# Load packages
library(tidyverse)
library(tidyquant)
Ra <- c("NVDA", "AMD", "MSFT") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 87 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 NVDA 2022-01-31 -0.187
## 2 NVDA 2022-02-28 -0.00412
## 3 NVDA 2022-03-31 0.119
## 4 NVDA 2022-04-29 -0.320
## 5 NVDA 2022-05-31 0.00674
## 6 NVDA 2022-06-30 -0.188
## 7 NVDA 2022-07-29 0.198
## 8 NVDA 2022-08-31 -0.169
## 9 NVDA 2022-09-30 -0.196
## 10 NVDA 2022-10-31 0.112
## # ℹ 77 more rows
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 29 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-31 0.0390
## # ℹ 19 more rows
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 87 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 NVDA 2022-01-31 -0.187 -0.101
## 2 NVDA 2022-02-28 -0.00412 -0.0343
## 3 NVDA 2022-03-31 0.119 0.0341
## 4 NVDA 2022-04-29 -0.320 -0.133
## 5 NVDA 2022-05-31 0.00674 -0.0205
## 6 NVDA 2022-06-30 -0.188 -0.0871
## 7 NVDA 2022-07-29 0.198 0.123
## 8 NVDA 2022-08-31 -0.169 -0.0464
## 9 NVDA 2022-09-30 -0.196 -0.105
## 10 NVDA 2022-10-31 0.112 0.0390
## # ℹ 77 more rows
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 NVDA 0.705 0.0517 0.830 2.31 3.06 1.26 0.880
## 2 AMD 0.0262 0.0095 0.121 1.92 2.93 2.15 0.774
## 3 MSFT 0.0892 0.0078 0.0976 0.825 0.910 0.543 0.819
## # ℹ 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>
Both AMD and Microsoft have positive skeweness while Nvidia has a negative skewness.
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = NULL,
performance_fun = skewness)
RaRb_capm
## # A tibble: 3 × 2
## # Groups: symbol [3]
## symbol skewness.1
## <chr> <dbl>
## 1 NVDA -0.231
## 2 AMD 0.0948
## 3 MSFT 0.148