Table

## Column

Economic Indicator

Table Forecast Inflation Rate

         Point.Forecast       Lo.95    Hi.95
Jan 2022      0.4013526 -0.90620174 1.708907
Feb 2022      0.4915134 -1.31209506 2.295122
Mar 2022      0.5971463 -1.44653678 2.640829
Apr 2022      0.8524542 -1.32226852 3.027177
May 2022      1.2972387 -0.95226019 3.546738
Jun 2022      1.4727085 -0.82037623 3.765793
Jul 2022      1.6493120 -0.66946573 3.968090
Aug 2022      1.6939816 -0.64003714 4.028000
Sep 2022      1.5253069 -0.81778498 3.868399
Oct 2022      1.6754646 -0.67303908 4.023968
Nov 2022      1.9320691 -0.41966498 4.283803
Dec 2022      2.4260296  0.07236842 4.779691

Table Forecast GDP Growth Rate

         Point.Forecast       Lo.95       Hi.95
Jan 2022    0.002841517 0.002403781 0.003279252
Feb 2022    0.002841517 0.002222466 0.003460568
Mar 2022    0.002841517 0.002083337 0.003599696
Apr 2022    0.002841517 0.001966046 0.003716987
May 2022    0.002841517 0.001862711 0.003820322
Jun 2022    0.002841517 0.001769289 0.003913745
Jul 2022    0.002841517 0.001683378 0.003999655
Aug 2022    0.002841517 0.001603414 0.004079619
Sep 2022    0.002841517 0.001528311 0.004154722
Oct 2022    0.002841517 0.001457276 0.004225757
Nov 2022    0.002841517 0.001389713 0.004293320
Dec 2022    0.002841517 0.001325157 0.004357876

Table Forecast Unemployment Rate

         Point.Forecast    Lo.95    Hi.95
Jan 2022       6.038302 5.036255 7.040349
Feb 2022       6.252249 5.186238 7.318260
Mar 2022       6.882316 5.788034 7.976598
Apr 2022       8.560853 7.443510 9.678197
May 2022       7.006320 5.867145 8.145495
Jun 2022       6.697178 5.536717 7.857638
Jul 2022       6.371531 5.190193 7.552868
Aug 2022       7.236602 6.034754 8.438450
Sep 2022       6.380299 5.158285 7.602312
Oct 2022       7.048062 5.806211 8.289913
Nov 2022       6.791764 5.530386 8.053141
Dec 2022       6.902040 5.621433 8.182646

Table Forecast Interest Rate

         Point.Forecast    Lo.95    Hi.95
Jan 2022       3.499832 3.136561 3.863103
Feb 2022       3.499702 2.924452 4.074951
Mar 2022       3.499600 2.730622 4.268578
Apr 2022       3.499521 2.548112 4.450931
May 2022       3.499460 2.375196 4.623725
Jun 2022       3.499413 2.211107 4.787719
Jul 2022       3.499376 2.055264 4.943488
Aug 2022       3.499347 1.907113 5.091582
Sep 2022       3.499325 1.766099 5.232552
Oct 2022       3.499308 1.631675 5.366941
Nov 2022       3.499295 1.503314 5.495275
Dec 2022       3.499284 1.380518 5.618050

Table Forecast Customer Confidence Index

         Point.Forecast     Lo.95    Hi.95
Jan 2022       111.1713 100.22795 122.1147
Feb 2022       109.9533  94.22468 125.6820
Mar 2022       111.8799  94.03982 129.7199
Apr 2022       114.1986  95.60126 132.7959
May 2022       114.6198  95.48497 133.7545
Jun 2022       114.6715  94.95710 134.3859
Jul 2022       108.0043  87.71298 128.2956
Aug 2022       107.0576  86.31219 127.8031
Sep 2022       111.0072  89.93787 132.0766
Oct 2022       114.8812  93.56961 136.1927
Nov 2022       115.8228  94.31298 137.3325
Dec 2022       115.5677  93.89090 137.2446

