Introvert Final Pilot

Considerations

Our supplemental analyses should include analyses of other considerations

Diversity

## 
## Call:
## lm(formula = div_cond ~ cond_end + cond_race, data = introvert_pilot_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.353 -1.449  0.359  1.647  3.551 
## 
## Coefficients:
##                            Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                   3.641      0.168   21.71 < 0.0000000000000002 ***
## cond_endStrong endorsement    1.713      0.200    8.56  0.00000000000000026 ***
## cond_raceWhite               -0.192      0.200   -0.96                 0.34    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.97 on 388 degrees of freedom
## Multiple R-squared:  0.16,   Adjusted R-squared:  0.155 
## F-statistic: 36.8 on 2 and 388 DF,  p-value: 0.00000000000000223

Qualifications (negative)

## 
## Call:
## lm(formula = considerations_1 ~ cond_end + cond_race, data = introvert_pilot_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.524 -0.524 -0.068  0.932  1.667 
## 
## Coefficients:
##                            Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                   6.068      0.109   55.80 < 0.0000000000000002 ***
## cond_endStrong endorsement   -0.735      0.130   -5.67          0.000000029 ***
## cond_raceWhite                0.191      0.130    1.47                 0.14    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.28 on 388 degrees of freedom
## Multiple R-squared:  0.0799, Adjusted R-squared:  0.0751 
## F-statistic: 16.8 on 2 and 388 DF,  p-value: 0.0000000968

Skills (negative)

## 
## Call:
## lm(formula = considerations_2 ~ cond_end + cond_race, data = introvert_pilot_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.336 -0.984  0.016  0.902  1.778 
## 
## Coefficients:
##                            Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                   5.984      0.116   51.63 < 0.0000000000000002 ***
## cond_endStrong endorsement   -0.762      0.138   -5.51          0.000000065 ***
## cond_raceWhite                0.114      0.138    0.83                 0.41    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.36 on 388 degrees of freedom
## Multiple R-squared:  0.0735, Adjusted R-squared:  0.0687 
## F-statistic: 15.4 on 2 and 388 DF,  p-value: 0.000000371

Fit with the position’s needs (negative)

## 
## Call:
## lm(formula = considerations_3 ~ cond_end + cond_race, data = introvert_pilot_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.092 -0.436 -0.092  0.867  1.605 
## 
## Coefficients:
##                            Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                  6.0920     0.1086   56.12 < 0.0000000000000002 ***
## cond_endStrong endorsement  -0.6970     0.1295   -5.38           0.00000013 ***
## cond_raceWhite               0.0409     0.1293    0.32                 0.75    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.28 on 388 degrees of freedom
## Multiple R-squared:  0.0695, Adjusted R-squared:  0.0647 
## F-statistic: 14.5 on 2 and 388 DF,  p-value: 0.000000852

Workload

## 
## Call:
## lm(formula = considerations_6 ~ cond_end + cond_race, data = introvert_pilot_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.332 -1.332  0.047  1.668  3.047 
## 
## Coefficients:
##                            Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                  4.3317     0.1638   26.44 <0.0000000000000002 ***
## cond_endStrong endorsement  -0.3147     0.1954   -1.61                0.11    
## cond_raceWhite              -0.0639     0.1951   -0.33                0.74    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.93 on 388 degrees of freedom
## Multiple R-squared:  0.00703,    Adjusted R-squared:  0.00191 
## F-statistic: 1.37 on 2 and 388 DF,  p-value: 0.255

Interactions

Mediator~IV*DV

Endorsement condition BY Selecting the Black Candidate ON Diversity Considerations

Regression

## 
## Call:
## lm(formula = div_cond ~ cond_end * selectedblackcand, data = introvert_pilot_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.827 -0.838  0.173  1.052  4.162 
## 
## Coefficients:
##                                              Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                                     2.838      0.101   28.03 <0.0000000000000002 ***
## cond_endStrong endorsement                      0.110      0.185    0.60               0.552    
## selectedblackcand                               2.989      0.208   14.40 <0.0000000000000002 ***
## cond_endStrong endorsement:selectedblackcand    0.627      0.284    2.21               0.028 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.27 on 387 degrees of freedom
## Multiple R-squared:  0.654,  Adjusted R-squared:  0.651 
## F-statistic:  244 on 3 and 387 DF,  p-value: <0.0000000000000002

Posthocs

Comparing Black candidates at different levels of endorsement condition

Plot

DV~IV*Mediator

Endorsement condition BY Diversity Considerations ON selecting the black candidate

