ÖDEVİ HAZIRLAYANLAR
- KARDELEN KAYA
- DAMLA BİNGÜL
- AHMET AKTAŞ
- ŞAMİL DOĞUKAN AKTAŞ
K-ORTALAMALAR KÜMELEME ANALİZİ
YAPAY VERİ OLUŞTURMA VE ANALİZ KODLARI
## Installing package into 'C:/Users/zeraa/AppData/Local/R/win-library/4.3'
## (as 'lib' is unspecified)
## package 'ggplot2' successfully unpacked and MD5 sums checked
##
## The downloaded binary packages are in
## C:\Users\zeraa\AppData\Local\Temp\Rtmpakyhz5\downloaded_packages
## Installing package into 'C:/Users/zeraa/AppData/Local/R/win-library/4.3'
## (as 'lib' is unspecified)
## package 'factoextra' successfully unpacked and MD5 sums checked
##
## The downloaded binary packages are in
## C:\Users\zeraa\AppData\Local\Temp\Rtmpakyhz5\downloaded_packages
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
# Rastgele bir sosyal medya veri seti oluşturun (1000 gözlem)
set.seed(123)
veri <- data.frame(
Gunluk_Mesaj_Sayisi = rpois(1000, 10), # Ortalama 10 mesaj
Takipci_Sayisi = rnorm(1000, 1000, 200), # Ortalama 1000 takipçi
Begeni_Orani = runif(1000, 0, 1), # 0 ile 1 arasında beğeni oranı
Paylasim_Sikligi = rpois(1000, 5), # Ortalama 5 paylaşım
Yorum_Sayisi = rpois(1000, 20), # Ortalama 20 yorum
Etiket_Sayisi = rpois(1000, 15), # Ortalama 15 etiket
Video_Izlenme_Suresi = rnorm(1000, 300, 50), # Ortalama 300 saniye video izlenme süresi
Hikaye_Goruntulenme_Sayisi = rnorm(1000, 150, 30) # Ortalama 150 hikaye görüntülenme sayısı
)
head(veri)## Gunluk_Mesaj_Sayisi Takipci_Sayisi Begeni_Orani Paylasim_Sikligi Yorum_Sayisi
## 1 8 944.5004 0.0193967 7 18
## 2 9 1130.7818 0.7588939 8 24
## 3 14 1016.0700 0.1576183 5 23
## 4 10 1091.1805 0.1122757 6 17
## 5 10 1166.9064 0.7138137 6 20
## 6 15 861.4552 0.4452190 8 23
## Etiket_Sayisi Video_Izlenme_Suresi Hikaye_Goruntulenme_Sayisi
## 1 15 317.8749 206.6020
## 2 10 318.1635 141.1547
## 3 12 246.1178 115.7472
## 4 20 319.2866 237.7997
## 5 10 389.0653 135.3836
## 6 26 285.1380 190.4248
# K-Means kümeleme analizini gerçekleştirin (K=3)
set.seed(123)
km.sonuc <- kmeans(veri, 5, nstart = 25)
print(km.sonuc)## K-means clustering with 5 clusters of sizes 252, 232, 110, 294, 112