Table Forecast Stock Market Index

         Point.Forecast    Lo.95    Hi.95
Jan 2022        6581.48 6114.459 7048.501
Feb 2022        6581.48 5921.013 7241.947
Mar 2022        6581.48 5772.577 7390.383
Apr 2022        6581.48 5647.439 7515.521
May 2022        6581.48 5537.190 7625.770
Jun 2022        6581.48 5437.518 7725.442
Jul 2022        6581.48 5345.860 7817.100
Aug 2022        6581.48 5260.546 7902.414
Sep 2022        6581.48 5180.418 7982.542
Oct 2022        6581.48 5104.631 8058.329
Nov 2022        6581.48 5032.548 8130.412
Dec 2022        6581.48 4963.673 8199.287

Table Forecast Exchange Rate

         Point.Forecast    Lo.95    Hi.95
Jan 2022       14314.58 13832.15 14797.01
Feb 2022       14314.58 13632.32 14996.84
Mar 2022       14314.58 13478.99 15150.18
Apr 2022       14314.58 13349.72 15279.44
May 2022       14314.58 13235.84 15393.33
Jun 2022       14314.58 13132.88 15496.29
Jul 2022       14314.58 13038.19 15590.97
Aug 2022       14314.58 12950.06 15679.10
Sep 2022       14314.58 12867.29 15761.87
Oct 2022       14314.58 12789.01 15840.16
Nov 2022       14314.58 12714.54 15914.62
Dec 2022       14314.58 12643.40 15985.77

Inflation Rate

Row

Decomposition

Row

Plot ACF

Plot PACF

Row

Visualize of Forecast

GDP Growth Rate

Row

Decomposition

Row

Plot ACF

Plot PACF

Row

Visualize of Forecast

Unemployment Rate

Row

Decomposition

Row

Plot ACF

Plot PACF

Row

Visualize of Forecast

Interest Rate

Row

Decomposition

Row

Plot ACF

Plot PACF

Row

Visualize of Forecast

Customer Confidence Index

Row

Decomposition

Row

Plot ACF

Plot PACF

Row

Visualize of Forecast

Stock Market Index

Row

Decomposition

Row

Plot ACF

Plot PACF

Row

Visualize of Forecast

Exchange Rate

Row

Decomposition

Row

Plot ACF

Plot PACF

Row

Visualize of Forecast

---
title: "Report of Timeseries and Regression Analysis Economic Indicator"
output: 
  flexdashboard::flex_dashboard:
    vertical_layout: scroll
    theme: sandstone
    source_code: embed
---

```{r setup, include=FALSE}
# Importing libraries
library(flexdashboard)
library(tidyverse)
library(highcharter)
library(gt)
library(htmltools)
library(viridis)
library(DT)
library(ggplot2)
library(sunburstR)
library(lubridate)
library(plotly)
library(ggplot2)
library(readxl)
library(plotly)
library(tidyverse)
library(lubridate)
library(aTSA)
library(stats)
library(lmtest)
library(forecast)
library(car)
library(nortest)
library(caret)
library(tibble)
```

```{r}
dataecoind <- read_excel("Dataeconomicindicator.xlsx")
```


Table {data-orientation=rows}
=======================================================================

## Column {.tabset .tabset-fade data-height=520}
-----------------------------------------------------------------------

### Economic Indicator {data-height=520}

```{r}
datatable(dataecoind, 
          options=list(scrollX=TRUE),
          caption = htmltools::tags$caption(
    style = 'caption-side: bottom; text-align: center;',
    'Table: ', htmltools::em('Data Economic Indicator')
  ))
```

### Table Forecast Inflation Rate {data-height=520}

```{r fig.height=5}
a <- dataecoind[,c(2)]
a <- ts(a, start = c(2010, 1), frequency = 12)
fig <- plot_ly(dataecoind, x = ~Month, y = ~InR, type = 'scatter', mode = 'lines') %>%
  layout(title = "Inflation Rate")
predicta <- forecast(a, model = auto.arima(a), h=12, level = c(95))
data.frame(predicta)
```

