R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

data=read.csv("salary_data.csv",header = T)
data$Education.Level[which(data$Education.Level=="Bachelor's Degree")]="Bachelor's"
data$Education.Level=factor(data$Education.Level)

data$Gender=factor(data$Gender)
data$Job.Title=factor(data$Job.Title)
summary(data)
##       Age           Gender        Education.Level
##  Min.   :21.00   Female:3013   Bachelor's :3021  
##  1st Qu.:28.00   Male  :3671   High School: 436  
##  Median :32.00                 Master's   :1858  
##  Mean   :33.61                 PhD        :1369  
##  3rd Qu.:38.00                                   
##  Max.   :62.00                                   
##                                                  
##                      Job.Title    Years.of.Experience     Salary      
##  Software Engineer        : 518   Min.   : 0.000      Min.   :   350  
##  Data Scientist           : 453   1st Qu.: 3.000      1st Qu.: 70000  
##  Software Engineer Manager: 376   Median : 7.000      Median :115000  
##  Data Analyst             : 363   Mean   : 8.078      Mean   :115307  
##  Senior Project Engineer  : 316   3rd Qu.:12.000      3rd Qu.:160000  
##  Product Manager          : 313   Max.   :34.000      Max.   :250000  
##  (Other)                  :4345
aov=aov(data$Salary~data$Gender+data$Education.Level+data$Gender:data$Education.Level)
summary(aov)
##                                    Df    Sum Sq   Mean Sq  F value  Pr(>F)    
## data$Gender                         1 3.019e+11 3.019e+11  193.135 < 2e-16 ***
## data$Education.Level                3 7.877e+12 2.626e+12 1679.859 < 2e-16 ***
## data$Gender:data$Education.Level    3 2.151e+10 7.172e+09    4.588 0.00326 ** 
## Residuals                        6676 1.044e+13 1.563e+09                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit1=lm(Salary~Age+Gender+Education.Level,data=data)
summary(fit1)
## 
## Call:
## lm(formula = Salary ~ Age + Gender + Education.Level, data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -99570 -22625  -5184  15979  97852 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                -20883.64    2083.93 -10.021  < 2e-16 ***
## Age                          3720.19      66.11  56.273  < 2e-16 ***
## GenderMale                   5622.70     821.72   6.843 8.47e-12 ***
## Education.LevelHigh School -45645.93    1691.73 -26.982  < 2e-16 ***
## Education.LevelMaster's     17734.01    1030.71  17.206  < 2e-16 ***
## Education.LevelPhD          29845.72    1281.31  23.293  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 32590 on 6678 degrees of freedom
## Multiple R-squared:  0.6194, Adjusted R-squared:  0.6191 
## F-statistic:  2173 on 5 and 6678 DF,  p-value: < 2.2e-16
library(asbio)
## 載入需要的套件:tcltk
bonfCI(data$Salary,data$Education.Level)
## 
## 95% Bonferroni confidence intervals 
## 
##                                     Diff         Lower        Upper  Decision
## muBachelor's-muHigh School   60667.29625   55263.29395  66071.29856 Reject H0
## muBachelor's-muMaster's     -34995.47618  -38105.41349 -31885.53887 Reject H0
## muHigh School-muMaster's    -95662.77244 -101276.03104 -90049.51384 Reject H0
## muBachelor's-muPhD          -70568.54936  -74005.23348 -67131.86524 Reject H0
## muHigh School-muPhD        -131235.84561 -137036.51452 -125435.1767 Reject H0
## muMaster's-muPhD            -35573.07318  -39330.23021 -31815.91615 Reject H0
##                            Adj. p-value
## muBachelor's-muHigh School            0
## muBachelor's-muMaster's               0
## muHigh School-muMaster's              0
## muBachelor's-muPhD                    0
## muHigh School-muPhD                   0
## muMaster's-muPhD                      0
bonfCI(data$Salary,data$Gender)
## 
## 95% Bonferroni confidence intervals 
## 
##                         Diff        Lower       Upper  Decision Adj. p-value
## muFemale-muMale -13506.69896 -16030.93082 -10982.4671 Reject H0            0