## 
## Call:
## glm(formula = selectedblackcand ~ cond_end * div_cond, family = "binomial", 
##     data = introvert_pilot_clean)
## 
## Coefficients:
##                                     Estimate Std. Error z value         Pr(>|z|)    
## (Intercept)                           -7.014      0.945   -7.42 0.00000000000012 ***
## cond_endStrong endorsement            -4.334      2.112   -2.05             0.04 *  
## div_cond                               1.340      0.194    6.91 0.00000000000486 ***
## cond_endStrong endorsement:div_cond    0.939      0.404    2.32             0.02 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 533.70  on 390  degrees of freedom
## Residual deviance: 176.53  on 387  degrees of freedom
## AIC: 184.5
## 
## Number of Fisher Scoring iterations: 7
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of div_cond when cond_end = Strong endorsement: 
## 
##   Est.   S.E.   z val.      p
## ------ ------ -------- ------
##   2.28   0.35     6.43   0.00
## 
## Slope of div_cond when cond_end = Qualified endorsement: 
## 
##   Est.   S.E.   z val.      p
## ------ ------ -------- ------
##   1.34   0.19     6.91   0.00

Main Analyses

Selecting Black candidate

## 
## Call:
## glm(formula = selectedblackcand ~ cond_end + cond_race, family = "binomial", 
##     data = introvert_pilot_clean)
## 
## Coefficients:
##                            Estimate Std. Error z value          Pr(>|z|)    
## (Intercept)                 -1.1221     0.1944   -5.77 0.000000007893583 ***
## cond_endStrong endorsement   1.7346     0.2244    7.73 0.000000000000011 ***
## cond_raceWhite              -0.0892     0.2239   -0.40              0.69    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 533.70  on 390  degrees of freedom
## Residual deviance: 468.09  on 388  degrees of freedom
## AIC: 474.1
## 
## Number of Fisher Scoring iterations: 4
##                (Intercept) cond_endStrong endorsement             cond_raceWhite 
##                     0.3256                     5.6668                     0.9147

Text below from: https://stackoverflow.com/questions/41384075/r-calculate-and-interpret-odds-ratio-in-logistic-regression

The odds ratio for the value of the intercept is the odds of a “success” (in your data, this is the odds of taking the product) when x = 0 (i.e. zero thoughts). The odds ratio for your coefficient is the increase in odds above this value of the intercept when you add one whole x value (i.e. x=1; one thought). Using the menarche data. Your odds ratio of 2.07 implies that a 1 unit increase in ‘Thoughts’ increases the odds of taking the product by a factor of 2.07.

For us: our odds ration of 5.67 implies that, relative to the qualified endorsement condition, participants were five times more likely to select the Black candidate than the Whtie candidate.

Selecting information technology committee

## 
## Call:
## glm(formula = selectedcand_qual ~ cond_end, family = "binomial", 
##     data = introvert_pilot_clean)
## 
## Coefficients:
##                            Estimate Std. Error z value       Pr(>|z|)    
## (Intercept)                   0.686      0.148    4.65 0.000003381403 ***
## cond_endStrong endorsement   -1.470      0.217   -6.79 0.000000000012 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 542.04  on 390  degrees of freedom
## Residual deviance: 492.80  on 389  degrees of freedom
## AIC: 496.8
## 
## Number of Fisher Scoring iterations: 4
##                (Intercept) cond_endStrong endorsement 
##                      1.986                      0.230

The odds of participants in the Strong (vs. qualified) endorsement condition choosing the candidate who has the information technology experience is 23% lower.

Mediation

Diversity considerations (Likert)

Choosing the Black candidate

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = selectedblackcand ~ cond_end_num + (div_cond), 
##     data = introvert_pilot_clean)
## 
## The DV (Y) was  selectedblackcand . The IV (X) was  cond_end_num . The mediating variable(s) =  div_cond .
## 
## Total effect(c) of  cond_end_num  on  selectedblackcand  =  0.4   S.E. =  0.05  t  =  8.7  df=  389   with p =  0.000000000000000093
## Direct effect (c') of  cond_end_num  on  selectedblackcand  removing  div_cond  =  0.1   S.E. =  0.03  t  =  3.1  df=  388   with p =  0.0021
## Indirect effect (ab) of  cond_end_num  on  selectedblackcand  through  div_cond   =  0.3 
## Mean bootstrapped indirect effect =  0.3  with standard error =  0.03  Lower CI =  0.23    Upper CI =  0.37
## R = 0.81 R2 = 0.65   F = 362.9 on 2 and 388 DF   p-value:  3.33e-112 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Choosing the candidate who does IT work

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = selectedcand_qual ~ cond_end_num + (div_cond), 
##     data = introvert_pilot_clean)
## 
## The DV (Y) was  selectedcand_qual . The IV (X) was  cond_end_num . The mediating variable(s) =  div_cond .
## 
## Total effect(c) of  cond_end_num  on  selectedcand_qual  =  -0.35   S.E. =  0.05  t  =  -7.39  df=  389   with p =  0.00000000000088
## Direct effect (c') of  cond_end_num  on  selectedcand_qual  removing  div_cond  =  -0.07   S.E. =  0.04  t  =  -1.88  df=  388   with p =  0.061
## Indirect effect (ab) of  cond_end_num  on  selectedcand_qual  through  div_cond   =  -0.28 
## Mean bootstrapped indirect effect =  -0.28  with standard error =  0.03  Lower CI =  -0.35    Upper CI =  -0.22
## R = 0.74 R2 = 0.54   F = 232.2 on 2 and 388 DF   p-value:  0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000305 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Qualifications

