In this analysis I will investigate sleep patterns among people using
data from the sleep75 dataset. I am going to explore
various factors influencing sleep duration, focusing particularly on
gender differences.
# Separate data based on gender
male_data <- subset(sleep75, male == 1)
female_data <- subset(sleep75, male == 0)# Distribution of Sleep Duration for Males
ggplot(male_data, aes(x = sleep)) +
geom_histogram(binwidth = 30, fill = "skyblue", color = "black") +
labs(title = "Distribution of Sleep Duration (Males)",
x = "Minutes of Sleep",
y = "Frequency") +
theme_minimal()# Model for males
male_model <- lm(sleep ~ totwrk + educ + age, data = male_data)
male_model_summary <- tidy(male_model)
# Summary of the model
male_model_summary## # A tibble: 4 × 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 3759. 149. 25.2 3.67e-84
## 2 totwrk -0.183 0.0242 -7.56 2.84e-13
## 3 educ -12.9 7.40 -1.75 8.14e- 2
## 4 age 2.69 1.86 1.44 1.50e- 1
# Scatterplot of Sleep vs. Total Work Hours for Males
ggplot(male_data, aes(x = totwrk, y = sleep)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, color = "blue") +
labs(title = "Scatterplot of Sleep vs. Total Work Hours (Males)",
x = "Total Work Hours",
y = "Minutes of Sleep") +
theme_minimal()## `geom_smooth()` using formula = 'y ~ x'
# Boxplot of Sleep Duration by Education Level for Males
ggplot(male_data, aes(x = as.factor(educ), y = sleep)) +
geom_boxplot(fill = "skyblue") +
labs(title = "Boxplot of Sleep Duration by Education Level (Males)",
x = "Education Level",
y = "Minutes of Sleep") +
theme_minimal()