library(readxl)
ruta_excel <- "C:\\Users\\jdom3\\Desktop\\Datos tesis.xlsx"
Curativo1df <- read_excel(ruta_excel, sheet = 'Curativo - Exp 1 vertical')
Curativo1df
## # A tibble: 288 × 4
## Numero_petalo Tratamiento Dia Area_herida
## <dbl> <chr> <dbl> <dbl>
## 1 7 "Control comercial\r\n" 1 0.159
## 2 18 "Control comercial\r\n" 1 0.21
## 3 22 "Control comercial\r\n" 1 0.122
## 4 28 "Control comercial\r\n" 1 0.103
## 5 45 "Control comercial\r\n" 1 0.141
## 6 58 "Control comercial\r\n" 1 0.102
## 7 71 "Control comercial\r\n" 1 0.147
## 8 83 "Control comercial\r\n" 1 0.205
## 9 96 "Control comercial\r\n" 1 0.207
## 10 4 "100 ppm" 1 0.097
## # ℹ 278 more rows
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
dfcu_100ppm = Curativo1df|>
group_by(Dia,Area_herida) |>
filter (Tratamiento=="100 ppm")
dfcu_100ppm <- na.omit(dfcu_100ppm)
dfcu_100ppm
## # A tibble: 54 × 4
## # Groups: Dia, Area_herida [54]
## Numero_petalo Tratamiento Dia Area_herida
## <dbl> <chr> <dbl> <dbl>
## 1 4 100 ppm 1 0.097
## 2 13 100 ppm 1 0.171
## 3 35 100 ppm 1 0.2
## 4 55 100 ppm 1 0.16
## 5 74 100 ppm 1 0.148
## 6 75 100 ppm 1 0.107
## 7 86 100 ppm 1 0.116
## 8 88 100 ppm 1 0.095
## 9 93 100 ppm 1 0.18
## 10 4 100 ppm 2 0.308
## # ℹ 44 more rows
Boxplotcu100ppm <- boxplot(dfcu_100ppm$Area_herida ~ dfcu_100ppm$Dia, frame.plot=F)

df_cu100ppm <- dfcu_100ppm[!(dfcu_100ppm$Area_herida %in% Boxplotcu100ppm$out),]
dfcu100ppmprom <- dfcu_100ppm %>%
group_by(Dia) %>%
summarise(Area_prom_cu100ppm = mean(Area_herida))
dfcu_1ppm = Curativo1df|>
group_by(Dia,Area_herida) |>
filter (Tratamiento=="1 ppm")
dfcu_1ppm <- na.omit(dfcu_1ppm)
dfcu_1ppm
## # A tibble: 60 × 4
## # Groups: Dia, Area_herida [60]
## Numero_petalo Tratamiento Dia Area_herida
## <dbl> <chr> <dbl> <dbl>
## 1 23 1 ppm 1 0.159
## 2 24 1 ppm 1 0.149
## 3 38 1 ppm 1 0.178
## 4 39 1 ppm 1 0.115
## 5 40 1 ppm 1 0.128
## 6 42 1 ppm 1 0.118
## 7 50 1 ppm 1 0.223
## 8 57 1 ppm 1 0.119
## 9 70 1 ppm 1 0.202
## 10 99 1 ppm 1 0.135
## # ℹ 50 more rows
Boxplotcu1ppm <- boxplot(dfcu_1ppm$Area_herida ~ dfcu_1ppm$Dia, frame.plot=F)

