# Load packages
library(tidyverse)
library(tidyquant)

1 Get stock prices and convert to returns

Ra <- c("AAPL", "VRTX", "NFLX") %>%
    tq_get(get  = "stock.prices",
           from = "2023-01-01") %>%
    group_by(symbol) %>%
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly", 
                 col_rename = "Ra")
Ra
## # A tibble: 51 × 3
## # Groups:   symbol [3]
##    symbol date             Ra
##    <chr>  <date>        <dbl>
##  1 AAPL   2023-01-31  0.154  
##  2 AAPL   2023-02-28  0.0232 
##  3 AAPL   2023-03-31  0.119  
##  4 AAPL   2023-04-28  0.0290 
##  5 AAPL   2023-05-31  0.0461 
##  6 AAPL   2023-06-30  0.0943 
##  7 AAPL   2023-07-31  0.0128 
##  8 AAPL   2023-08-31 -0.0424 
##  9 AAPL   2023-09-29 -0.0887 
## 10 AAPL   2023-10-31 -0.00257
## # ℹ 41 more rows

2 Get baseline and convert to returns

Rb <- "^IXIC" %>%
    tq_get(get  = "stock.prices",
           from = "2022-01-01") %>%
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly", 
                 col_rename = "Rb")
Rb
## # A tibble: 29 × 2
##    date            Rb
##    <date>       <dbl>
##  1 2022-01-31 -0.101 
##  2 2022-02-28 -0.0343
##  3 2022-03-31  0.0341
##  4 2022-04-29 -0.133 
##  5 2022-05-31 -0.0205
##  6 2022-06-30 -0.0871
##  7 2022-07-29  0.123 
##  8 2022-08-31 -0.0464
##  9 2022-09-30 -0.105 
## 10 2022-10-31  0.0390
## # ℹ 19 more rows

3 Join the two tables

RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 51 × 4
## # Groups:   symbol [3]
##    symbol date             Ra        Rb
##    <chr>  <date>        <dbl>     <dbl>
##  1 AAPL   2023-01-31  0.154    0.107   
##  2 AAPL   2023-02-28  0.0232  -0.0111  
##  3 AAPL   2023-03-31  0.119    0.0669  
##  4 AAPL   2023-04-28  0.0290   0.000382
##  5 AAPL   2023-05-31  0.0461   0.0580  
##  6 AAPL   2023-06-30  0.0943   0.0659  
##  7 AAPL   2023-07-31  0.0128   0.0405  
##  8 AAPL   2023-08-31 -0.0424  -0.0217  
##  9 AAPL   2023-09-29 -0.0887  -0.0581  
## 10 AAPL   2023-10-31 -0.00257 -0.0278  
## # ℹ 41 more rows

4 Calculate CAPM

RaRb_capm <- RaRb %>%
    tq_performance(Ra = Ra, 
                   Rb = Rb, 
                   performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups:   symbol [3]
##   symbol ActivePremium   Alpha AnnualizedAlpha  Beta `Beta-` `Beta+` Correlation
##   <chr>          <dbl>   <dbl>           <dbl> <dbl>   <dbl>   <dbl>       <dbl>
## 1 AAPL         -0.0526 -0.005          -0.0585 1.09    1.71    1.61        0.798
## 2 VRTX         -0.0117  0.0108          0.138  0.663  -0.988   0.295       0.442
## 3 NFLX          0.337   0.0049          0.0607 1.59    1.99    1.54        0.769
## # ℹ 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## #   `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>

Which stock has a positively skewed distribution of returns?

RaRb_capm <- RaRb %>%
    tq_performance(Ra = Ra, 
                   Rb = Rb, 
                   performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups:   symbol [3]
##   symbol ActivePremium   Alpha AnnualizedAlpha  Beta `Beta-` `Beta+` Correlation
##   <chr>          <dbl>   <dbl>           <dbl> <dbl>   <dbl>   <dbl>       <dbl>
## 1 AAPL         -0.0526 -0.005          -0.0585 1.09    1.71    1.61        0.798
## 2 VRTX         -0.0117  0.0108          0.138  0.663  -0.988   0.295       0.442
## 3 NFLX          0.337   0.0049          0.0607 1.59    1.99    1.54        0.769
## # ℹ 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## #   `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>