library(readxl)

ruta_excel <- "C:\\Users\\jdom3\\Desktop\\Datos tesis.xlsx"

Preventivo1df <- read_excel(ruta_excel, sheet = 'Preventivo - Exp 1 vertical')
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
df_100ppm = Preventivo1df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="100 ppm")

df_100ppm <- na.omit(df_100ppm)
df_100ppm
## # A tibble: 36 × 4
## # Groups:   Dia, Area_herida [35]
##    Numero_petalo Tratamiento   Dia Area_herida
##            <dbl> <chr>       <dbl>       <dbl>
##  1            32 100 ppm         1       0    
##  2            63 100 ppm         1       0.269
##  3            80 100 ppm         1       0.088
##  4            81 100 ppm         1       0.464
##  5            85 100 ppm         1       0    
##  6            87 100 ppm         1       0.22 
##  7            91 100 ppm         1       0.405
##  8            94 100 ppm         1       0.222
##  9            32 100 ppm         2       0.605
## 10            63 100 ppm         2       0.777
## # ℹ 26 more rows
Boxplot100ppm <- boxplot(df_100ppm$Area_herida ~ df_100ppm$Dia, frame.plot=F)

df_100ppm <- df_100ppm[!(df_100ppm$Area_herida %in% Boxplot100ppm$out),]
df100ppmprom <- df_100ppm %>%
  group_by(Dia) %>%
  summarise(Area_prom_100ppm = mean(Area_herida))
df_1ppm = Preventivo1df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="1 ppm")

df_1ppm <- na.omit(df_1ppm)
df_1ppm
## # A tibble: 33 × 4
## # Groups:   Dia, Area_herida [33]
##    Numero_petalo Tratamiento   Dia Area_herida
##            <dbl> <chr>       <dbl>       <dbl>
##  1             5 1 ppm           1       0.112
##  2             5 1 ppm           2       0.387
##  3             5 1 ppm           3       0.965
##  4             5 1 ppm           4       6.06 
##  5             5 1 ppm           5      10.1  
##  6            14 1 ppm           1       0    
##  7            14 1 ppm           2       0.939
##  8            14 1 ppm           3       3.09 
##  9            14 1 ppm           4       6.78 
## 10            14 1 ppm           5      12.3  
## # ℹ 23 more rows
Boxplot1ppm <- boxplot(df_1ppm$Area_herida ~ df_1ppm$Dia, frame.plot=F)

df_1ppm <- df_1ppm[!(df_1ppm$Area_herida %in% Boxplot1ppm$out),]
df1ppmprom <- df_1ppm %>%
  group_by(Dia) %>%
  summarise(Area_prom_1ppm = mean(Area_herida))
df_50ppm = Preventivo1df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="50 ppm")

df_50ppm <- na.omit(df_50ppm)
df_50ppm
## # A tibble: 41 × 4
## # Groups:   Dia, Area_herida [36]
##    Numero_petalo Tratamiento   Dia Area_herida
##            <dbl> <chr>       <dbl>       <dbl>
##  1            12 50 ppm          1       0    
##  2            20 50 ppm          1       0    
##  3            37 50 ppm          1       0.128
##  4            47 50 ppm          1       0.536
##  5            49 50 ppm          1       0    
##  6            52 50 ppm          1       0    
##  7            60 50 ppm          1       0.172
##  8            78 50 ppm          1       0    
##  9            95 50 ppm          1       0    
## 10            12 50 ppm          2       0.874
## # ℹ 31 more rows
Boxplot50ppm <- boxplot(df_50ppm$Area_herida ~ df_50ppm$Dia, frame.plot=F)

df_50ppm <- df_50ppm[!(df_50ppm$Area_herida %in% Boxplot50ppm$out),]
df50ppmprom <- df_50ppm %>%
  group_by(Dia) %>%
  summarise(Area_prom_50ppm = mean(Area_herida))
df_Controlcomercial = Preventivo1df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="Control comercial")