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = considerations_1 ~ cond_end_num + (div_cond), 
##     data = introvert_pilot_clean)
## 
## The DV (Y) was  considerations_1 . The IV (X) was  cond_end_num . The mediating variable(s) =  div_cond .
## 
## Total effect(c) of  cond_end_num  on  considerations_1  =  -0.73   S.E. =  0.13  t  =  -5.61  df=  389   with p =  0.000000039
## Direct effect (c') of  cond_end_num  on  considerations_1  removing  div_cond  =  -0.26   S.E. =  0.13  t  =  -2.03  df=  388   with p =  0.043
## Indirect effect (ab) of  cond_end_num  on  considerations_1  through  div_cond   =  -0.47 
## Mean bootstrapped indirect effect =  -0.47  with standard error =  0.07  Lower CI =  -0.62    Upper CI =  -0.33
## R = 0.49 R2 = 0.24   F = 61.14 on 2 and 388 DF   p-value:  0.0000000000000000000000000000000217 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Skills

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = considerations_2 ~ cond_end_num + (div_cond), 
##     data = introvert_pilot_clean)
## 
## The DV (Y) was  considerations_2 . The IV (X) was  cond_end_num . The mediating variable(s) =  div_cond .
## 
## Total effect(c) of  cond_end_num  on  considerations_2  =  -0.76   S.E. =  0.14  t  =  -5.49  df=  389   with p =  0.000000074
## Direct effect (c') of  cond_end_num  on  considerations_2  removing  div_cond  =  -0.37   S.E. =  0.14  t  =  -2.61  df=  388   with p =  0.0093
## Indirect effect (ab) of  cond_end_num  on  considerations_2  through  div_cond   =  -0.39 
## Mean bootstrapped indirect effect =  -0.39  with standard error =  0.07  Lower CI =  -0.53    Upper CI =  -0.26
## R = 0.41 R2 = 0.17   F = 40.1 on 2 and 388 DF   p-value:  0.000000000000000000000137 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Fit with needs

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = considerations_3 ~ cond_end_num + (div_cond), 
##     data = introvert_pilot_clean)
## 
## The DV (Y) was  considerations_3 . The IV (X) was  cond_end_num . The mediating variable(s) =  div_cond .
## 
## Total effect(c) of  cond_end_num  on  considerations_3  =  -0.7   S.E. =  0.13  t  =  -5.38  df=  389   with p =  0.00000013
## Direct effect (c') of  cond_end_num  on  considerations_3  removing  div_cond  =  -0.37   S.E. =  0.13  t  =  -2.73  df=  388   with p =  0.0066
## Indirect effect (ab) of  cond_end_num  on  considerations_3  through  div_cond   =  -0.33 
## Mean bootstrapped indirect effect =  -0.33  with standard error =  0.07  Lower CI =  -0.47    Upper CI =  -0.21
## R = 0.39 R2 = 0.15   F = 34.64 on 2 and 388 DF   p-value:  0.0000000000000000000741 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Diversity considerations (Binary)

Choosing the Black candidate

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = selectedblackcand ~ cond_end_num + (rank_goals), 
##     data = introvert_pilot_clean)
## 
## The DV (Y) was  selectedblackcand . The IV (X) was  cond_end_num . The mediating variable(s) =  rank_goals .
## 
## Total effect(c) of  cond_end_num  on  selectedblackcand  =  0.4   S.E. =  0.05  t  =  8.7  df=  389   with p =  0.000000000000000093
## Direct effect (c') of  cond_end_num  on  selectedblackcand  removing  rank_goals  =  0.1   S.E. =  0.04  t  =  2.39  df=  388   with p =  0.017
## Indirect effect (ab) of  cond_end_num  on  selectedblackcand  through  rank_goals   =  0.3 
## Mean bootstrapped indirect effect =  0.3  with standard error =  0.06  Lower CI =  0.2    Upper CI =  0.43
## R = 0.7 R2 = 0.49   F = 183.2 on 2 and 388 DF   p-value:  0.0000000000000000000000000000000000000000000000000000000000000000000000000539 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Choosing the candidate who does IT work

