DATA

lima

library(readxl)
LIMALIMPIA <- read_excel("LIMA2022LIMPIA.xlsx")

residuo

library(readxl)
residuosPeru <- read_excel("residuosPeru.xlsx")
residuosPeru=residuosPeru[complete.cases(residuosPeru),]
View(residuosPeru)

elecciones

library(readxl)
resultadoelec <- read_excel("resultadoselec.xlsx")
View(resultadoelec)

LIMPIEZA DATA

lima

options(digits = 2)
#para no redondear
str(LIMALIMPIA$AÑO)
##  chr [1:43] "642,7" "113,6" "100,8" "553,7" "218,6" "111,4" "155,9" "153,1" ...
LIMALIMPIA$AÑO=gsub(",",".",LIMALIMPIA$AÑO)
LIMALIMPIA$AÑO=as.numeric(LIMALIMPIA$AÑO)
str(LIMALIMPIA$AÑO)
##  num [1:43] 643 114 101 554 219 ...

residuos

str(residuosPeru)
## tibble [14,978 × 15] (S3: tbl_df/tbl/data.frame)
##  $ FECHA_CORTE     : num [1:14978] 20230614 20230614 20230614 20230614 20230614 ...
##  $ N_SEC           : num [1:14978] 1 2 3 4 5 6 7 8 9 10 ...
##  $ UBIGEO          : num [1:14978] 10101 10102 10103 10104 10105 ...
##  $ REG_NAT         : chr [1:14978] "SELVA" "SELVA" "SIERRA" "SIERRA" ...
##  $ DEPARTAMENTO    : chr [1:14978] "AMAZONAS" "AMAZONAS" "AMAZONAS" "AMAZONAS" ...
##  $ PROVINCIA       : chr [1:14978] "CHACHAPOYAS" "CHACHAPOYAS" "CHACHAPOYAS" "CHACHAPOYAS" ...
##  $ DISTRITO        : chr [1:14978] "CHACHAPOYAS" "ASUNCION" "BALSAS" "CHETO" ...
##  $ POB_TOTAL       : num [1:14978] 28423 291 1615 597 737 ...
##  $ POB_URBANA      : num [1:14978] 27548 151 299 388 197 ...
##  $ POB_RURAL       : num [1:14978] 875 140 1316 209 540 ...
##  $ GPC_DOM         : num [1:14978] 0.48 0.61 0.45 0.45 0.45 0.45 0.61 0.45 0.61 0.61 ...
##  $ QRESIDUOS_DOM   : num [1:14978] 4857.5 33.6 49 63.6 32.4 ...
##  $ QRESIDUOS_NO_DOM: num [1:14978] 2081.8 14.4 21 27.2 13.9 ...
##  $ QRESIDUOS_MUN   : num [1:14978] 6939.3 48 70 90.8 46.3 ...
##  $ PERIODO         : num [1:14978] 2014 2014 2014 2014 2014 ...

elec

str(resultadoelec)
## tibble [43 × 17] (S3: tbl_df/tbl/data.frame)
##  $ Distrito: chr [1:43] "Ancón" "Ate" "Barranco" "Breña" ...
##  $ RP V    : chr [1:43] "3,725" "57,374" "11,604" "22,721" ...
##  $ RP %    : chr [1:43] "13.28" "17.49" "36.92" "31.15" ...
##  $ PP V    : chr [1:43] "9,332" "98,373" "5,766" "18,676" ...
##  $ PP %    : chr [1:43] "33.27" "29.99" "18.34" "25.61" ...
##  $ SP V    : chr [1:43] "5,987" "52,069" "6,401" "14,022" ...
##  $ SP %    : chr [1:43] "21.35" "15.87" "20.37" "19.23" ...
##  $ FE V    : chr [1:43] "2,043" "27,911" "2,772" "8,240" ...
##  $ FE %    : chr [1:43] "7.28" "8.51" "8.82" "11.30" ...
##  $ APP V   : chr [1:43] "3,587" "26,140" "2,193" "2,473" ...
##  $ APP %   : chr [1:43] "12.79" "7.97" "6.98" "3.39" ...
##  $ JP V    : chr [1:43] "1,679" "25,113" "1,628" "3,813" ...
##  $ JP %    : chr [1:43] "5.99" "7.66" "5.18" "5.23" ...
##  $ AvP V   : chr [1:43] "1,228" "32,851" "845" "2,435" ...
##  $ AvP %   : chr [1:43] "4.38" "10.01" "2.69" "3.34" ...
##  $ PL V    : chr [1:43] "465" "8,191" "223" "552" ...
##  $ PL %    : chr [1:43] "1.67" "2.50" "0.71" "0.76" ...
#PP Y SP CONVERTIR A NUMERICA

resultadoelec$`PP V`=gsub(",",".",resultadoelec$`PP V`)
resultadoelec$`SP V`=gsub(",",".",resultadoelec$`SP V`)


# Nombres de las variables que deseas convertir
variables_a_convertir <- c("PP V", "PP %", "SP V", "SP %")

# Convertir las variables a numérico usando lapply
resultadoelec[variables_a_convertir] <- lapply(resultadoelec[variables_a_convertir], as.numeric)

# Verificar el resultado
str(resultadoelec)
## tibble [43 × 17] (S3: tbl_df/tbl/data.frame)
##  $ Distrito: chr [1:43] "Ancón" "Ate" "Barranco" "Breña" ...
##  $ RP V    : chr [1:43] "3,725" "57,374" "11,604" "22,721" ...
##  $ RP %    : chr [1:43] "13.28" "17.49" "36.92" "31.15" ...
##  $ PP V    : num [1:43] 9.33 98.37 5.77 18.68 43.98 ...
##  $ PP %    : num [1:43] 33.3 30 18.3 25.6 27.8 ...
##  $ SP V    : num [1:43] 5.99 52.07 6.4 14.02 33.39 ...
##  $ SP %    : num [1:43] 21.4 15.9 20.4 19.2 21.1 ...
##  $ FE V    : chr [1:43] "2,043" "27,911" "2,772" "8,240" ...
##  $ FE %    : chr [1:43] "7.28" "8.51" "8.82" "11.30" ...
##  $ APP V   : chr [1:43] "3,587" "26,140" "2,193" "2,473" ...
##  $ APP %   : chr [1:43] "12.79" "7.97" "6.98" "3.39" ...
##  $ JP V    : chr [1:43] "1,679" "25,113" "1,628" "3,813" ...
##  $ JP %    : chr [1:43] "5.99" "7.66" "5.18" "5.23" ...
##  $ AvP V   : chr [1:43] "1,228" "32,851" "845" "2,435" ...
##  $ AvP %   : chr [1:43] "4.38" "10.01" "2.69" "3.34" ...
##  $ PL V    : chr [1:43] "465" "8,191" "223" "552" ...
##  $ PL %    : chr [1:43] "1.67" "2.50" "0.71" "0.76" ...

MERGE