1. Packages

library(foreign)
#install.packages("ggplot2")
library(ggplot2)
#install.packages("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.3     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ lubridate 1.9.2     ✔ tibble    3.2.1
## ✔ purrr     1.0.2     ✔ tidyr     1.3.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
#install.packages("plotly")
library(plotly)
## 
## Attaching package: 'plotly'
## 
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## The following object is masked from 'package:graphics':
## 
##     layout
#install.packages("gapminder")
library(gapminder)
#install.packages("psych")
library(psych)
## 
## Attaching package: 'psych'
## 
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
#install.packages("car")
library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:psych':
## 
##     logit
## 
## The following object is masked from 'package:dplyr':
## 
##     recode
## 
## The following object is masked from 'package:purrr':
## 
##     some
library(carData)
#install.packages("forcats")
library(forcats)
#install.packages("DescTools")
library(DescTools)
## 
## Attaching package: 'DescTools'
## 
## The following object is masked from 'package:car':
## 
##     Recode
## 
## The following objects are masked from 'package:psych':
## 
##     AUC, ICC, SD
#install.packages("e1071")
library(e1071)
#install.packages("sjPlot")
#install.packages("patchwork")
library(patchwork)
#install.packages("gridExtra")
library(gridExtra)
## 
## Attaching package: 'gridExtra'
## 
## The following object is masked from 'package:dplyr':
## 
##     combine
#install.packages("QuantPsyc")
#install.packages("lm.beta")
library(lm.beta)
library(sjPlot)
library(glmmTMB)
## Warning in checkMatrixPackageVersion(): Package version inconsistency detected.
## TMB was built with Matrix version 1.6.0
## Current Matrix version is 1.6.1
## Please re-install 'TMB' from source using install.packages('TMB', type = 'source') or ask CRAN for a binary version of 'TMB' matching CRAN's 'Matrix' package
## Warning in checkDepPackageVersion(dep_pkg = "TMB"): Package version inconsistency detected.
## glmmTMB was built with TMB version 1.9.4
## Current TMB version is 1.9.6
## Please re-install glmmTMB from source or restore original 'TMB' package (see '?reinstalling' for more information)
#install.packages("tinytext")
library(tinytex)
#tinytex::install_tinytex()
#install_tinytex()
#install.packages("modelsummary")
library(modelsummary)
## 
## Attaching package: 'modelsummary'
## 
## The following objects are masked from 'package:DescTools':
## 
##     Format, Mean, Median, N, SD, Var
## 
## The following object is masked from 'package:psych':
## 
##     SD
#install.packages("stargazer")
library(stargazer)
## 
## Please cite as: 
## 
##  Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
#install.packages("webshot")
library(webshot)
#install.packages("Hmisc")
library(Hmisc)
## 
## Attaching package: 'Hmisc'
## 
## The following object is masked from 'package:modelsummary':
## 
##     Mean
## 
## The following object is masked from 'package:e1071':
## 
##     impute
## 
## The following objects are masked from 'package:DescTools':
## 
##     %nin%, Label, Mean, Quantile
## 
## The following object is masked from 'package:psych':
## 
##     describe
## 
## The following object is masked from 'package:plotly':
## 
##     subplot
## 
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## 
## The following objects are masked from 'package:base':
## 
##     format.pval, units
#install.packages("dplyr")
library(dplyr)
#install.packages("VIM", dependencies = TRUE)
library(VIM)
## Loading required package: colorspace
## Loading required package: grid
## The legacy packages maptools, rgdal, and rgeos, underpinning the sp package,
## which was just loaded, will retire in October 2023.
## Please refer to R-spatial evolution reports for details, especially
## https://r-spatial.org/r/2023/05/15/evolution4.html.
## It may be desirable to make the sf package available;
## package maintainers should consider adding sf to Suggests:.
## The sp package is now running under evolution status 2
##      (status 2 uses the sf package in place of rgdal)
## VIM is ready to use.
## 
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
## 
## Attaching package: 'VIM'
## 
## The following object is masked from 'package:datasets':
## 
##     sleep
#install.packages("mice")
library(mice)
## 
## Attaching package: 'mice'
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## The following objects are masked from 'package:base':
## 
##     cbind, rbind
#install.packages("ggpubr")
library(ggpubr)
#install.packages("vtable")
library(vtable)
## Loading required package: kableExtra
## 
## Attaching package: 'kableExtra'
## 
## The following object is masked from 'package:dplyr':
## 
##     group_rows
## 
## 
## Attaching package: 'vtable'
## 
## The following object is masked from 'package:VIM':
## 
##     countNA
#install.packages("lme4")
library(lme4)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## 
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
#install.packages("easystats")
library(easystats)