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = selectedcand_qual ~ cond_end_num + (rank_goals), 
##     data = introvert_pilot_clean)
## 
## The DV (Y) was  selectedcand_qual . The IV (X) was  cond_end_num . The mediating variable(s) =  rank_goals .
## 
## Total effect(c) of  cond_end_num  on  selectedcand_qual  =  -0.35   S.E. =  0.05  t  =  -7.39  df=  389   with p =  0.00000000000088
## Direct effect (c') of  cond_end_num  on  selectedcand_qual  removing  rank_goals  =  -0.08   S.E. =  0.05  t  =  -1.84  df=  388   with p =  0.066
## Indirect effect (ab) of  cond_end_num  on  selectedcand_qual  through  rank_goals   =  -0.27 
## Mean bootstrapped indirect effect =  -0.27  with standard error =  0.05  Lower CI =  -0.39    Upper CI =  -0.17
## R = 0.61 R2 = 0.37   F = 113.9 on 2 and 388 DF   p-value:  0.0000000000000000000000000000000000000000000000000000653 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Qualifications

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = considerations_1 ~ cond_end_num + (rank_goals), 
##     data = introvert_pilot_clean)
## 
## The DV (Y) was  considerations_1 . The IV (X) was  cond_end_num . The mediating variable(s) =  rank_goals .
## 
## Total effect(c) of  cond_end_num  on  considerations_1  =  -0.73   S.E. =  0.13  t  =  -5.61  df=  389   with p =  0.000000039
## Direct effect (c') of  cond_end_num  on  considerations_1  removing  rank_goals  =  0.01   S.E. =  0.12  t  =  0.04  df=  388   with p =  0.97
## Indirect effect (ab) of  cond_end_num  on  considerations_1  through  rank_goals   =  -0.73 
## Mean bootstrapped indirect effect =  -0.74  with standard error =  0.17  Lower CI =  -1.12    Upper CI =  -0.45
## R = 0.58 R2 = 0.34   F = 98.89 on 2 and 388 DF   p-value:  0.0000000000000000000000000000000000000000000000147 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Skills

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = considerations_2 ~ cond_end_num + (rank_goals), 
##     data = introvert_pilot_clean)
## 
## The DV (Y) was  considerations_2 . The IV (X) was  cond_end_num . The mediating variable(s) =  rank_goals .
## 
## Total effect(c) of  cond_end_num  on  considerations_2  =  -0.76   S.E. =  0.14  t  =  -5.49  df=  389   with p =  0.000000074
## Direct effect (c') of  cond_end_num  on  considerations_2  removing  rank_goals  =  -0.19   S.E. =  0.14  t  =  -1.33  df=  388   with p =  0.18
## Indirect effect (ab) of  cond_end_num  on  considerations_2  through  rank_goals   =  -0.57 
## Mean bootstrapped indirect effect =  -0.57  with standard error =  0.16  Lower CI =  -0.92    Upper CI =  -0.3
## R = 0.46 R2 = 0.21   F = 51.68 on 2 and 388 DF   p-value:  0.000000000000000000000000000403 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Fit with needs

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = considerations_3 ~ cond_end_num + (rank_goals), 
##     data = introvert_pilot_clean)
## 
## The DV (Y) was  considerations_3 . The IV (X) was  cond_end_num . The mediating variable(s) =  rank_goals .
## 
## Total effect(c) of  cond_end_num  on  considerations_3  =  -0.7   S.E. =  0.13  t  =  -5.38  df=  389   with p =  0.00000013
## Direct effect (c') of  cond_end_num  on  considerations_3  removing  rank_goals  =  -0.23   S.E. =  0.14  t  =  -1.69  df=  388   with p =  0.093
## Indirect effect (ab) of  cond_end_num  on  considerations_3  through  rank_goals   =  -0.46 
## Mean bootstrapped indirect effect =  -0.47  with standard error =  0.14  Lower CI =  -0.79    Upper CI =  -0.22
## R = 0.42 R2 = 0.18   F = 41.28 on 2 and 388 DF   p-value:  0.0000000000000000000000359 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Diversity considerations (Parallel Likert + Binary)

Choosing the Black candidate

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = selectedblackcand ~ cond_end_num + (div_cond) + 
##     (rank_goals), data = introvert_pilot_clean)
## 
## The DV (Y) was  selectedblackcand . The IV (X) was  cond_end_num . The mediating variable(s) =  div_cond rank_goals .
## 
## Total effect(c) of  cond_end_num  on  selectedblackcand  =  0.4   S.E. =  0.05  t  =  8.7  df=  389   with p =  0.000000000000000093
## Direct effect (c') of  cond_end_num  on  selectedblackcand  removing  div_cond rank_goals  =  0.03   S.E. =  0.03  t  =  0.9  df=  387   with p =  0.37
## Indirect effect (ab) of  cond_end_num  on  selectedblackcand  through  div_cond rank_goals   =  0.37 
## Mean bootstrapped indirect effect =  0.37  with standard error =  0.04  Lower CI =  0.29    Upper CI =  0.46
## R = 0.83 R2 = 0.69   F = 292 on 3 and 387 DF   p-value:  1.92e-115 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Choosing the candidate who does IT work