##
## Cluster means:
## Gunluk_Mesaj_Sayisi Takipci_Sayisi Begeni_Orani Paylasim_Sikligi Yorum_Sayisi
## 1 9.809524 845.944 0.4830489 4.805556 19.59524
## 2 10.073276 1151.357 0.4991119 5.193966 20.25000
## 3 10.300000 657.817 0.4846522 5.181818 19.80000
## 4 9.959184 1003.717 0.4720756 5.061224 20.07823
## 5 9.937500 1345.320 0.5167988 4.910714 20.53571
## Etiket_Sayisi Video_Izlenme_Suresi Hikaye_Goruntulenme_Sayisi
## 1 15.00000 297.1327 148.1044
## 2 14.76293 298.6731 147.7800
## 3 15.16364 299.9764 149.2000
## 4 15.12585 302.4136 150.0510
## 5 15.45536 302.1767 144.6540
##
## Clustering vector:
## [1] 4 2 4 2 2 1 3 2 3 4 1 2 5 1 4 4 1 1 3 3 1 4 4 1 1 1 1 1 4 2 1 5 2 1 1 2 1
## [38] 4 2 4 1 1 4 4 1 4 1 5 3 5 4 4 3 2 5 1 2 5 5 1 1 4 4 1 1 2 4 2 1 2 4 4 3 3
## [75] 2 3 1 4 2 4 2 3 2 2 1 4 2 1 1 4 1 4 2 4 5 1 2 4 1 3 2 4 3 4 4 5 1 2 1 3 2
## [112] 3 4 2 2 1 1 2 4 1 1 1 3 2 4 1 5 2 5 5 1 4 5 2 5 2 4 5 2 4 4 1 5 1 4 3 5 5
## [149] 1 1 2 4 4 2 2 1 3 2 3 4 1 4 4 5 4 1 4 4 1 4 4 4 2 3 1 2 5 4 3 5 4 4 4 2 2
## [186] 4 3 4 5 5 4 2 1 5 2 4 2 4 1 4 4 2 4 4 2 4 2 2 1 1 1 3 4 5 2 1 1 2 5 4 3 1
## [223] 2 1 5 2 4 5 3 2 5 1 4 2 3 4 1 4 4 2 4 1 4 2 2 4 1 3 5 2 1 3 4 4 4 2 3 5 2
## [260] 4 4 1 2 2 3 1 4 1 3 1 4 3 4 1 3 1 1 5 1 2 1 1 1 3 2 5 4 2 4 2 2 3 3 4 1 2
## [297] 1 2 5 5 4 1 4 3 5 3 1 2 4 2 1 3 2 2 5 1 3 2 5 4 2 1 2 4 2 3 1 1 4 3 2 1 4
## [334] 3 1 5 2 4 1 1 1 2 5 5 4 1 5 2 4 5 2 1 1 1 2 1 1 1 5 4 2 1 1 3 2 4 1 2 4 1
## [371] 3 2 3 3 2 2 1 4 1 2 2 5 2 4 1 4 1 4 4 4 3 4 4 4 3 3 4 2 2 4 1 4 4 4 4 4 5
## [408] 2 4 2 3 4 1 5 4 1 2 5 1 1 1 1 2 1 4 1 4 4 3 1 1 3 1 3 5 1 4 4 4 4 2 2 1 3
## [445] 4 4 1 4 2 4 1 4 1 4 4 5 4 2 2 4 3 4 4 2 4 4 2 4 4 2 2 5 5 2 4 1 1 1 1 2 1
## [482] 4 5 4 4 1 1 1 4 1 4 2 4 1 1 4 4 1 4 2 4 4 1 5 3 2 4 3 4 1 1 1 4 4 1 4 1 5
## [519] 4 1 4 2 4 4 5 4 4 1 2 2 3 2 2 4 3 4 4 4 3 2 3 4 1 1 1 4 4 4 2 2 2 2 4 1 1
## [556] 5 4 5 2 2 4 2 2 3 4 4 2 5 5 2 4 5 2 3 1 4 2 1 2 3 4 4 5 5 4 4 4 2 4 1 4 1
## [593] 1 4 2 2 4 5 1 4 1 2 4 4 2 1 4 5 1 2 1 2 4 2 4 2 5 1 1 2 4 5 4 4 1 5 2 3 5
## [630] 1 1 1 3 2 3 1 1 2 1 4 1 2 1 5 