## # Attaching packages: easystats 0.6.0 (red = needs update)
## ✖ bayestestR  0.13.1   ✔ correlation 0.8.4 
## ✖ datawizard  0.9.1    ✖ effectsize  0.8.6 
## ✖ insight     0.19.8   ✖ modelbased  0.8.6 
## ✖ performance 0.10.5   ✖ parameters  0.21.5
## ✖ report      0.5.7    ✖ see         0.8.0 
## 
## Restart the R-Session and update packages in red with `easystats::easystats_update()`.
#install.packages("esquisse")
library(esquisse)
#install.packages("devtools")
library(openai)
require(devtools)
## Loading required package: devtools
## Loading required package: usethis
#install.packages("pander")
library(pander)
#install.packages("lmtest")
library(lmtest)
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
#install.packages("sandwich")
library(sandwich)
#install.packages("miceadds")
library(miceadds)
## * miceadds 3.16-18 (2023-01-06 10:54:00)
#install.packages("expss")
library(expss)
## Loading required package: maditr
## 
## To aggregate data: take(mtcars, mean_mpg = mean(mpg), by = am)
## 
## 
## Attaching package: 'maditr'
## 
## The following object is masked from 'package:DescTools':
## 
##     %like%
## 
## The following objects are masked from 'package:dplyr':
## 
##     between, coalesce, first, last
## 
## The following object is masked from 'package:purrr':
## 
##     transpose
## 
## The following object is masked from 'package:readr':
## 
##     cols
## 
## Registered S3 methods overwritten by 'expss':
##   method                 from 
##   [.labelled             Hmisc
##   as.data.frame.labelled base 
##   print.labelled         Hmisc
## 
## Attaching package: 'expss'
## 
## The following object is masked from 'package:lme4':
## 
##     dummy
## 
## The following object is masked from 'package:ggpubr':
## 
##     compare_means
## 
## The following object is masked from 'package:car':
## 
##     recode
## 
## The following objects are masked from 'package:stringr':
## 
##     fixed, regex
## 
## The following objects are masked from 'package:dplyr':
## 
##     compute, contains, na_if, recode, vars, where
## 
## The following objects are masked from 'package:purrr':
## 
##     keep, modify, modify_if, when
## 
## The following objects are masked from 'package:tidyr':
## 
##     contains, nest
## 
## The following object is masked from 'package:ggplot2':
## 
##     vars
#install.packages("logistf")
library(logistf)
#install.packages("parameters")
library(parameters)
install.packages
## function (pkgs, lib, repos = getOption("repos"), contriburl = contrib.url(repos, 
##     type), method, available = NULL, destdir = NULL, dependencies = NA, 
##     type = getOption("pkgType"), configure.args = getOption("configure.args"), 
##     configure.vars = getOption("configure.vars"), clean = FALSE, 
##     Ncpus = getOption("Ncpus", 1L), verbose = getOption("verbose"), 
##     libs_only = FALSE, INSTALL_opts, quiet = FALSE, keep_outputs = FALSE, 
##     ...) 
## {
##     if (!is.character(type)) 
##         stop("invalid 'type'; must be a character string")
##     type2 <- .Platform$pkgType
##     if (type == "binary") {
##         if (type2 == "source") 
##             stop("type 'binary' is not supported on this platform")
##         else type <- type2
##         if (type == "both" && (!missing(contriburl) || !is.null(available))) 
##             stop("specifying 'contriburl' or 'available' requires a single type, not type = \"both\"")
##     }
##     if (is.logical(clean) && clean) 
##         clean <- "--clean"
##     if (is.logical(dependencies) && is.na(dependencies)) 
##         dependencies <- if (!missing(lib) && length(lib) > 1L) 
##             FALSE
##         else c("Depends", "Imports", "LinkingTo")
##     get_package_name <- function(pkg) {
##         gsub("_[.](zip|tar[.]gz|tar[.]bzip2|tar[.]xz)", "", gsub(.standard_regexps()$valid_package_version, 
##             "", basename(pkg)))
##     }
##     getConfigureArgs <- function(pkg) {
##         if (.Platform$OS.type == "windows") 
##             return(character())
##         if (length(pkgs) == 1L && length(configure.args) && length(names(configure.args)) == 
##             0L) 
##             return(paste0("--configure-args=", shQuote(paste(configure.args, 
##                 collapse = " "))))
##         pkg <- get_package_name(pkg)
##         if (length(configure.args) && length(names(configure.args)) && 
##             pkg %in% names(configure.args)) 
##             config <- paste0("--configure-args=", shQuote(paste(configure.args[[pkg]], 