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = selectedcand_qual ~ cond_end_num + (div_cond) + 
##     (rank_goals), data = introvert_pilot_clean)
## 
## The DV (Y) was  selectedcand_qual . The IV (X) was  cond_end_num . The mediating variable(s) =  div_cond rank_goals .
## 
## Total effect(c) of  cond_end_num  on  selectedcand_qual  =  -0.35   S.E. =  0.05  t  =  -7.39  df=  389   with p =  0.00000000000088
## Direct effect (c') of  cond_end_num  on  selectedcand_qual  removing  div_cond rank_goals  =  -0.02   S.E. =  0.04  t  =  -0.43  df=  387   with p =  0.67
## Indirect effect (ab) of  cond_end_num  on  selectedcand_qual  through  div_cond rank_goals   =  -0.34 
## Mean bootstrapped indirect effect =  -0.34  with standard error =  0.04  Lower CI =  -0.43    Upper CI =  -0.26
## R = 0.75 R2 = 0.57   F = 169.7 on 3 and 387 DF   p-value:  0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000932 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Qualifications

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = considerations_1 ~ cond_end_num + (div_cond) + 
##     (rank_goals), data = introvert_pilot_clean)
## 
## The DV (Y) was  considerations_1 . The IV (X) was  cond_end_num . The mediating variable(s) =  div_cond rank_goals .
## 
## Total effect(c) of  cond_end_num  on  considerations_1  =  -0.73   S.E. =  0.13  t  =  -5.61  df=  389   with p =  0.000000039
## Direct effect (c') of  cond_end_num  on  considerations_1  removing  div_cond rank_goals  =  0.06   S.E. =  0.12  t  =  0.49  df=  387   with p =  0.62
## Indirect effect (ab) of  cond_end_num  on  considerations_1  through  div_cond rank_goals   =  -0.79 
## Mean bootstrapped indirect effect =  -0.8  with standard error =  0.16  Lower CI =  -1.16    Upper CI =  -0.54
## R = 0.6 R2 = 0.36   F = 71.46 on 3 and 387 DF   p-value:  0.00000000000000000000000000000000000000000000276 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Skills

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = considerations_2 ~ cond_end_num + (div_cond) + 
##     (rank_goals), data = introvert_pilot_clean)
## 
## The DV (Y) was  considerations_2 . The IV (X) was  cond_end_num . The mediating variable(s) =  div_cond rank_goals .
## 
## Total effect(c) of  cond_end_num  on  considerations_2  =  -0.76   S.E. =  0.14  t  =  -5.49  df=  389   with p =  0.000000074
## Direct effect (c') of  cond_end_num  on  considerations_2  removing  div_cond rank_goals  =  -0.14   S.E. =  0.14  t  =  -0.96  df=  387   with p =  0.34
## Indirect effect (ab) of  cond_end_num  on  considerations_2  through  div_cond rank_goals   =  -0.62 
## Mean bootstrapped indirect effect =  -0.62  with standard error =  0.14  Lower CI =  -0.93    Upper CI =  -0.39
## R = 0.48 R2 = 0.23   F = 37.65 on 3 and 387 DF   p-value:  0.0000000000000000000000000132 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Fit with needs

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = considerations_3 ~ cond_end_num + (div_cond) + 
##     (rank_goals), data = introvert_pilot_clean)
## 
## The DV (Y) was  considerations_3 . The IV (X) was  cond_end_num . The mediating variable(s) =  div_cond rank_goals .
## 
## Total effect(c) of  cond_end_num  on  considerations_3  =  -0.7   S.E. =  0.13  t  =  -5.38  df=  389   with p =  0.00000013
## Direct effect (c') of  cond_end_num  on  considerations_3  removing  div_cond rank_goals  =  -0.18   S.E. =  0.14  t  =  -1.33  df=  387   with p =  0.19
## Indirect effect (ab) of  cond_end_num  on  considerations_3  through  div_cond rank_goals   =  -0.51 
## Mean bootstrapped indirect effect =  -0.52  with standard error =  0.13  Lower CI =  -0.79    Upper CI =  -0.3
## R = 0.44 R2 = 0.19   F = 30.33 on 3 and 387 DF   p-value:  0.000000000000000000000569 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Moderation