df_Controlcomercial <- na.omit(df_Controlcomercial)
df_Controlcomercial
## # A tibble: 18 × 4
## # Groups:   Dia, Area_herida [17]
##    Numero_petalo Tratamiento         Dia Area_herida
##            <dbl> <chr>             <dbl>       <dbl>
##  1            10 Control comercial     1       0    
##  2            17 Control comercial     1       0.194
##  3            43 Control comercial     1       0.965
##  4            54 Control comercial     1       0    
##  5            98 Control comercial     1       0.242
##  6            10 Control comercial     2       1.37 
##  7            17 Control comercial     2       1.07 
##  8            43 Control comercial     2       3.38 
##  9            54 Control comercial     2       2.92 
## 10            98 Control comercial     2       2.21 
## 11            10 Control comercial     3       5.21 
## 12            17 Control comercial     3       2.82 
## 13            43 Control comercial     3       7.87 
## 14            54 Control comercial     3      10.9  
## 15            98 Control comercial     3       9.80 
## 16            10 Control comercial     4      11.1  
## 17            17 Control comercial     4       8.00 
## 18            43 Control comercial     4      10.2
BoxplotControlcomercial <- boxplot(df_Controlcomercial$Area_herida ~ df_Controlcomercial$Dia, frame.plot=F)

df_Controlcomercial <- df_Controlcomercial[!(df_Controlcomercial$Area_herida %in% BoxplotControlcomercial$out),]
dfControlcomercialprom <- df_Controlcomercial %>%
  group_by(Dia) %>%
  summarise(Area_prom_Controlcomercial = mean(Area_herida))
df_Control = Preventivo1df|>
  group_by(Dia,Area_herida) |>
  filter (Tratamiento=="Control absoluto\r\n")

df_Control <- na.omit(df_Control)
df_Control
## # A tibble: 40 × 4
## # Groups:   Dia, Area_herida [40]
##    Numero_petalo Tratamiento              Dia Area_herida
##            <dbl> <chr>                  <dbl>       <dbl>
##  1           101 "Control absoluto\r\n"     1       0.067
##  2           101 "Control absoluto\r\n"     2       0.182
##  3           101 "Control absoluto\r\n"     3       0.601
##  4           101 "Control absoluto\r\n"     4       2.52 
##  5           102 "Control absoluto\r\n"     1       0.053
##  6           102 "Control absoluto\r\n"     2       0.521
##  7           102 "Control absoluto\r\n"     3       1.61 
##  8           102 "Control absoluto\r\n"     4       5.65 
##  9           105 "Control absoluto\r\n"     1       0.105
## 10           105 "Control absoluto\r\n"     2       0.235
## # ℹ 30 more rows
BoxplotControl <- boxplot(df_Control$Area_herida ~ df_Control$Dia, frame.plot=F)

df_Control <- df_Control[!(df_Control $Area_herida %in% BoxplotControl$out),]
dfControlprom <- df_Control %>%
  group_by(Dia) %>%
  summarise(Area_prom_Control = mean(Area_herida))
library(agricolae)
library(ggplot2)
df100ppmprom
## # A tibble: 5 × 2
##     Dia Area_prom_100ppm
##   <dbl>            <dbl>
## 1     1            0.209
## 2     2            1.08 
## 3     3            2.89 
## 4     4            8.01 
## 5     5            9.05
audpc100ppm <- (agricolae::audpc(df100ppmprom$Area_prom_100ppm,df100ppmprom$Dia)/5)

Grafico100ppm <- ggplot(df100ppmprom, aes(Dia, Area_prom_100ppm)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_100ppm),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2, y = 2.5, label = paste('AUDPCS', round(audpc100ppm,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal() + labs(x= 'Día' , y = 'Área promedio afectada', title = '100 ppm')
Grafico100ppm

df100ppmprom$Area_prom_100ppm
## [1] 0.208500 1.084625 2.893000 8.014625 9.047000
audpc1ppm <- (agricolae::audpc(df1ppmprom$Area_prom_1ppm,df1ppmprom$Dia)/5)