##                 collapse = " ")))
##         else config <- character()
##         config
##     }
##     getConfigureVars <- function(pkg) {
##         if (.Platform$OS.type == "windows") 
##             return(character())
##         if (length(pkgs) == 1L && length(configure.vars) && length(names(configure.vars)) == 
##             0L) 
##             return(paste0("--configure-vars=", shQuote(paste(configure.vars, 
##                 collapse = " "))))
##         pkg <- get_package_name(pkg)
##         if (length(configure.vars) && length(names(configure.vars)) && 
##             pkg %in% names(configure.vars)) 
##             config <- paste0("--configure-vars=", shQuote(paste(configure.vars[[pkg]], 
##                 collapse = " ")))
##         else config <- character()
##         config
##     }
##     get_install_opts <- function(pkg) {
##         if (!length(INSTALL_opts)) 
##             character()
##         else paste(INSTALL_opts[[get_package_name(pkg)]], collapse = " ")
##     }
##     if (missing(pkgs)) {
##         if (!interactive()) 
##             stop("no packages were specified")
##         if (.Platform$OS.type == "windows" || .Platform$GUI == 
##             "AQUA" || (capabilities("tcltk") && capabilities("X11") && 
##             suppressWarnings(tcltk::.TkUp))) {
##         }
##         else stop("no packages were specified")
##         if (is.null(available)) {
##             av <- available.packages(contriburl = contriburl, 
##                 method = method, ...)
##             if (missing(repos)) 
##                 repos <- getOption("repos")
##             if (type != "both") 
##                 available <- av
##         }
##         else av <- available
##         if (NROW(av)) {
##             pkgs <- select.list(sort(unique(rownames(av))), multiple = TRUE, 
##                 title = "Packages", graphics = TRUE)
##         }
##     }
##     if (.Platform$OS.type == "windows" && length(pkgs)) {
##         pkgnames <- get_package_name(pkgs)
##         inuse <- search()
##         inuse <- sub("^package:", "", inuse[grep("^package:", 
##             inuse)])
##         inuse <- pkgnames %in% inuse
##         if (any(inuse)) {
##             warning(sprintf(ngettext(sum(inuse), "package %s is in use and will not be installed", 
##                 "packages %s are in use and will not be installed"), 
##                 paste(sQuote(pkgnames[inuse]), collapse = ", ")), 
##                 call. = FALSE, domain = NA, immediate. = TRUE)
##             pkgs <- pkgs[!inuse]
##         }
##     }
##     if (!length(pkgs)) 
##         return(invisible())
##     if (missing(lib) || is.null(lib)) {
##         lib <- .libPaths()[1L]
##         if (!quiet && length(.libPaths()) > 1L) 
##             message(sprintf(ngettext(length(pkgs), "Installing package into %s\n(as %s is unspecified)", 
##                 "Installing packages into %s\n(as %s is unspecified)"), 
##                 sQuote(lib), sQuote("lib")), domain = NA)
##     }
##     ok <- dir.exists(lib) & (file.access(lib, 2) == 0L)
##     if (length(lib) > 1 && any(!ok)) 
##         stop(sprintf(ngettext(sum(!ok), "'lib' element %s is not a writable directory", 
##             "'lib' elements %s are not writable directories"), 
##             paste(sQuote(lib[!ok]), collapse = ", ")), domain = NA)
##     if (length(lib) == 1L && .Platform$OS.type == "windows") {
##         ok <- dir.exists(lib)
##         if (ok) {
##             fn <- file.path(lib, paste0("_test_dir_", Sys.getpid()))
##             unlink(fn, recursive = TRUE)
##             res <- try(dir.create(fn, showWarnings = FALSE))
##             if (inherits(res, "try-error") || !res) 
##                 ok <- FALSE
##             else unlink(fn, recursive = TRUE)
##         }
##     }
##     if (length(lib) == 1L && !ok) {
##         warning(gettextf("'lib = \"%s\"' is not writable", lib), 
##             domain = NA, immediate. = TRUE)
##         userdir <- unlist(strsplit(Sys.getenv("R_LIBS_USER"), 
##             .Platform$path.sep))[1L]
##         if (interactive()) {
##             ans <- askYesNo(gettext("Would you like to use a personal library instead?"), 
##                 default = FALSE)
##             if (!isTRUE(ans)) 
##                 stop("unable to install packages")
##             lib <- userdir
##             if (!file.exists(userdir)) {
##                 ans <- askYesNo(gettextf("Would you like to create a personal library\n%s\nto install packages into?", 
