Utilizando los datos del dataframe hprice1: disponible en el paquete wooldridge use el siguiente código para generar el dataframe:
Carga de datos
library(wooldridge)
data(hprice1)
head(force(hprice1),n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
\[price=\hat{\alpha}+\hat{\alpha}_1\times\text{lotsize}+\hat{\alpha}_2 \times\text{sqrft} +\hat{\alpha}_3 \times\text{bdrms}+\epsilon\]
Estimacion del modelo
library(stargazer)
modelo_precio <- lm(formula = price ~ lotsize + sqrft + bdrms, data = hprice1)
stargazer(modelo_precio, title = "Modelo del precio", type = "text", digits = 4)
##
## Modelo del precio
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## lotsize 0.0021***
## (0.0006)
##
## sqrft 0.1228***
## (0.0132)
##
## bdrms 13.8525
## (9.0101)
##
## Constant -21.7703
## (29.4750)
##
## -----------------------------------------------
## Observations 88
## R2 0.6724
## Adjusted R2 0.6607
## Residual Std. Error 59.8335 (df = 84)
## F Statistic 57.4602*** (df = 3; 84)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
library(lmtest)
dwtest(modelo_precio,alternative = "two.sided",iterations = 1000)
##
## Durbin-Watson test
##
## data: modelo_precio
## DW = 2.1098, p-value = 0.6218
## alternative hypothesis: true autocorrelation is not 0
No se rechaza la H0, ya que 0.06218 > 0.05, por lo que no evidencia de la presencia de autocorrelación
###library("car")
durbinWatsonTest(modelo_precio,simulate = TRUE,reps = 1000)
## lag Autocorrelation D-W Statistic p-value
## 1 -0.05900522 2.109796 0.588
## Alternative hypothesis: rho != 0
No se rechaza la H0, ya que p-value > 0.05, por lo que no evidencia de la presencia de autocorrelación
library(stargazer)
library(dplyr)
library(tidyr)
library(kableExtra)
residuos<-modelo_precio$residuals
cbind(residuos,hprice1) %>%
as.data.frame() %>%
mutate(Lag_1=dplyr::lag(residuos,1),
Lag_2=dplyr::lag(residuos,2)) %>%
replace_na(list(Lag_1=0,Lag_2=0))->data_pruebaBG
kable(head(data_pruebaBG,6))
| residuos | price | assess | bdrms | lotsize | sqrft | colonial | lprice | lassess | llotsize | lsqrft | Lag_1 | Lag_2 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| -45.639765 | 300.000 | 349.1 | 4 | 6126 | 2438 | 1 | 5.703783 | 5.855359 | 8.720297 | 7.798934 | 0.000000 | 0.000000 |
| 74.848732 | 370.000 | 351.5 | 3 | 9903 | 2076 | 1 | 5.913503 | 5.862210 | 9.200593 | 7.638198 | -45.639765 | 0.000000 |
| -8.236558 | 191.000 | 217.7 | 3 | 5200 | 1374 | 0 | 5.252274 | 5.383118 | 8.556414 | 7.225481 | 74.848732 | -45.639765 |
| -12.081520 | 195.000 | 231.8 | 3 | 4600 | 1448 | 1 | 5.273000 | 5.445875 | 8.433811 | 7.277938 | -8.236558 | 74.848732 |
| 18.093192 | 373.000 | 319.1 | 4 | 6095 | 2514 | 1 | 5.921578 | 5.765504 | 8.715224 | 7.829630 | -12.081520 | -8.236558 |
| 62.939597 | 466.275 | 414.5 | 5 | 8566 | 2754 | 1 | 6.144775 | 6.027073 | 9.055556 | 7.920810 | 18.093192 | -12.081520 |
library(stargazer)
regre_auxiBG<-lm(residuos~lotsize+sqrft+bdrms+Lag_1+Lag_2,data = data_pruebaBG)
Residuos_BG<-summary(regre_auxiBG)
R2_BG<-Residuos_BG$r.squared
n<-nrow(data_pruebaBG)
LM_BG<-n*R2_BG
gl=2
p_value<-1-pchisq(q = LM_BG,df = gl)
VC<-qchisq(p = 0.95,df = gl)
salida_bg<-c(LM_BG,VC,p_value)
names(salida_bg)<-c("LMbg","Valor Crítico","p value")
stargazer(salida_bg,title = "Resultados de la prueba de Breusch Godfrey",type = "text",digits = 6)
##
## Resultados de la prueba de Breusch Godfrey
## ===============================
## LMbg Valor Crítico p value
## -------------------------------
## 3.033403 5.991465 0.219435
## -------------------------------
Como el p-value (0.219435) > 0.05 no se rechaza H0, por lo tanto, se puede concluir que los residuos del modelo no siguen autocorrelación de orden “2”
###Primer orden
library(lmtest)
bgtest(modelo_precio,order = 1)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: modelo_precio
## LM test = 0.39362, df = 1, p-value = 0.5304
Como el p-value (0.05304) > 0.05 no se rechaza H0, por lo tanto, se puede concluir que los residuos del modelo no siguen autocorrelación de orden “1”
Segundo orden
library(lmtest)
bgtest(modelo_precio,order = 2)
##
## Breusch-Godfrey test for serial correlation of order up to 2
##
## data: modelo_precio
## LM test = 3.0334, df = 2, p-value = 0.2194
Como el p-value (0.2194) > 0.05 no se rechaza H0, por lo tanto, se puede concluir que los residuos del modelo no siguen autocorrelación de orden “2”