### Table Forecast GDP Growth Rate{data-height=520}

```{r fig.height=5}
b <- dataecoind[,c(3)]
b <- ts(b, start = c(2010, 1), frequency = 12)
fig <- plot_ly(dataecoind, x = ~Month, y = ~GDP, type = 'scatter', mode = 'lines') %>%
  layout(title = "Inflation Rate")
predictb <- forecast(b, model = auto.arima(b), h=12, level = c(95))
data.frame(predictb)
```

### Table Forecast Unemployment Rate {data-height=520}

```{r fig.height=5}
c <- dataecoind[,c(4)]
c <- ts(c, start = c(2010, 1), frequency = 12)
fig <- plot_ly(dataecoind, x = ~Month, y = ~Up, type = 'scatter', mode = 'lines') %>%
  layout(title = "Inflation Rate")
predictc <- forecast(c, model = auto.arima(c), h=12, level = c(95))
data.frame(predictc)
```

### Table Forecast Interest Rate {data-height=520}

```{r fig.height=5}
d <- dataecoind[,c(5)]
d <- ts(d, start = c(2010, 1), frequency = 12)
predictd <- forecast(d, model = auto.arima(d), h=12, level = c(95))
data.frame(predictd)
```

### Table Forecast Customer Confidence Index {data-height=520}

```{r fig.height=5}
e <- dataecoind[,c(6)]
e <- ts(e, start = c(2010, 1), frequency = 12)
predicte <- forecast(e, model = auto.arima(e), h=12, level = c(95))
data.frame(predicte)
```

### Table Forecast Stock Market Index {data-height=520}

```{r fig.height=5}
f <- dataecoind[,c(7)]
f <- ts(f, start = c(2010, 1), frequency = 12)
predictf <- forecast(f, model = auto.arima(f), h=12, level = c(95))
data.frame(predictf)
```

### Table Forecast Exchange Rate {data-height=520}

```{r fig.height=5}
g <- dataecoind[,c(8)]
g <- ts(g, start = c(2010, 1), frequency = 12)
predictg <- forecast(g, model = auto.arima(g), h=12, level = c(95))
data.frame(predictg)
```

Inflation Rate {data-orientation=rows}
=======================================================================

Row {data-width=700}
-----------------------------------------------------------------------
    
### Decomposition
    
```{r message=FALSE, warning=FALSE}
plot(stl(ts(dataecoind$InR, frequency = 12), s.window = "periodic"))
```


Row {data-width=350}
-----------------------------------------------------------------------
    
### Plot ACF
    
```{r message=FALSE, warning=FALSE}
acf(a, lag.max = 36)
```
    
### Plot PACF

```{r}
pacf(a, lag.max = 36)
```

   
Row {data-width=700}
-----------------------------------------------------------------------
    
### Visualize of Forecast

```{r message=FALSE, warning=FALSE}
plot(predicta, main = "Forecast for Inflation Rate")
```

GDP Growth Rate {data-orientation=rows}
=======================================================================

Row {data-width=700}
-----------------------------------------------------------------------
    
### Decomposition
    
```{r message=FALSE, warning=FALSE}
plot(stl(ts(dataecoind$GDP, frequency = 12), s.window = "periodic"))
```


Row {data-width=350}
-----------------------------------------------------------------------
    
### Plot ACF
    
```{r message=FALSE, warning=FALSE}
acf(diff(b), lag.max = 36)
```
    
### Plot PACF

```{r}
pacf(diff(b), lag.max = 36)
```

   
Row {data-width=700}
-----------------------------------------------------------------------
    
### Visualize of Forecast

```{r message=FALSE, warning=FALSE}
plot(predictb, main = "Forecast for GDP Growth Rate")
```


Unemployment Rate {data-orientation=rows}
=======================================================================

