library(wooldridge)
data(hprice1)
head(force(hprice1),n=5) #mostrar las primeras 5 observaciones
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
options(scipen = 9999)
Modelo_autocorrelacion <- lm(formula = price~lotsize+sqrft+ bdrms, data = hprice1)
stargazer(Modelo_autocorrelacion, title = "Modelo Estimado", type = "text", digits = 5)
##
## Modelo Estimado
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## lotsize 0.00207***
## (0.00064)
##
## sqrft 0.12278***
## (0.01324)
##
## bdrms 13.85252
## (9.01015)
##
## Constant -21.77031
## (29.47504)
##
## -----------------------------------------------
## Observations 88
## R2 0.67236
## Adjusted R2 0.66066
## Residual Std. Error 59.83348 (df = 84)
## F Statistic 57.46023*** (df = 3; 84)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
dwtest(Modelo_autocorrelacion, alternative = "two.sided",iterations = 1000)
##
## Durbin-Watson test
##
## data: Modelo_autocorrelacion
## DW = 2.1098, p-value = 0.6218
## alternative hypothesis: true autocorrelation is not 0
#Prueba del Multiplicador de Lagrange
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyr)
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
Ui <- Modelo_autocorrelacion$residuals
Mat_x <- model.matrix(Modelo_autocorrelacion)
MatInformación <- Mat_x[,-1]
Endogena <- hprice1$price
cbind(Ui, Endogena, MatInformación) %>%
as.data.frame()%>%
mutate(Lag1 = dplyr::lag(Ui, 1),
Lag2 = dplyr::lag(Ui, 2))%>%
replace_na(list(Lag1=0,Lag2=0)) -> Data.PruebaBG
#kable(head(x = Data.PruebaBG, n = 7))
#Regresión auxiliar.
Regresion.AuxiliarBG <- lm(Ui~lotsize+sqrft+bdrms + Lag1 + Lag2, data = Data.PruebaBG)
ResumenBG <- summary(Regresion.AuxiliarBG)
#Estadístico LMbg.
R2 <- ResumenBG$r.squared
n <- nrow(Data.PruebaBG)
LMbg <- n*R2
#Grados de libertad.
gl <- 2 #xq se esta verificando autocorrelación de orden dos (Lag1+Lag2+...+Lagn= gl)
#P Value.
P_Value <- 1-pchisq(q = LMbg, df = gl)
#Valor Critico.
VC <- qchisq(p = 0.05,df = gl,lower.tail = FALSE)
#VC <- qchisq(p = 0.95,df = gl,lower.tail = TRUE)
#Resultados.
library(stargazer)
SalidaBG <-c(LMbg, VC,P_Value)
names(SalidaBG) <- c("LMbg", "Valor Crítico","P Value")
stargazer(SalidaBG, title = "Resultado de la prueba de Breusch Godfrey", type = "text", digits = 5)
##
## Resultado de la prueba de Breusch Godfrey
## =============================
## LMbg Valor Crítico P Value
## -----------------------------
## 3.03340 5.99146 0.21943
## -----------------------------
library(lmtest)
Prueba_Multiplicador_Lagrange <- bgtest(Modelo_autocorrelacion, order = 1)
Prueba_Multiplicador_Lagrange
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: Modelo_autocorrelacion
## LM test = 0.39362, df = 1, p-value = 0.5304
library(lmtest)
Prueba_Multiplicador_Lagrange <- bgtest(Modelo_autocorrelacion, order = 2)
Prueba_Multiplicador_Lagrange
##
## Breusch-Godfrey test for serial correlation of order up to 2
##
## data: Modelo_autocorrelacion
## LM test = 3.0334, df = 2, p-value = 0.2194