Grafico1ppm <- ggplot(df1ppmprom, aes(Dia, Area_prom_1ppm)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_1ppm),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2, y = 2.5, label = paste("AUDPCS", round(audpc1ppm,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal()  + labs(x="Día", y= "Área promedio afectada", title = "1 ppm")
Grafico1ppm

audpc50ppm <- (agricolae::audpc(df50ppmprom$Area_prom_50ppm,df50ppmprom$Dia)/5)

Grafico50ppm <- ggplot(df50ppmprom, aes(Dia, Area_prom_50ppm)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_50ppm),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2, y = 2.5, label = paste("AUDPCS", round(audpc50ppm,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal()  + labs(x="Día", y= "Área promedio afectada", title = "50 ppm")
Grafico50ppm

audpcControlcomercial <- (agricolae::audpc(dfControlcomercialprom$Area_prom_Controlcomercial,dfControlcomercialprom$Dia)/4)

GraficoControlcomercial <- ggplot(dfControlcomercialprom, aes(Dia, Area_prom_Controlcomercial)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_Controlcomercial),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2, y = 2.5, label = paste("AUDPCS", round(audpcControlcomercial,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal()  + labs(x="Día", y= "Área promedio afectada", title = "Control comercial")
GraficoControlcomercial

audpcControl <- (agricolae::audpc(dfControlprom$Area_prom_Control,dfControlprom$Dia )/4)

GraficoControl <- ggplot(dfControlprom, aes(Dia, Area_prom_Control)) + geom_rect(aes(xmin = Dia - 0.5, xmax = Dia + 0.5, ymin = 0, ymax = Area_prom_Control),fill = "#1874CD", color = "black", alpha = 0.1 ) + geom_line()+
geom_text(data = data.frame(x = 2, y = 2.5, label = paste("AUDPCS", round(audpcControl,2))),
            aes(x = x, y = y, label = label),
            size = 4, hjust = 1, vjust = 1)+
  theme_minimal()  + labs(x="Día", y= "Área promedio afectada", title = "Control")
GraficoControl

barplotpr1 <- data.frame(
"Tratamiento" = as.factor(c("100 ppm","50 ppm", "1 ppm","Control comercial", "Control" )), "AUDPCS" = c(audpc100ppm,audpc50ppm,audpc1ppm,audpcControlcomercial,audpcControl))

barplotpr1 <- as.data.frame(barplotpr1)
barplotpr1
##         Tratamiento   AUDPCS
## 1           100 ppm 3.324000
## 2            50 ppm 3.122539
## 3             1 ppm 3.413846
## 4 Control comercial 3.612808
## 5           Control 1.124616
barplotpr1f <-ggplot(barplotpr1, aes(Tratamiento, AUDPCS)) + geom_bar(width = 0.5, stat='identity') 
 barplotpr1f

library(patchwork)
Comb_plot <- Grafico1ppm+Grafico50ppm+Grafico100ppm+GraficoControlcomercial+GraficoControl+ barplotpr1f
Comb_plot

barplotpr1 <- as.data.frame(barplotpr1)
barplotpr1
##         Tratamiento   AUDPCS
## 1           100 ppm 3.324000
## 2            50 ppm 3.122539
## 3             1 ppm 3.413846
## 4 Control comercial 3.612808
## 5           Control 1.124616
Tratamientopr1 = as.factor(barplotpr1$Tratamiento)
AUDPCSpr1 = as.vector(barplotpr1$AUDPCS)
ruta_excel <- "C:\\Users\\jdom3\\Desktop\\Datos tesis.xlsx"

Preventivo1df <- read_excel(ruta_excel, sheet = 'Preventivo - Exp 1 vertical')