Row {data-width=700}
-----------------------------------------------------------------------
    
### Decomposition
    
```{r message=FALSE, warning=FALSE}
plot(stl(ts(dataecoind$Up, frequency = 12), s.window = "periodic"))
```


Row {data-width=350}
-----------------------------------------------------------------------
    
### Plot ACF
    
```{r message=FALSE, warning=FALSE}
acf(diff(c), lag.max = 36)
```
    
### Plot PACF

```{r}
pacf(diff(c), lag.max = 36)
```

   
Row {data-width=700}
-----------------------------------------------------------------------
    
### Visualize of Forecast

```{r message=FALSE, warning=FALSE}
plot(predictc, main = "Forecast for Unemployment Rate")
```

Interest Rate {data-orientation=rows}
=======================================================================

Row {data-width=700}
-----------------------------------------------------------------------
    
### Decomposition
    
```{r message=FALSE, warning=FALSE}
plot(stl(ts(dataecoind$IR, frequency = 12), s.window = "periodic"))
```


Row {data-width=350}
-----------------------------------------------------------------------
    
### Plot ACF
    
```{r message=FALSE, warning=FALSE}
acf(diff(d), lag.max = 36)
```
    
### Plot PACF

```{r}
pacf(diff(d), lag.max = 36)
```

   
Row {data-width=700}
-----------------------------------------------------------------------
    
### Visualize of Forecast

```{r message=FALSE, warning=FALSE}
plot(predictd, main = "Forecast for Interes Rate")
```

Customer Confidence Index {data-orientation=rows}
=======================================================================

Row {data-width=700}
-----------------------------------------------------------------------
    
### Decomposition
    
```{r message=FALSE, warning=FALSE}
plot(stl(ts(dataecoind$CCI, frequency = 12), s.window = "periodic"))
```


Row {data-width=350}
-----------------------------------------------------------------------
    
### Plot ACF
    
```{r message=FALSE, warning=FALSE}
acf(diff(e), lag.max = 36)
```
    
### Plot PACF

```{r}
pacf(diff(e), lag.max = 36)
```

   
Row {data-width=700}
-----------------------------------------------------------------------
    
### Visualize of Forecast

```{r message=FALSE, warning=FALSE}
plot(predicte, main = "Forecast for Customer Confidence Index")
```

Stock Market Index {data-orientation=rows}
=======================================================================

Row {data-width=700}
-----------------------------------------------------------------------
    
### Decomposition
    
```{r message=FALSE, warning=FALSE}
plot(stl(ts(dataecoind$SMI, frequency = 12), s.window = "periodic"))
```


Row {data-width=350}
-----------------------------------------------------------------------
    
### Plot ACF
    
```{r message=FALSE, warning=FALSE}
acf(diff(f), lag.max = 36)
```
    
### Plot PACF

```{r}
pacf(diff(f), lag.max = 36)
```

   
Row {data-width=700}
-----------------------------------------------------------------------
    
### Visualize of Forecast

```{r message=FALSE, warning=FALSE}
plot(predictf, main = "Forecast for Stock Market Index")
```

Exchange Rate {data-orientation=rows}
=======================================================================

Row {data-width=700}
-----------------------------------------------------------------------
    
### Decomposition
    
```{r message=FALSE, warning=FALSE}
plot(stl(ts(dataecoind$ER, frequency = 12), s.window = "periodic"))
```


Row {data-width=350}
-----------------------------------------------------------------------
    
### Plot ACF
    
```{r message=FALSE, warning=FALSE}
acf(diff(g), lag.max = 36)
```
    
### Plot PACF

```{r}
pacf(diff(g), lag.max = 36)
```

   
Row {data-width=700}
-----------------------------------------------------------------------
    
### Visualize of Forecast

```{r message=FALSE, warning=FALSE}
plot(predictg, main = "Forecast for Exchange Rate")
```