dfcu_1ppm <- dfcu_1ppm[!(dfcu_1ppm$Area_herida %in% Boxplotcu1ppm$out),]
dfcu1ppmprom <- dfcu_1ppm %>%
group_by(Dia) %>%
summarise(Area_prom_cu1ppm = mean(Area_herida))
dfcu_50ppm = Curativo1df|>
group_by(Dia,Area_herida) |>
filter (Tratamiento=="50 ppm")
dfcu_50ppm <- na.omit(dfcu_50ppm)
dfcu_50ppm
## # A tibble: 60 × 4
## # Groups: Dia, Area_herida [59]
## Numero_petalo Tratamiento Dia Area_herida
## <dbl> <chr> <dbl> <dbl>
## 1 1 50 ppm 1 0.218
## 2 2 50 ppm 1 0.167
## 3 8 50 ppm 1 0.224
## 4 15 50 ppm 1 0.049
## 5 16 50 ppm 1 0.227
## 6 19 50 ppm 1 0
## 7 51 50 ppm 1 0.238
## 8 77 50 ppm 1 0.144
## 9 89 50 ppm 1 0.193
## 10 100 50 ppm 1 0.133
## # ℹ 50 more rows
Boxplotcu50ppm <- boxplot(dfcu_50ppm$Area_herida ~ dfcu_50ppm$Dia, frame.plot=F)

dfcu_50ppm <- dfcu_50ppm[!(dfcu_50ppm$Area_herida %in% Boxplotcu50ppm$out),]
dfcu50ppmprom <- dfcu_50ppm %>%
group_by(Dia) %>%
summarise(Area_prom_cu50ppm = mean(Area_herida))
dfcu_Controlcomercial = Curativo1df|>
group_by(Dia,Area_herida) |>
filter (Tratamiento=="Control comercial\r\n")
dfcu_Controlcomercial <- na.omit(dfcu_Controlcomercial)
dfcu_Controlcomercial
## # A tibble: 54 × 4
## # Groups: Dia, Area_herida [54]
## Numero_petalo Tratamiento Dia Area_herida
## <dbl> <chr> <dbl> <dbl>
## 1 7 "Control comercial\r\n" 1 0.159
## 2 18 "Control comercial\r\n" 1 0.21
## 3 22 "Control comercial\r\n" 1 0.122
## 4 28 "Control comercial\r\n" 1 0.103
## 5 45 "Control comercial\r\n" 1 0.141
## 6 58 "Control comercial\r\n" 1 0.102
## 7 71 "Control comercial\r\n" 1 0.147
## 8 83 "Control comercial\r\n" 1 0.205
## 9 96 "Control comercial\r\n" 1 0.207
## 10 7 "Control comercial\r\n" 2 0.371
## # ℹ 44 more rows
BoxplotcuControlcomercial <- boxplot(dfcu_Controlcomercial$Area_herida ~ dfcu_Controlcomercial$Dia, frame.plot=F)

dfcu_Controlcomercial <- dfcu_Controlcomercial[!(dfcu_Controlcomercial$Area_herida %in% BoxplotcuControlcomercial$out),]
dfcuControlcomercialprom <- dfcu_Controlcomercial %>%
group_by(Dia) %>%
summarise(Area_prom_cuControlcomercial = mean(Area_herida))
dfcu_Control = Curativo1df|>
group_by(Dia,Area_herida) |>
filter (Tratamiento=="Control absoluto\r\n")
dfcu_Control <- na.omit(dfcu_Control)
dfcu_Control
## # A tibble: 55 × 4
## # Groups: Dia, Area_herida [54]
## Numero_petalo Tratamiento Dia Area_herida
## <dbl> <chr> <dbl> <dbl>
## 1 103 "Control absoluto\r\n" 1 0
## 2 103 "Control absoluto\r\n" 2 0
## 3 103 "Control absoluto\r\n" 3 0.116
## 4 103 "Control absoluto\r\n" 4 1.29
## 5 103 "Control absoluto\r\n" 5 3.55
## 6 103 "Control absoluto\r\n" 6 8.42
## 7 104 "Control absoluto\r\n" 1 0.028
## 8 104 "Control absoluto\r\n" 2 0.169
## 9 104 "Control absoluto\r\n" 3 1.07
## 10 104 "Control absoluto\r\n" 4 3.77
## # ℹ 45 more rows
BoxplotcuControl <- boxplot(dfcu_Control$Area_herida ~ dfcu_Control$Dia, frame.plot=F)

