| regioes | area_pop | N | area_amo | n |
|---|---|---|---|---|
| Norte | 3853669.8 | 450 | 3448.90 | 2 |
| Nordeste | 1554291.7 | 1794 | 12071.15 | 7 |
| Sudeste | 924617.0 | 1668 | 8622.25 | 5 |
| Sul | 563809.4 | 1191 | 15520.05 | 9 |
| Centro-Oeste | 1606415.2 | 467 | 3448.90 | 2 |
\[ \widehat{Y}_{d} = \frac{N_{d}}{n_{d}}\sum {y_{d}}_{i} \]
| regioes | area_pop | N | area_amo | n | area_estimada |
|---|---|---|---|---|---|
| Norte | 3853669.8 | 450 | 3448.90 | 2 | 1552005 |
| Nordeste | 1554291.7 | 1794 | 12071.15 | 7 | 21655643 |
| Sudeste | 924617.0 | 1668 | 8622.25 | 5 | 14381913 |
| Sul | 563809.4 | 1191 | 15520.05 | 9 | 18484380 |
| Centro-Oeste | 1606415.2 | 467 | 3448.90 | 2 | 1610636 |
\[ ME_{d} = z_{\frac{\alpha}{2}}*\sqrt{N_{d}^{2}*(\frac{1}{n_{d}}-\frac{1}{N_{d}})*s_{d}^2} \]
| regioes | area_pop | N | area_amo | n | area_estimada | margem_erro |
|---|---|---|---|---|---|---|
| Norte | 3853669.8 | 450 | 3448.90 | 2 | 1552005 | 217586.3 |
| Nordeste | 1554291.7 | 1794 | 12071.15 | 7 | 21655643 | 1122617.8 |
| Sudeste | 924617.0 | 1668 | 8622.25 | 5 | 14381913 | 848533.7 |
| Sul | 563809.4 | 1191 | 15520.05 | 9 | 18484380 | 752058.3 |
| Centro-Oeste | 1606415.2 | 467 | 3448.90 | 2 | 1610636 | 303822.6 |
\[ \widehat{Y}_{d} = N * \frac{\sum y_{id}}{n} \]
| regioes | area_pop | N | area_amo | n | area_estimada |
|---|---|---|---|---|---|
| Norte | 3853669.8 | 450 | 3448.90 | 2 | 768414.9 |
| Nordeste | 1554291.7 | 1794 | 12071.15 | 7 | 2689452.2 |
| Sudeste | 924617.0 | 1668 | 8622.25 | 5 | 1921037.3 |
| Sul | 563809.4 | 1191 | 15520.05 | 9 | 3457867.1 |
| Centro-Oeste | 1606415.2 | 467 | 3448.90 | 2 | 768414.9 |
\[ \widehat{V}_{AAS}(\widehat{Y}_{d}) = N^{2}(\frac{1}{n}-\frac{1}{N})\frac{1}{n-1}\sum (y_{id}-\frac{\sum {y_{id}}}{n})^{2} \]
| regioes | area_pop | N | area_amo | n | area_estimada | margem_erro |
|---|---|---|---|---|---|---|
| Norte | 3853669.8 | 450 | 3448.90 | 2 | 768414.9 | 1151327.6 |
| Nordeste | 1554291.7 | 1794 | 12071.15 | 7 | 2689452.2 | 1115016.6 |
| Sudeste | 924617.0 | 1668 | 8622.25 | 5 | 1921037.3 | 851609.9 |
| Sul | 563809.4 | 1191 | 15520.05 | 9 | 3457867.1 | 1335321.9 |
| Centro-Oeste | 1606415.2 | 467 | 3448.90 | 2 | 768414.9 | 451941.9 |
#Rodar antes de iniciar nova questão
rm(list=ls())
#Dados iniciais
n = 20
N = 5570
#Estimação do número de municípios com área maior ou igual a 1800 hectares
p_hat_aas = 2/20
na_hat_aas = p_hat_aas*N
#Margem de erro ao nível de confiança de 95%
var_hat_Na_hat = ((N*(N-n))/(n-1))*p_hat_aas*(1-p_hat_aas)
z_95 = 1.96
ME = z_95 * sqrt(var_hat_Na_hat)
\[ \widehat{Y_{AAS}} = \frac{N}{n}\sum y_{i} \]
\[ d_{r} = \frac{\sqrt{N^{2}(\frac{1}{n}-\frac{1}{N})S^{2}}}{\widehat{Y}_{AAS}} \]
\[ n = \frac{N^{2}S^{2}}{d_{r}\widehat{Y}_{AAS}^{2}+NS^{2}} \]
CV_max = 0.25
area = c(3863.943, 1116.330, 724.380, 218.892, 218.892, 624.567, 549.514, 1719.266, 324.234, 305.737, 631.691, 304.488, 297.742, 369.862, 167.646, 652.581, 477.125, 135.115, 64.873, 11462.462)
y_hat_aas = (N/n)*sum(area)
n = ceiling(((N^2)*var(area))/(((CV_max^2)*(y_hat_aas^2))+(N*var(area))))