4 1 5 4 1 1 2 1 5 1 3 3 1 2 3 1 4 3 4 3 3 5
## [667] 5 2 5 1 5 1 2 3 2 3 3 1 1 4 4 5 5 2 1 4 4 2 4 1 2 3 4 1 4 2 4 2 4 1 1 4 5
## [704] 3 4 1 1 2 4 5 1 3 1 1 2 4 2 4 2 2 2 1 1 2 2 1 2 1 4 1 1 3 4 1 1 1 4 4 2 2
## [741] 2 3 4 3 5 4 1 4 4 2 2 3 2 3 2 3 4 4 5 1 5 3 1 1 1 2 2 3 1 3 2 2 2 5 4 4 1
## [778] 5 4 1 1 5 1 2 4 2 2 1 3 5 5 1 5 2 4 2 4 2 4 2 4 4 5 2 2 4 4 3 1 2 4 1 2 1
## [815] 4 1 1 2 1 4 4 1 5 2 4 3 2 5 2 2 1 3 4 5 4 1 5 1 2 2 4 4 1 4 2 2 1 5 2 3 4
## [852] 5 3 1 2 2 1 2 1 1 3 2 4 4 5 1 1 1 4 5 2 1 2 1 1 2 2 4 3 2 4 2 3 2 4 3 4 4
## [889] 2 3 2 4 4 1 4 4 1 4 4 1 4 5 4 3 1 2 3 1 3 2 4 5 5 4 4 4 2 2 4 5 2 4 3 4 3
## [926] 2 2 4 4 4 4 1 3 4 4 5 5 2 1 3 2 1 2 4 1 1 4 1 4 1 5 4 4 4 1 5 4 4 4 1 4 5
## [963] 1 1 5 3 4 2 2 2 1 2 2 3 2 4 4 4 4 2 5 4 3 2 4 5 1 4 2 2 1 1 5 1 4 2 2 5 3
## [1000] 4
##
## Within cluster sum of squares by cluster:
## [1] 1412351 1274650 1129459 1536635 1196835
## (between_SS / total_SS = 85.1 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
## [6] "betweenss" "size" "iter" "ifault"
# K-means sonuçlarını görselleştirin
fviz_cluster(km.sonuc, data = veri, ellipse.type = "convex", geom = "point", stand = FALSE) +
theme_minimal()ANALİZ SONUÇLARI
K-means clustering with 5 clusters of sizes 252, 232, 110, 294, 112
Cluster means: Gunluk_Mesaj_Sayisi Takipci_Sayisi Begeni_Orani Paylasim_Sikligi Yorum_Sayisi Etiket_Sayisi Video_Izlenme_Suresi 1 9.809524 845.944 0.4830489 4.805556 19.59524 15.00000 297.1327 2 10.073276 1151.357 0.4991119 5.193966 20.25000 14.76293 298.6731 3 10.300000 657.817 0.4846522 5.181818 19.80000 15.16364 299.9764 4 9.959184 1003.717 0.4720756 5.061224 20.07823 15.12585 302.4136 5 9.937500 1345.320 0.5167988 4.910714 20.53571 15.45536 302.1767 Hikaye_Goruntulenme_Sayisi 1 148.1044 2 147.7800 3 149.2000 4 150.0510 5 144.6540