##                   sQuote(userdir)), default = FALSE)
##                 if (!isTRUE(ans)) 
##                   stop("unable to install packages")
##                 if (!dir.create(userdir, recursive = TRUE)) 
##                   stop(gettextf("unable to create %s", sQuote(userdir)), 
##                     domain = NA)
##                 .libPaths(c(userdir, .libPaths()))
##             }
##         }
##         else stop("unable to install packages")
##     }
##     lib <- normalizePath(lib)
##     if (length(pkgs) == 1L && missing(repos) && missing(contriburl)) {
##         if ((type == "source" && any(grepl("[.]tar[.](gz|bz2|xz)$", 
##             pkgs))) || (type %in% "win.binary" && endsWith(pkgs, 
##             ".zip")) || (startsWith(type, "mac.binary") && endsWith(pkgs, 
##             ".tgz"))) {
##             repos <- NULL
##             message("inferring 'repos = NULL' from 'pkgs'")
##         }
##         if (type == "both") {
##             if (type2 %in% "win.binary" && endsWith(pkgs, ".zip")) {
##                 repos <- NULL
##                 type <- type2
##                 message("inferring 'repos = NULL' from 'pkgs'")
##             }
##             else if (startsWith(type2, "mac.binary") && endsWith(pkgs, 
##                 ".tgz")) {
##                 repos <- NULL
##                 type <- type2
##                 message("inferring 'repos = NULL' from 'pkgs'")
##             }
##             else if (grepl("[.]tar[.](gz|bz2|xz)$", pkgs)) {
##                 repos <- NULL
##                 type <- "source"
##                 message("inferring 'repos = NULL' from 'pkgs'")
##             }
##         }
##     }
##     if (length(pkgs) == 1L && is.null(repos) && type == "both") {
##         if ((type2 %in% "win.binary" && endsWith(pkgs, ".zip")) || 
##             (startsWith(type2, "mac.binary") && endsWith(pkgs, 
##                 ".tgz"))) {
##             type <- type2
##         }
##         else if (grepl("[.]tar[.](gz|bz2|xz)$", pkgs)) {
##             type <- "source"
##         }
##     }
##     if (is.null(repos) && missing(contriburl)) {
##         tmpd <- destdir
##         nonlocalrepos <- any(web <- grepl("^(http|https|ftp)://", 
##             pkgs))
##         if (is.null(destdir) && nonlocalrepos) {
##             tmpd <- file.path(tempdir(), "downloaded_packages")
##             if (!file.exists(tmpd) && !dir.create(tmpd)) 
##                 stop(gettextf("unable to create temporary directory %s", 
##                   sQuote(tmpd)), domain = NA)
##         }
##         if (nonlocalrepos) {
##             df <- function(p, destfile, method, ...) download.file(p, 
##                 destfile, method, mode = "wb", ...)
##             urls <- pkgs[web]
##             for (p in unique(urls)) {
##                 this <- pkgs == p
##                 destfile <- file.path(tmpd, basename(p))
##                 res <- try(df(p, destfile, method, ...))
##                 if (!inherits(res, "try-error") && res == 0L) 
##                   pkgs[this] <- destfile
##                 else {
##                   pkgs[this] <- NA
##                 }
##             }
##         }
##     }
##     if (type == "both") {
##         if (type2 == "source") 
##             stop("type == \"both\" can only be used on Windows or a CRAN build for macOS")
##         if (!missing(contriburl) || !is.null(available)) 
##             type <- type2
##     }
##     getDeps <- TRUE
##     if (type == "both") {
##         if (is.null(repos)) 
##             stop("type == \"both\" cannot be used with 'repos = NULL'")
##         type <- "source"
##         contriburl <- contrib.url(repos, "source")
##         if (missing(repos)) 
##             repos <- getOption("repos")
##         available <- available.packages(contriburl = contriburl, 
##             method = method, fields = "NeedsCompilation", ...)
##         pkgs <- getDependencies(pkgs, dependencies, available, 
##             lib, ...)
##         getDeps <- FALSE
##         av2 <- available.packages(contriburl = contrib.url(repos, 
##             type2), method = method, ...)
##         bins <- row.names(av2)
##         bins <- pkgs[pkgs %in% bins]
##         srcOnly <- pkgs[!pkgs %in% bins]
##         binvers <- av2[bins, "Version"]
##         hasArchs <- !is.na(av2[bins, "Archs"])
##         needsCmp <- !(available[bins, "NeedsCompilation"] %in% 
##             "no")
##         hasSrc <- hasArchs | needsCmp
##         srcvers <- available[bins, "Version"]
##         later <- as.numeric_version(binvers) < srcvers
##         action <- getOption("install.packages.compile.from.source", 
##             "interactive")
##         if (!nzchar(Sys.which(Sys.getenv("MAKE", "make")))) 
##             action <- "never"
##         if (grepl("darwin", R.version$platform) && !length(srcOnly)) 
##             later[later] <- FALSE
##         if (any(later)) {
##             msg <- ngettext(sum(later), "There is a binary version available but the source version is later", 
##                 "There are binary versions available but the source versions are later")
##             cat("\n", paste(strwrap(msg, indent = 2, exdent = 2), 
##                 collapse = "\n"), ":\n", sep = "")
##             out <- data.frame(binary = binvers, source = srcvers, 
##                 needs_compilation = hasSrc, row.names = bins, 
##                 check.names = FALSE)[later, ]
##             print(out)
##             cat("\n")
##             if (any(later & hasSrc)) {
##                 if (action == "interactive" && interactive()) {
##                   msg <- ngettext(sum(later & hasSrc), "Do you want to install from sources the package which needs compilation?", 
##                     "Do you want to install from sources the packages which need compilation?")
##                   res <- askYesNo(msg)
##                   if (is.na(res)) 
##                     stop("Cancelled by user")
##                   if (!isTRUE(res)) 
##                     later <- later & !hasSrc
##                 }
##                 else if (action == "never") {
##                   cat("  Binaries will be installed\n")
##                   later <- later & !hasSrc
##                 }
##             }
##         }
##         bins <- bins[!later]
##         if (length(srcOnly)) {
##             s2 <- srcOnly[!(available[srcOnly, "NeedsCompilation"] %in% 
##                 "no")]
##             if (length(s2)) {
##                 msg <- ngettext(length(s2), "Package which is only available in source form, and may need compilation of C/C++/Fortran", 