dfcu_Control <- dfcu_Control[!(dfcu_Control $Area_herida %in% BoxplotcuControl),]
dfcuControlprom <- dfcu_Control %>%
group_by(Dia) %>%
summarise(Area_prom_cuControl = mean(Area_herida))
library(agricolae)
library(ggplot2)
audpccu100ppm <- agricolae::audpc(dfcu100ppmprom$Area_prom_cu100ppm,dfcu100ppmprom$Dia)
Graficocu100ppm <- ggplot(dfcu100ppmprom, aes(Dia, Area_prom_cu100ppm)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_cu100ppm),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2.5, y = 2.5, label = paste("AUDPC", round(audpccu100ppm,2))),
aes(x = x, y = y, label = label),
size = 4, hjust = 1, vjust = 1)+
theme_minimal() + labs(x="Día", y= "Área promedio afectada", title = "100 ppm")
Graficocu100ppm

audpccu1ppm <- agricolae::audpc(dfcu1ppmprom$Area_prom_cu1ppm,dfcu1ppmprom$Dia)
Graficocu1ppm <- ggplot(dfcu1ppmprom, aes(Dia, Area_prom_cu1ppm)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_cu1ppm),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2.5, y = 2.5, label = paste("AUDPC", round(audpccu1ppm,2))),
aes(x = x, y = y, label = label),
size = 4, hjust = 1, vjust = 1)+
theme_minimal() + labs(x="Día", y= "Área promedio afectada", title = "1 ppm")
Graficocu1ppm

audpccu50ppm <- agricolae::audpc(dfcu50ppmprom$Area_prom_cu50ppm,dfcu50ppmprom$Dia)
Graficocu50ppm <- ggplot(dfcu50ppmprom, aes(Dia, Area_prom_cu50ppm)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_cu50ppm),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2.5, y = 2.5, label = paste("AUDPC", round(audpccu50ppm,2))),
aes(x = x, y = y, label = label),
size = 4, hjust = 1, vjust = 1)+
theme_minimal() + labs(x="Día", y= "Área promedio afectada", title = "50 ppm")
Graficocu50ppm

audpccuControlcomercial <- agricolae::audpc(dfcuControlcomercialprom$Area_prom_cuControlcomercial,dfcuControlcomercialprom$Dia)
GraficocuControlcomercial <- ggplot(dfcuControlcomercialprom, aes(Dia, Area_prom_cuControlcomercial)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_cuControlcomercial),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2.5, y = 2.5, label = paste("AUDPC", round(audpccuControlcomercial,2))),
aes(x = x, y = y, label = label),
size = 4, hjust = 1, vjust = 1)+
theme_minimal() + labs(x="Día", y= "Área promedio afectada", title = "Control comercial")
GraficocuControlcomercial

audpccuControl <- agricolae::audpc(dfcuControlprom$Area_prom_cuControl,dfcuControlprom$Dia)
GraficocuControl <- ggplot(dfcuControlprom, aes(Dia, Area_prom_cuControl)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_cuControl),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2.5, y = 2.5, label = paste("AUDPC", round(audpccuControl,2))),
aes(x = x, y = y, label = label),
size = 4, hjust = 1, vjust = 1)+
theme_minimal() + labs(x="Día", y= "Área promedio afectada", title = "Control")
GraficocuControl

barplotcu1 <- data.frame(
"Tratamiento" = as.factor(c("100 ppm","50 ppm", "1 ppm","Control comercial", "Control" )), "AUDPC" = c(audpccu100ppm,audpccu50ppm,audpccu1ppm,audpccuControlcomercial,audpccuControl))
barplotcu1 <- as.data.frame(barplotcu1)
barplotcu1
## Tratamiento AUDPC
## 1 100 ppm 15.56900
## 2 50 ppm 11.81850
## 3 1 ppm 15.77540
## 4 Control comercial 14.53283
## 5 Control 22.97095
barplotcu1f <-ggplot(barplotcu1, aes(Tratamiento, AUDPC)) + geom_bar(width = 0.5, stat='identity')
barplotcu1f

library(patchwork)
Combcu_plot <- Graficocu1ppm+Graficocu50ppm+Graficocu100ppm+GraficocuControlcomercial+GraficocuControl+barplotcu1f
Combcu_plot