Clustering vector: [1] 4 2 4 2 2 1 3 2 3 4 1 2 5 1 4 4 1 1 3 3 1 4 4 1 1 1 1 1 4 2 1 5 2 1 1 2 1 4 2 4 1 1 4 4 1 4 1 5 3 5 4 4 3 2 5 1 [57] 2 5 5 1 1 4 4 1 1 2 4 2 1 2 4 4 3 3 2 3 1 4 2 4 2 3 2 2 1 4 2 1 1 4 1 4 2 4 5 1 2 4 1 3 2 4 3 4 4 5 1 2 1 3 2 3 [113] 4 2 2 1 1 2 4 1 1 1 3 2 4 1 5 2 5 5 1 4 5 2 5 2 4 5 2 4 4 1 5 1 4 3 5 5 1 1 2 4 4 2 2 1 3 2 3 4 1 4 4 5 4 1 4 4 [169] 1 4 4 4 2 3 1 2 5 4 3 5 4 4 4 2 2 4 3 4 5 5 4 2 1 5 2 4 2 4 1 4 4 2 4 4 2 4 2 2 1 1 1 3 4 5 2 1 1 2 5 4 3 1 2 1 [225] 5 2 4 5 3 2 5 1 4 2 3 4 1 4 4 2 4 1 4 2 2 4 1 3 5 2 1 3 4 4 4 2 3 5 2 4 4 1 2 2 3 1 4 1 3 1 4 3 4 1 3 1 1 5 1 2 [281] 1 1 1 3 2 5 4 2 4 2 2 3 3 4 1 2 1 2 5 5 4 1 4 3 5 3 1 2 4 2 1 3 2 2 5 1 3 2 5 4 2 1 2 4 2 3 1 1 4 3 2 1 4 3 1 5 [337] 2 4 1 1 1 2 5 5 4 1 5 2 4 5 2 1 1 1 2 1 1 1 5 4 2 1 1 3 2 4 1 2 4 1 3 2 3 3 2 2 1 4 1 2 2 5 2 4 1 4 1 4 4 4 3 4 [393] 4 4 3 3 4 2 2 4 1 4 4 4 4 4 5 2 4 2 3 4 1 5 4 1 2 5 1 1 1 1 2 1 4 1 4 4 3 1 1 3 1 3 5 1 4 4 4 4 2 2 1 3 4 4 1 4 [449] 2 4 1 4 1 4 4 5 4 2 2 4 3 4 4 2 4 4 2 4 4 2 2 5 5 2 4 1 1 1 1 2 1 4 5 4 4 1 1 1 4 1 4 2 4 1 1 4 4 1 4 2 4 4 1 5 [505] 3 2 4 3 4 1 1 1 4 4 1 4 1 5 4 1 4 2 4 4 5 4 4 1 2 2 3 2 2 4 3 4 4 4 3 2 3 4 1 1 1 4 4 4 2 2 2 2 4 1 1 5 4 5 2 2 [561] 4 2 2 3 4 4 2 5 5 2 4 5 2 3 1 4 2 1 2 3 4 4 5 5 4 4 4 2 4 1 4 1 1 4 2 2 4 5 1 4 1 2 4 4 2 1 4 5 1 2 1 2 4 2 4 2 [617] 5 1 1 2 4 5 4 4 1 5 2 3 5 1 1 1 3 2 3 1 1 2 1 4 1 2 1 5 4 1 5 4 1 1 2 1 5 1 3 3 1 2 3 1 4 3 4 3 3 5 5 2 5 1 5 1 [673] 2 3 2 3 3 1 1 4 4 5 5 2 1 4 4 2 4 1 2 3 4 1 4 2 4 2 4 1 1 4 5 3 4 1 1 2 4 5 1 3 1 1 2 4 2 4 2 2 2 1 1 2 2 1 2 1 [729] 4 1 1 3 4 1 1 1 4 4 2 2 2 3 4 3 5 4 1 4 4 2 2 3 2 3 2 3 4 4 5 1 5 3 1 1 1 2 2 3 1 3 2 2 2 5 4 4 1 5 4 1 1 5 1 2 [785] 4 2 2 1 3 5 5 1 5 2 4 2 4 2 4 2 4 4 5 2 2 4 4 3 1 2 4 1 2 1 4 1 1 2 1 4 4 1 5 2 4 3 2 5 2 2 1 3 4 5 4 1 5 1 2 2 [841] 4 4 1 4 2 2 1 5 2 3 4 5 3 1 2 2 1 2 1 1 3 2 4 4 5 1 1 1 4 5 2 1 2 1 1 2 2 4 3 2 4 2 3 2 4 3 4 4 2 3 2 4 4 1 4 4 [897] 1 4 4 1 4 5 4 3 1 2 3 1 3 2 4 5 5 4 4 4 2 2 4 5 2 4 3 4 3 2 2 4 4 4 4 1 3 4 4 5 5 2 1 3 2 1 2 4 1 1 4 1 4 1 5 4 [953] 4 4 1 5 4 4 4 1 4 5 1 1 5 3 4 2 2 2 1 2 2 3 2 4 4 4 4 2 5 4 3 2 4 5 1 4 2 2 1 1 5 1 4 2 2 5 3 4
Within cluster sum of squares by cluster: [1] 1412351 1274650 1129459 1536635 1196835 (between_SS / total_SS = 85.1 %)
Available components:
[1] “cluster” “centers” “totss” “withinss” “tot.withinss” “betweenss”
“size”
[8] “iter” “ifault”