##                   "Packages which are only available in source form, and may need compilation of C/C++/Fortran")
##                 msg <- c(paste0(msg, ": "), sQuote(s2))
##                 msg <- strwrap(paste(msg, collapse = " "), exdent = 2)
##                 message(paste(msg, collapse = "\n"), domain = NA)
##                 if (action == "interactive" && interactive()) {
##                   res <- askYesNo("Do you want to attempt to install these from sources?")
##                   if (is.na(res)) 
##                     stop("Cancelled by user")
##                   if (!isTRUE(res)) 
##                     pkgs <- setdiff(pkgs, s2)
##                 }
##                 else if (action == "never") {
##                   cat("  These will not be installed\n")
##                   pkgs <- setdiff(pkgs, s2)
##                 }
##             }
##         }
##         if (length(bins)) {
##             if (type2 == "win.binary") 
##                 .install.winbinary(pkgs = bins, lib = lib, contriburl = contrib.url(repos, 
##                   type2), method = method, available = av2, destdir = destdir, 
##                   dependencies = NULL, libs_only = libs_only, 
##                   quiet = quiet, ...)
##             else .install.macbinary(pkgs = bins, lib = lib, contriburl = contrib.url(repos, 
##                 type2), method = method, available = av2, destdir = destdir, 
##                 dependencies = NULL, quiet = quiet, ...)
##         }
##         pkgs <- setdiff(pkgs, bins)
##         if (!length(pkgs)) 
##             return(invisible())
##         message(sprintf(ngettext(length(pkgs), "installing the source package %s", 
##             "installing the source packages %s"), paste(sQuote(pkgs), 
##             collapse = ", ")), "\n", domain = NA)
##         flush.console()
##     }
##     else if (getOption("install.packages.check.source", "yes") %in% 
##         "yes" && (type %in% "win.binary" || startsWith(type, 
##         "mac.binary"))) {
##         if (missing(contriburl) && is.null(available) && !is.null(repos)) {
##             contriburl2 <- contrib.url(repos, "source")
##             if (missing(repos)) 
##                 repos <- getOption("repos")
##             av1 <- tryCatch(suppressWarnings(available.packages(contriburl = contriburl2, 
##                 method = method, ...)), error = function(e) e)
##             if (inherits(av1, "error")) {
##                 message("source repository is unavailable to check versions")
##                 available <- available.packages(contriburl = contrib.url(repos, 
##                   type), method = method, ...)
##             }
##             else {
##                 srcpkgs <- pkgs[pkgs %in% row.names(av1)]
##                 available <- available.packages(contriburl = contrib.url(repos, 
##                   type), method = method, ...)
##                 bins <- pkgs[pkgs %in% row.names(available)]
##                 na <- srcpkgs[!srcpkgs %in% bins]
##                 if (length(na)) {
##                   msg <- sprintf(ngettext(length(na), "package %s is available as a source package but not as a binary", 
##                     "packages %s are available as source packages but not as binaries"), 
##                     paste(sQuote(na), collapse = ", "))
##                   cat("\n   ", msg, "\n\n", sep = "")
##                 }
##                 binvers <- available[bins, "Version"]
##                 srcvers <- binvers
##                 OK <- bins %in% srcpkgs
##                 srcvers[OK] <- av1[bins[OK], "Version"]
##                 later <- as.numeric_version(binvers) < srcvers
##                 if (any(later)) {
##                   msg <- ngettext(sum(later), "There is a binary version available (and will be installed) but the source version is later", 
##                     "There are binary versions available (and will be installed) but the source versions are later")
##                   cat("\n", paste(strwrap(msg, indent = 2, exdent = 2), 
##                     collapse = "\n"), ":\n", sep = "")
##                   print(data.frame(binary = binvers, source = srcvers, 
##                     row.names = bins, check.names = FALSE)[later, 
##                     ])
##                   cat("\n")
##                 }
##             }
##         }
##     }
##     if (.Platform$OS.type == "windows") {
##         if (startsWith(type, "mac.binary")) 
##             stop("cannot install macOS binary packages on Windows")
##         if (type %in% "win.binary") {
##             .install.winbinary(pkgs = pkgs, lib = lib, contriburl = contriburl, 
##                 method = method, available = available, destdir = destdir, 
##                 dependencies = dependencies, libs_only = libs_only, 
##                 quiet = quiet, ...)