Diversity considerations

Selected Black candidate

summary(glm(selectedblackcand~cond_end_num*div_cond, introvert_pilot_clean, family = "binomial"))
## 
## Call:
## glm(formula = selectedblackcand ~ cond_end_num * div_cond, family = "binomial", 
##     data = introvert_pilot_clean)
## 
## Coefficients:
##                       Estimate Std. Error z value         Pr(>|z|)    
## (Intercept)             -7.014      0.945   -7.42 0.00000000000012 ***
## cond_end_num            -4.334      2.112   -2.05             0.04 *  
## div_cond                 1.340      0.194    6.91 0.00000000000486 ***
## cond_end_num:div_cond    0.939      0.404    2.32             0.02 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 533.70  on 390  degrees of freedom
## Residual deviance: 176.53  on 387  degrees of freedom
## AIC: 184.5
## 
## Number of Fisher Scoring iterations: 7

Qualifications

summary(lm(considerations_1~cond_end_num*div_cond, introvert_pilot_clean))
## 
## Call:
## lm(formula = considerations_1 ~ cond_end_num * div_cond, data = introvert_pilot_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.957 -0.534  0.065  0.865  2.267 
## 
## Coefficients:
##                       Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)             6.6559     0.1685   39.50 < 0.0000000000000002 ***
## cond_end_num            0.8822     0.2846    3.10              0.00208 ** 
## div_cond               -0.1397     0.0419   -3.33              0.00094 ***
## cond_end_num:div_cond  -0.2611     0.0584   -4.47              0.00001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.14 on 387 degrees of freedom
## Multiple R-squared:  0.277,  Adjusted R-squared:  0.271 
## F-statistic: 49.4 on 3 and 387 DF,  p-value: <0.0000000000000002

Skills - Marginal

summary(lm(considerations_2~cond_end_num*div_cond, introvert_pilot_clean))
## 
## Call:
## lm(formula = considerations_2 ~ cond_end_num * div_cond, data = introvert_pilot_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.767 -0.671  0.099  0.980  2.329 
## 
## Coefficients:
##                       Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)             6.3765     0.1879   33.94 < 0.0000000000000002 ***
## cond_end_num            0.7403     0.3174    2.33              0.02020 *  
## div_cond               -0.0951     0.0467   -2.04              0.04248 *  
## cond_end_num:div_cond  -0.2542     0.0651   -3.90              0.00011 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.27 on 387 degrees of freedom
## Multiple R-squared:  0.203,  Adjusted R-squared:  0.196 
## F-statistic: 32.8 on 3 and 387 DF,  p-value: <0.0000000000000002

Fit with needs

summary(lm(considerations_3~cond_end_num*div_cond, introvert_pilot_clean))
## 
## Call:
## lm(formula = considerations_3 ~ cond_end_num * div_cond, data = introvert_pilot_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.987 -0.648  0.094  0.841  2.094 
## 
## Coefficients:
##                       Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)             6.4166     0.1786   35.92 < 0.0000000000000002 ***
## cond_end_num            0.5348     0.3017    1.77              0.07713 .  
## div_cond               -0.0859     0.0444   -1.93              0.05388 .  
## cond_end_num:div_cond  -0.2062     0.0619   -3.33              0.00095 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 387 degrees of freedom
## Multiple R-squared:  0.175,  Adjusted R-squared:  0.169 
## F-statistic: 27.4 on 3 and 387 DF,  p-value: 0.000000000000000438

Workload

summary(lm(considerations_6~cond_end_num*div_cond, introvert_pilot_clean))
## 
## Call:
## lm(formula = considerations_6 ~ cond_end_num * div_cond, data = introvert_pilot_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.267 -1.427  0.132  1.223  3.412 
## 
## Coefficients:
##                       Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)             3.3082     0.2805   11.80 < 0.0000000000000002 ***
## cond_end_num            0.4820     0.4737    1.02                0.310    
## div_cond                0.2798     0.0698    4.01             0.000073 ***
## cond_end_num:div_cond  -0.2429     0.0972   -2.50                0.013 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.89 on 387 degrees of freedom
## Multiple R-squared:  0.0471, Adjusted R-squared:  0.0397 
## F-statistic: 6.37 on 3 and 387 DF,  p-value: 0.000318

Rank Goals

Selected Black candidate

summary(glm(selectedblackcand~cond_end_num*rank_goals, introvert_pilot_clean, family = "binomial"))
## 
## Call:
## glm(formula = selectedblackcand ~ cond_end_num * rank_goals, 
##     family = "binomial", data = introvert_pilot_clean)
## 
## Coefficients:
##                         Estimate Std. Error z value     Pr(>|z|)    
## (Intercept)               -1.609      0.274   -5.88 0.0000000042 ***
## cond_end_num               0.727      0.439    1.66      0.09777 .  
## rank_goals                 3.114      0.828    3.76      0.00017 ***
## cond_end_num:rank_goals    1.619      1.351    1.20      0.23075    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 267.70  on 195  degrees of freedom
## Residual deviance: 156.23  on 192  degrees of freedom
##   (195 observations deleted due to missingness)
## AIC: 164.2
## 
## Number of Fisher Scoring iterations: 6

