---
title: "EKONOMETRIKA"
author: "DHELA AGATHA"
output:
flexdashboard::flex_dashboard:
orientation: rows
social: menu
source_code: embed
---
```{r}
# Print the current working directory
# Read an Excel file located in the current working directory
library(readxl)
library(forecast)
library(dplyr)
consumerconfidence <- read_excel("C:/data ekonom/CONSUMER_CONFIDENCE_FIX.xlsx")
exchange <- read_excel("C:/data ekonom/EXCHANGE_RATE_FIX.xlsx")
gdp <- read_excel("C:/data ekonom/GDP_FIX.xlsx")
saham <- read_excel("C:/data ekonom/INDEX_SAHAM_FIX.xlsx")
inflasi <- read_excel("C:/data ekonom/INFLATION_FIX.xlsx")
interest <- read_excel("C:/data ekonom/INTEREST_FIX.xlsx")
unemployement <- read_excel("C:/data ekonom/UNEMPLOYEMENT_FIX.xlsx")
soal2 <- tibble::tibble(consumerconfidence,
exchange = as.numeric(exchange$exchange_rate),
gdp = as.numeric(gdp$GDP),
saham = as.numeric(saham$index_saham),
inflasi = as.numeric(inflasi$Inflation_Rate),
interest = as.numeric(interest$Interest_Rate),
unemployement = as.numeric(unemployement$Unemployement_Rate))
sample_data <- tibble::tibble(
Date = seq.Date(from = as.Date("2010-01-01"), to = as.Date("2021-12-01"), by = "1 month"),
Value = as.numeric(exchange$exchange_rate)
)
CC.ts <- ts(soal2$consumer_confidence, start = c(2010, 1), frequency = 12)
CC.ts1 <- data.frame(Date = time(CC.ts), Value = as.numeric(CC.ts))
EX.ts <- ts(soal2$exchange, start = c(2010, 1), frequency = 12)
EX.ts1 <- data.frame(Date = time(EX.ts), Value = as.numeric(EX.ts))
saham.ts <- ts(soal2$saham, start = c(2010, 1), frequency = 12)
saham.ts1 <- data.frame(Date = time(saham.ts), Value = as.numeric(saham.ts))
gdp.ts <- ts(soal2$gdp, start = c(2010, 1), frequency = 12)
gdp.ts1 <- data.frame(Date = time(gdp.ts), Value = as.numeric(gdp.ts))
inflasi.ts <- ts(soal2$inflasi, start = c(2010, 1), frequency = 12)
inflasi.ts1 <- data.frame(Date = time(inflasi.ts), Value = as.numeric(inflasi.ts))
interest.ts <- ts(soal2$interest, start = c(2010, 1), frequency = 12)
interest.ts1 <- data.frame(Date = time(interest.ts), Value = as.numeric(interest.ts))
unemp.ts <- ts(soal2$unemployement, start = c(2010, 1), frequency = 12)
unemp.ts1 <- data.frame(Date = time(unemp.ts), Value = as.numeric(unemp.ts))
```
CC
=======================================================================
Row
-----------------------------------------------------------------------
### CONSUMER CONFIDENCE
```{r}
library(ggplot2)
library(plotly)
library(plyr)
library(flexdashboard)
a<- plot_ly(CC.ts1, x = ~Date, y = ~Value, type = 'scatter', mode = 'lines') %>%
layout(title = "Time Series Consumer Confidence",
xaxis = list(title = "Date"),
yaxis = list(title = "consumer confidence"))
b<- plot_ly(EX.ts1, x = ~Date, y = ~Value, type = 'scatter', mode = 'lines') %>%
layout(title = "Time Series Exchange Rate",
xaxis = list(title = "Date"),
yaxis = list(title = "Exchange Rate"))
c<- plot_ly(saham.ts1, x = ~Date, y = ~Value, type = 'scatter', mode = 'lines') %>%
layout(title = "Time Series Indeks Saham",
xaxis = list(title = "Date"),
yaxis = list(title = "Indeks Saham"))
d<- plot_ly(gdp.ts1, x = ~Date, y = ~Value, type = 'scatter', mode = 'lines') %>%
layout(title = "Time Series GDP Growth",
xaxis = list(title = "Date"),
yaxis = list(title = " GDP"))
e <- plot_ly(inflasi.ts1, x = ~Date, y = ~Value, type = 'scatter', mode = 'lines') %>%
layout(title = "Time Series Plot",
xaxis = list(title = "Date"),
yaxis = list(title = "Inflation Rate"))
f <- plot_ly(interest.ts1, x = ~Date, y = ~Value, type = 'scatter', mode = 'lines') %>%
layout(title = "Time Series Interest Rate",
xaxis = list(title = "Date"),
yaxis = list(title = "Interest Rate"))
g <- plot_ly(unemp.ts1, x = ~Date, y = ~Value, type = 'scatter', mode = 'lines') %>%
layout(title = "Time Series Unemployement Rate",
xaxis = list(title = "Date"),
yaxis = list(title = "Unemployement Rate"))
ggplotly(a)
```
### ARIMA
```{r}
library(forecast)
library(xts)
fit <- auto.arima(EX.ts)
fcast <- forecast(fit, h = 12)
library(plotly)
plot_ly() %>%
add_lines(x = time(EX.ts), y = EX.ts, name = 'Original') %>%
add_lines(x = time(fcast$mean), y = fcast$mean, name = 'Forecast') %>%
add_ribbons(x = time(fcast$mean), ymin = fcast$lower[, 2], ymax = fcast$upper[, 2], name = '95% Confidence Interval', fill = 'tonexty', opacity = 0.2)
```
EXCHANGE
=======================================================================
Row
-----------------------------------------------------------------------
### Exchange
```{r}
ggplotly(b)
```
### ARIMA
```{r}
library(forecast)
library(xts)
fit <- auto.arima(CC.ts)
fcast <- forecast(fit, h = 12)
library(plotly)
plot_ly() %>%
add_lines(x = time(CC.ts), y = CC.ts, name = 'Original') %>%
add_lines(x = time(fcast$mean), y = fcast$mean, name = 'Forecast') %>%
add_ribbons(x = time(fcast$mean), ymin = fcast$lower[, 2], ymax = fcast$upper[, 2], name = '95% Confidence Interval', fill = 'tonexty', opacity = 0.2)
```
SAHAM
=======================================================================
Row
-----------------------------------------------------------------------
### Saham
```{r}
ggplotly(c)
```
### ARIMA
```{r}
library(forecast)
library(xts)
fit <- auto.arima(saham.ts)
fcast <- forecast(fit, h = 12)
library(plotly)
plot_ly() %>%
add_lines(x = time(saham.ts), y = saham.ts, name = 'Original') %>%
add_lines(x = time(fcast$mean), y = fcast$mean, name = 'Forecast') %>%
add_ribbons(x = time(fcast$mean), ymin = fcast$lower[, 2], ymax = fcast$upper[, 2], name = '95% Confidence Interval', fill = 'tonexty', opacity = 0.2)
```
# GDP
```{r}
ggplotly(d)
```
# Inflasi
```{r}
ggplotly(e)
```
# Interest
```{r}
ggplotly(f)
```
# Unemployement
```{r}
ggplotly(g)
```