##             return(invisible())
##         }
##         have_spaces <- grep(" ", pkgs)
##         if (length(have_spaces)) {
##             p <- pkgs[have_spaces]
##             dirs <- shortPathName(dirname(p))
##             pkgs[have_spaces] <- file.path(dirs, basename(p))
##         }
##         pkgs <- gsub("\\", "/", pkgs, fixed = TRUE)
##     }
##     else {
##         if (startsWith(type, "mac.binary")) {
##             if (!grepl("darwin", R.version$platform)) 
##                 stop("cannot install macOS binary packages on this platform")
##             .install.macbinary(pkgs = pkgs, lib = lib, contriburl = contriburl, 
##                 method = method, available = available, destdir = destdir, 
##                 dependencies = dependencies, quiet = quiet, ...)
##             return(invisible())
##         }
##         if (type %in% "win.binary") 
##             stop("cannot install Windows binary packages on this platform")
##         if (!file.exists(file.path(R.home("bin"), "INSTALL"))) 
##             stop("This version of R is not set up to install source packages\nIf it was installed from an RPM, you may need the R-devel RPM")
##     }
##     cmd0 <- file.path(R.home("bin"), "R")
##     args0 <- c("CMD", "INSTALL")
##     output <- if (quiet) 
##         FALSE
##     else ""
##     env <- character()
##     tlim <- Sys.getenv("_R_INSTALL_PACKAGES_ELAPSED_TIMEOUT_")
##     tlim <- if (!nzchar(tlim)) 
##         0
##     else tools:::get_timeout(tlim)
##     outdir <- getwd()
##     if (is.logical(keep_outputs)) {
##         if (is.na(keep_outputs)) 
##             keep_outputs <- FALSE
##     }
##     else if (is.character(keep_outputs) && (length(keep_outputs) == 
##         1L)) {
##         if (!dir.exists(keep_outputs) && !dir.create(keep_outputs, 
##             recursive = TRUE)) 
##             stop(gettextf("unable to create %s", sQuote(keep_outputs)), 
##                 domain = NA)
##         outdir <- normalizePath(keep_outputs)
##         keep_outputs <- TRUE
##     }
##     else stop(gettextf("invalid %s argument", sQuote("keep_outputs")), 
##         domain = NA)
##     if (length(libpath <- .R_LIBS())) {
##         if (.Platform$OS.type == "windows") {
##             oldrlibs <- Sys.getenv("R_LIBS")
##             Sys.setenv(R_LIBS = libpath)
##             on.exit(Sys.setenv(R_LIBS = oldrlibs))
##         }
##         else env <- paste0("R_LIBS=", shQuote(libpath))
##     }
##     if (is.character(clean)) 
##         args0 <- c(args0, clean)
##     if (libs_only) 
##         args0 <- c(args0, "--libs-only")
##     if (!missing(INSTALL_opts)) {
##         if (!is.list(INSTALL_opts)) {
##             args0 <- c(args0, paste(INSTALL_opts, collapse = " "))
##             INSTALL_opts <- list()
##         }
##     }
##     else {
##         INSTALL_opts <- list()
##     }
##     if (verbose) 
##         message(gettextf("system (cmd0): %s", paste(c(cmd0, args0), 
##             collapse = " ")), domain = NA)
##     if (is.null(repos) && missing(contriburl)) {
##         update <- cbind(path.expand(pkgs), lib)
##         for (i in seq_len(nrow(update))) {
##             if (is.na(update[i, 1L])) 
##                 next
##             args <- c(args0, get_install_opts(update[i, 1L]), 
##                 "-l", shQuote(update[i, 2L]), getConfigureArgs(update[i, 
##                   1L]), getConfigureVars(update[i, 1L]), shQuote(update[i, 
##                   1L]))
##             status <- system2(cmd0, args, env = env, stdout = output, 
##                 stderr = output, timeout = tlim)
##             if (status > 0L) 
##                 warning(gettextf("installation of package %s