R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

data=read.csv("finance_data.csv",header = T)
data$Education.Level[which(data$Education.Level=="Bachelor's Degree")]="Bachelor's"
data$Education.Level=factor(data$Education.Level)

data$Gender=factor(data$Gender)
data$Job.Title=factor(data$Job.Title)
summary(data)
##       Age           Gender       Education.Level               Job.Title  
##  Min.   :24.00   Female:109   Bachelor's :103    Account Manager    :  1  
##  1st Qu.:30.00   Male  : 69   High School:  5    Accountant         :  1  
##  Median :31.00                Master's   : 67    Director of Finance:  2  
##  Mean   :33.77                PhD        :  3    Financial Advisor  :  1  
##  3rd Qu.:39.00                                   Financial Analyst  : 39  
##  Max.   :50.00                                   Financial Manager  :134  
##  Years.of.Experience     Salary      
##  Min.   : 1.000      Min.   : 45000  
##  1st Qu.: 5.000      1st Qu.: 90000  
##  Median : 7.500      Median :120000  
##  Mean   : 9.399      Mean   :130140  
##  3rd Qu.:16.000      3rd Qu.:200000  
##  Max.   :21.000      Max.   :250000
aov=aov(data$Salary~data$Gender+data$Education.Level+data$Gender:data$Education.Level)
summary(aov)
##                                   Df    Sum Sq   Mean Sq F value   Pr(>F)    
## data$Gender                        1 9.417e+10 9.417e+10  40.548 1.71e-09 ***
## data$Education.Level               3 4.526e+10 1.509e+10   6.497 0.000345 ***
## data$Gender:data$Education.Level   2 3.798e+10 1.899e+10   8.176 0.000406 ***
## Residuals                        171 3.971e+11 2.322e+09                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit1=lm(Salary~Age+Gender+Education.Level,data=data)
summary(fit1)
## 
## Call:
## lm(formula = Salary ~ Age + Gender + Education.Level, data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -98407  -9025   8649  22457  37567 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                -146117.3    17673.9  -8.267 3.58e-14 ***
## Age                           8299.0      477.8  17.369  < 2e-16 ***
## GenderMale                  -14903.3     5233.8  -2.848  0.00494 ** 
## Education.LevelHigh School  -21332.8    14383.3  -1.483  0.13986    
## Education.LevelMaster's       9575.2     5265.1   1.819  0.07071 .  
## Education.LevelPhD          -72611.7    17798.2  -4.080 6.89e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30310 on 172 degrees of freedom
## Multiple R-squared:  0.725,  Adjusted R-squared:  0.717 
## F-statistic:  90.7 on 5 and 172 DF,  p-value: < 2.2e-16
library(asbio)
## 載入需要的套件:tcltk
bonfCI(data$Salary,data$Education.Level)
## 
## 95% Bonferroni confidence intervals 
## 
##                                    Diff         Lower        Upper  Decision
## muBachelor's-muHigh School  94097.08738   28622.66973 159571.50503 Reject H0
## muBachelor's-muMaster's     30171.71424    7731.25047  52612.17802 Reject H0
## muHigh School-muMaster's   -63925.37313 -130209.14682   2358.40056    FTR H0
## muBachelor's-muPhD          56763.75405  -26977.03989 140504.54798    FTR H0
## muHigh School-muPhD        -37333.33333 -141748.29782  67081.63116    FTR H0
## muMaster's-muPhD             26592.0398  -57783.07417 110967.15377    FTR H0
##                            Adj. p-value
## muBachelor's-muHigh School      0.00105
## muBachelor's-muMaster's        0.002596
## muHigh School-muMaster's       0.065351
## muBachelor's-muPhD             0.433045
## muHigh School-muPhD                   1
## muMaster's-muPhD                      1
bonfCI(data$Salary,data$Gender)
## 
## 95% Bonferroni confidence intervals 
## 
##                        Diff       Lower       Upper  Decision Adj. p-value
## muFemale-muMale 47208.48291 31347.07268 63069.89315 Reject H0            0