame.plot=F)

dfcu_Controlcomercial <- dfcu_Controlcomercial[!(dfcu_Controlcomercial$Area_herida %in% BoxplotcuControlcomercial$out),]
dfcuControlcomercialprom <- dfcu_Controlcomercial %>%
  group_by(Dia) %>%
  summarise(Area_prom_cuControlcomercial = mean(Area_herida))
dfcu_Control = Curativo1df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="Control absoluto\r\n")

dfcu_Control <- na.omit(dfcu_Control)
dfcu_Control
## # A tibble: 55 × 4
## # Groups:   Dia, Area_herida [54]
##    Numero_petalo Tratamiento              Dia Area_herida
##            <dbl> <chr>                  <dbl>       <dbl>
##  1           103 "Control absoluto\r\n"     1       0    
##  2           103 "Control absoluto\r\n"     2       0    
##  3           103 "Control absoluto\r\n"     3       0.116
##  4           103 "Control absoluto\r\n"     4       1.29 
##  5           103 "Control absoluto\r\n"     5       3.55 
##  6           103 "Control absoluto\r\n"     6       8.42 
##  7           104 "Control absoluto\r\n"     1       0.028
##  8           104 "Control absoluto\r\n"     2       0.169
##  9           104 "Control absoluto\r\n"     3       1.07 
## 10           104 "Control absoluto\r\n"     4       3.77 
## # ℹ 45 more rows
BoxplotcuControl <- boxplot(dfcu_Control$Area_herida ~ dfcu_Control$Dia, frame.plot=F)

dfcu_Control <- dfcu_Control[!(dfcu_Control $Area_herida %in% BoxplotcuControl),]
dfcuControlprom <- dfcu_Control %>%
  group_by(Dia) %>%
  summarise(Area_prom_cuControl = mean(Area_herida))
library(agricolae)
library(ggplot2)
audpccu100ppm <- agricolae::audpc(dfcu100ppmprom$Area_prom_cu100ppm,dfcu100ppmprom$Dia)

Graficocu100ppm <- ggplot(dfcu100ppmprom, aes(Dia, Area_prom_cu100ppm)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_cu100ppm),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2.5, y = 2.5, label = paste("AUDPC", round(audpccu100ppm,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal()  + labs(x="Día", y= "Área promedio afectada", title = "100 ppm")

Graficocu100ppm

audpccu1ppm <- agricolae::audpc(dfcu1ppmprom$Area_prom_cu1ppm,dfcu1ppmprom$Dia)

Graficocu1ppm <- ggplot(dfcu1ppmprom, aes(Dia, Area_prom_cu1ppm)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_cu1ppm),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2.5, y = 2.5, label = paste("AUDPC", round(audpccu1ppm,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal()  + labs(x="Día", y= "Área promedio afectada", title = "1 ppm")
Graficocu1ppm

audpccu50ppm <- agricolae::audpc(dfcu50ppmprom$Area_prom_cu50ppm,dfcu50ppmprom$Dia)

Graficocu50ppm <- ggplot(dfcu50ppmprom, aes(Dia, Area_prom_cu50ppm)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_cu50ppm),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2.5, y = 2.5, label = paste("AUDPC", round(audpccu50ppm,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal()  + labs(x="Día", y= "Área promedio afectada", title = "50 ppm")
Graficocu50ppm

audpccuControlcomercial <- agricolae::audpc(dfcuControlcomercialprom$Area_prom_cuControlcomercial,dfcuControlcomercialprom$Dia)

GraficocuControlcomercial <- ggplot(dfcuControlcomercialprom, aes(Dia, Area_prom_cuControlcomercial)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_cuControlcomercial),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2.5, y = 2.5, label = paste("AUDPC", round(audpccuControlcomercial,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal()  + labs(x="Día", y= "Área promedio afectada", title = "Control comercial")
GraficocuControlcomercial

audpccuControl <- agricolae::audpc(dfcuControlprom$Area_prom_cuControl,dfcuControlprom$Dia)

GraficocuControl <- ggplot(dfcuControlprom, aes(Dia, Area_prom_cuControl)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_cuControl),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2.5, y = 2.5, label = paste("AUDPC", round(audpccuControl,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal() +  labs(x="Día", y= "Área promedio afectada", title = "Control")
GraficocuControl

barplotcu1 <- data.frame(
"Tratamiento" = as.factor(c("100 ppm","50 ppm", "1 ppm","Control comercial", "Control" )), "AUDPC" = c(audpccu100ppm,audpccu50ppm,audpccu1ppm,audpccuControlcomercial,audpccuControl))

barplotcu1 <- as.data.frame(barplotcu1)
barplotcu1
##         Tratamiento    AUDPC
## 1           100 ppm 15.56900
## 2            50 ppm 11.81850
## 3             1 ppm 15.77540
## 4 Control comercial 14.53283
## 5           Control 22.97095
barplotcu1f <-ggplot(barplotcu1, aes(Tratamiento, AUDPC)) + geom_bar(width = 0.5, stat='identity') 
 barplotcu1f

library(patchwork)
Combcu_plot <- Graficocu1ppm+Graficocu50ppm+Graficocu100ppm+GraficocuControlcomercial+GraficocuControl+barplotcu1f
Combcu_plot