had non-zero exit status", 
##                   sQuote(update[i, 1L])), domain = NA)
##             else if (verbose) {
##                 cmd <- paste(c(cmd0, args), collapse = " ")
##                 message(sprintf("%d): succeeded '%s'", i, cmd), 
##                   domain = NA)
##             }
##         }
##         return(invisible())
##     }
##     tmpd <- destdir
##     nonlocalrepos <- !all(startsWith(contriburl, "file:"))
##     if (is.null(destdir) && nonlocalrepos) {
##         tmpd <- file.path(tempdir(), "downloaded_packages")
##         if (!file.exists(tmpd) && !dir.create(tmpd)) 
##             stop(gettextf("unable to create temporary directory %s", 
##                 sQuote(tmpd)), domain = NA)
##     }
##     av2 <- NULL
##     if (is.null(available)) {
##         filters <- getOption("available_packages_filters")
##         if (!is.null(filters)) {
##             available <- available.packages(contriburl = contriburl, 
##                 method = method, ...)
##         }
##         else {
##             f <- setdiff(available_packages_filters_default, 
##                 c("R_version", "duplicates"))
##             av2 <- available.packages(contriburl = contriburl, 
##                 filters = f, method = method, ...)
##             f <- available_packages_filters_db[["R_version"]]
##             f2 <- available_packages_filters_db[["duplicates"]]
##             available <- f2(f(av2))
##         }
##     }
##     if (getDeps) 
##         pkgs <- getDependencies(pkgs, dependencies, available, 
##             lib, ..., av2 = av2)
##     foundpkgs <- download.packages(pkgs, destdir = tmpd, available = available, 
##         contriburl = contriburl, method = method, type = "source", 
##         quiet = quiet, ...)
##     if (length(foundpkgs)) {
##         if (verbose) 
##             message(gettextf("foundpkgs: %s", paste(foundpkgs, 
##                 collapse = ", ")), domain = NA)
##         update <- unique(cbind(pkgs, lib))
##         colnames(update) <- c("Package", "LibPath")
##         found <- pkgs %in% foundpkgs[, 1L]
##         files <- foundpkgs[match(pkgs[found], foundpkgs[, 1L]), 
##             2L]
##         if (verbose) 
##             message(gettextf("files: %s", paste(files, collapse = ", \n\t")), 
##                 domain = NA)
##         update <- cbind(update[found, , drop = FALSE], file = files)
##         if (nrow(update) > 1L) {
##             upkgs <- unique(pkgs <- update[, 1L])
##             DL <- .make_dependency_list(upkgs, available)
##             p0 <- .find_install_order(upkgs, DL)
##             update <- update[sort.list(match(pkgs, p0)), ]
##         }
##         if (Ncpus > 1L && nrow(update) > 1L) {
##             tlim_cmd <- character()
##             if (tlim > 0) {
##                 if (.Platform$OS.type == "windows" && !nzchar(Sys.getenv("R_TIMEOUT")) && 
##                   grepl("\\windows\\system32\\", tolower(Sys.which("timeout")), 
##                     fixed = TRUE)) {
##                   warning("Windows default 'timeout' command is not usable for parallel installs")
##                 }
##                 else if (nzchar(timeout <- Sys.which(Sys.getenv("R_TIMEOUT", 
##                   "timeout")))) {
##                   tlim_cmd <- c(shQuote(timeout), "-s INT", tlim)
##                 }
##                 else warning("timeouts for parallel installs require the 'timeout' command")
##             }
##             args0 <- c(args0, "--pkglock")
##             tmpd2 <- file.path(tempdir(), "make_packages")
##             if (!file.exists(tmpd2) && !dir.create(tmpd2)) 
##                 stop(gettextf("unable to create temporary directory %s", 
##                   sQuote(tmpd2)), domain = NA)
##             mfile <- file.path(tmpd2, "Makefile")
##             conn <- file(mfile, "wt")
##             deps <- paste(paste0(update[, 1L], ".ts"), collapse = " ")
##             deps <- strwrap(deps, width = 75, exdent = 2)
##             deps <- paste(deps, collapse = " \\\n")
##             cat("all: ", deps, "\n", sep = "", file = conn)
##             aDL <- .make_dependency_list(upkgs, available, recursive = TRUE)
##             for (i in seq_len(nrow(update))) {
##                 pkg <- update[i, 