Qualifications

summary(lm(considerations_1~cond_end_num*rank_goals, introvert_pilot_clean))
## 
## Call:
## lm(formula = considerations_1 ~ cond_end_num * rank_goals, data = introvert_pilot_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.250 -0.437 -0.220  0.750  2.562 
## 
## Coefficients:
##                         Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)               6.2500     0.1169   53.48 <0.0000000000000002 ***
## cond_end_num             -0.0305     0.2136   -0.14              0.8867    
## rank_goals               -1.1591     0.3645   -3.18              0.0017 ** 
## cond_end_num:rank_goals  -0.6229     0.4384   -1.42              0.1569    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.15 on 192 degrees of freedom
##   (195 observations deleted due to missingness)
## Multiple R-squared:  0.324,  Adjusted R-squared:  0.313 
## F-statistic: 30.6 on 3 and 192 DF,  p-value: 0.000000000000000318

Skills - Marginal

summary(lm(considerations_2~cond_end_num*rank_goals, introvert_pilot_clean))
## 
## Call:
## lm(formula = considerations_2 ~ cond_end_num * rank_goals, data = introvert_pilot_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.031 -0.521 -0.031  0.901  2.479 
## 
## Coefficients:
##                         Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)               6.0313     0.1253   48.13 <0.0000000000000002 ***
## cond_end_num              0.0907     0.2291    0.40               0.693    
## rank_goals               -0.7585     0.3908   -1.94               0.054 .  
## cond_end_num:rank_goals  -0.8426     0.4700   -1.79               0.075 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.23 on 192 degrees of freedom
##   (195 observations deleted due to missingness)
## Multiple R-squared:  0.229,  Adjusted R-squared:  0.217 
## F-statistic:   19 on 3 and 192 DF,  p-value: 0.0000000000806

Fit with needs

summary(lm(considerations_3~cond_end_num*rank_goals, introvert_pilot_clean))
## 
## Call:
## lm(formula = considerations_3 ~ cond_end_num * rank_goals, data = introvert_pilot_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.156 -0.156  0.188  0.844  2.188 
## 
## Coefficients:
##                         Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)               6.1563     0.1236   49.82 <0.0000000000000002 ***
## cond_end_num             -0.0831     0.2259   -0.37                0.71    
## rank_goals               -0.6108     0.3854   -1.58                0.11    
## cond_end_num:rank_goals  -0.6499     0.4635   -1.40                0.16    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.21 on 192 degrees of freedom
##   (195 observations deleted due to missingness)
## Multiple R-squared:  0.182,  Adjusted R-squared:  0.169 
## F-statistic: 14.2 on 3 and 192 DF,  p-value: 0.0000000203

Workload

summary(lm(considerations_6~cond_end_num*rank_goals, introvert_pilot_clean))
## 
## Call:
## lm(formula = considerations_6 ~ cond_end_num * rank_goals, data = introvert_pilot_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.818 -1.281  0.208  1.208  3.208 
## 
## Coefficients:
##                         Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                4.281      0.196   21.80 <0.0000000000000002 ***
## cond_end_num              -0.013      0.359   -0.04                0.97    
## rank_goals                 0.537      0.613    0.88                0.38    
## cond_end_num:rank_goals   -1.014      0.737   -1.38                0.17    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.92 on 192 degrees of freedom
##   (195 observations deleted due to missingness)
## Multiple R-squared:  0.018,  Adjusted R-squared:  0.00262 
## F-statistic: 1.17 on 3 and 192 DF,  p-value: 0.322

Exploration

Ranking: Right personality

## 
## Call:
## glm(formula = rank_personality ~ cond_end, family = "binomial", 
##     data = introvert_pilot_clean)
## 
## Coefficients:
##                            Estimate Std. Error z value        Pr(>|z|)    
## (Intercept)                  -2.516      0.368   -6.84 0.0000000000077 ***
## cond_endStrong endorsement   -0.840      0.693   -1.21            0.23    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 84.736  on 195  degrees of freedom
## Residual deviance: 83.118  on 194  degrees of freedom
##   (195 observations deleted due to missingness)
## AIC: 87.12
## 
## Number of Fisher Scoring iterations: 6
##                (Intercept) cond_endStrong endorsement 
##                    0.08081                    0.43169

Ranking: Qualified candidate

## 
## Call:
## glm(formula = rank_qualified ~ cond_end, family = "binomial", 
##     data = introvert_pilot_clean)
## 
## Coefficients:
##                            Estimate Std. Error z value     Pr(>|z|)    
## (Intercept)                   1.533      0.253    6.06 0.0000000014 ***
## cond_endStrong endorsement   -1.827      0.332   -5.51 0.0000000357 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 255.49  on 195  degrees of freedom
## Residual deviance: 221.56  on 194  degrees of freedom
##   (195 observations deleted due to missingness)
## AIC: 225.6
## 
## Number of Fisher Scoring iterations: 4
##                (Intercept) cond_endStrong endorsement 
##                     4.6316                     0.1609

Ranking: Fulfilling diversity goal

## 
## Call:
## glm(formula = rank_goals ~ cond_end, family = "binomial", data = introvert_pilot_clean)
## 
## Coefficients:
##                            Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)                  -2.166      0.318   -6.81 0.00000000001 ***
## cond_endStrong endorsement    2.324      0.383    6.07 0.00000000127 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 239.80  on 195  degrees of freedom
## Residual deviance: 193.71  on 194  degrees of freedom
##   (195 observations deleted due to missingness)
## AIC: 197.7
## 
## Number of Fisher Scoring iterations: 4
##                (Intercept) cond_endStrong endorsement 
##                     0.1146                    10.2173

The top management team will be happy with my decision

## 
## Call:
## lm(formula = considerations_1.1 ~ cond_end * selectedblackcand_text, 
##     data = introvert_pilot_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.864 -0.864  0.136  1.082  2.493 
## 
## Coefficients:
##                                                                           Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                                                  5.306      0.102   52.21 < 0.0000000000000002 ***
## cond_endStrong endorsement                                                  -0.798      0.186   -4.30             0.000022 ***
## selectedblackcand_textSelected Black candidate                               0.613      0.208    2.94               0.0035 ** 
## cond_endStrong endorsement:selectedblackcand_textSelected Black candidate    0.744      0.285    2.61               0.0094 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.27 on 387 degrees of freedom
## Multiple R-squared:  0.129,  Adjusted R-squared:  0.123 
## F-statistic: 19.2 on 3 and 387 DF,  p-value: 0.0000000000129

The candidate I selected will be happy about my decision

## 
## Call:
## lm(formula = considerations_2.1 ~ cond_end * selectedblackcand, 
##     data = introvert_pilot_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.186 -0.186  0.045  0.814  1.045 
## 
## Coefficients:
##                                              Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                                    6.1146     0.0753   81.25 <0.0000000000000002 ***
## cond_endStrong endorsement                    -0.1594     0.1376   -1.16                0.25    
## selectedblackcand                              0.2527     0.1543    1.64                0.10    
## cond_endStrong endorsement:selectedblackcand  -0.0215     0.2112   -0.10                0.92    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.943 on 387 degrees of freedom
## Multiple R-squared:  0.0148, Adjusted R-squared:  0.00718 
## F-statistic: 1.94 on 3 and 387 DF,  p-value: 0.123

This decision was difficult to make

## 
## Call:
## lm(formula = considerations_3.1 ~ cond_end * selectedblackcand, 
##     data = introvert_pilot_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.955 -1.803  0.197  1.483  3.878 
## 
## Coefficients:
##                                              Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                                     3.803      0.154   24.73 <0.0000000000000002 ***
## cond_endStrong endorsement                      0.153      0.281    0.54               0.587    
## selectedblackcand                              -0.680      0.315   -2.16               0.032 *  
## cond_endStrong endorsement:selectedblackcand    0.242      0.432    0.56               0.576    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.93 on 387 degrees of freedom
## Multiple R-squared:  0.0175, Adjusted R-squared:  0.00989 
## F-statistic:  2.3 on 3 and 387 DF,  p-value: 0.077

I feel good about the decision I made

## 
## Call:
## lm(formula = considerations_4.1 ~ cond_end * selectedblackcand, 
##     data = introvert_pilot_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.650 -0.650  0.350  0.873  1.873 
## 
## Coefficients:
##                                              Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                                     5.650      0.110   51.47 <0.0000000000000002 ***
## cond_endStrong endorsement                     -0.187      0.201   -0.93              0.3521    
## selectedblackcand                               0.575      0.225    2.55              0.0110 *  
## cond_endStrong endorsement:selectedblackcand   -0.910      0.308   -2.96              0.0033 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.38 on 387 degrees of freedom
## Multiple R-squared:  0.0583, Adjusted R-squared:  0.051 
## F-statistic: 7.99 on 3 and 387 DF,  p-value: 0.0000352

I feel guilty about the decision I made

## 
## Call:
## lm(formula = considerations_5.1 ~ cond_end * selectedblackcand, 
##     data = introvert_pilot_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.712 -1.274 -0.653  1.288  4.726 
## 
## Coefficients:
##                                              Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                                     2.274      0.134   17.01 <0.0000000000000002 ***
## cond_endStrong endorsement                      0.368      0.244    1.51               0.133    
## selectedblackcand                              -0.621      0.274   -2.26               0.024 *  
## cond_endStrong endorsement:selectedblackcand    0.691      0.375    1.84               0.066 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.68 on 387 degrees of freedom
## Multiple R-squared:  0.04,   Adjusted R-squared:  0.0325 
## F-statistic: 5.37 on 3 and 387 DF,  p-value: 0.00125