1L]
##                 fil <- update[i, 3L]
##                 args <- c(args0, get_install_opts(fil), "-l", 
##                   shQuote(update[i, 2L]), getConfigureArgs(fil), 
##                   getConfigureVars(fil), shQuote(fil), ">", paste0(pkg, 
##                     ".out"), "2>&1")
##                 cmd <- paste(c("MAKEFLAGS=", tlim_cmd, shQuote(cmd0), 
##                   args), collapse = " ")
##                 deps <- aDL[[pkg]]
##                 deps <- deps[deps %in% upkgs]
##                 deps <- if (length(deps)) 
##                   paste(paste0(deps, ".ts"), collapse = " ")
##                 else ""
##                 cat(paste0(pkg, ".ts: ", deps), paste("\t@echo begin installing package", 
##                   sQuote(pkg)), paste0("\t@", cmd, " && touch ", 
##                   pkg, ".ts"), paste0("\t@cat ", pkg, ".out"), 
##                   "", sep = "\n", file = conn)
##             }
##             close(conn)
##             cwd <- setwd(tmpd2)
##             on.exit(setwd(cwd))
##             status <- system2(Sys.getenv("MAKE", "make"), c("-k -j", 
##                 Ncpus), stdout = output, stderr = output, env = env)
##             if (status > 0L) {
##                 pkgs <- update[, 1L]
##                 tss <- sub("[.]ts$", "", dir(".", pattern = "[.]ts$"))
##                 failed <- pkgs[!pkgs %in% tss]
##                 for (pkg in failed) system(paste0("cat ", pkg, 
##                   ".out"))
##                 n <- length(failed)
##                 if (n == 1L) 
##                   warning(gettextf("installation of package %s failed", 
##                     sQuote(failed)), domain = NA)
##                 else if (n > 1L) {
##                   msg <- paste(sQuote(failed), collapse = ", ")
##                   if (nchar(msg) < 40) 
##                     warning(gettextf("installation of %d packages failed:  %s", 
##                       n, msg), domain = NA)
##                   else warning(gettextf("installation of %d packages failed:\n  %s", 
##                     n, msg), domain = NA)
##                 }
##             }
##             if (keep_outputs) 
##                 file.copy(paste0(update[, 1L], ".out"), outdir)
##             file.copy(Sys.glob(paste0(update[, 1L], "*.zip")), 
##                 cwd)
##             file.copy(Sys.glob(paste0(update[, 1L], "*.tgz")), 
##                 cwd)
##             file.copy(Sys.glob(paste0(update[, 1L], "*.tar.gz")), 
##                 cwd)
##             setwd(cwd)
##             on.exit()
##             unlink(tmpd2, recursive = TRUE)
##         }
##         else {
##             tmpd2 <- tempfile()
##             if (!dir.create(tmpd2)) 
##                 stop(gettextf("unable to create temporary directory %s", 
##                   sQuote(tmpd2)), domain = NA)
##             outfiles <- file.path(tmpd2, paste0(update[, 1L], 
##                 ".out"))
##             for (i in seq_len(nrow(update))) {
##                 outfile <- if (keep_outputs) 
##                   outfiles[i]
##                 else output
##                 fil <- update[i, 3L]
##                 args <- c(args0, get_install_opts(fil), "-l", 
##                   shQuote(update[i, 2L]), getConfigureArgs(fil), 
##                   getConfigureVars(fil), shQuote(fil))
##                 status <- system2(cmd0, args, env = env, stdout = outfile, 
##                   stderr = outfile, timeout = tlim)
##                 if (!quiet && keep_outputs) 
##                   writeLines(readLines(outfile))
##                 if (status > 0L) 
##                   warning(gettextf("installation of package %s had non-zero exit status", 
##                     sQuote(update[i, 1L])), domain = NA)
##                 else if (verbose) {
##                   cmd <- paste(c(cmd0, args), collapse = " ")
##                   message(sprintf("%d): succeeded '%s'", i, cmd), 
##                     domain = NA)
##                 }
##             }
##             if (keep_outputs) 
##                 file.copy(outfiles, outdir)
##             unlink(tmpd2, recursive = TRUE)
##         }
##         if (!quiet && nonlocalrepos && !is.null(tmpd) && is.null(destdir)) 
##             cat("\n", gettextf("The downloaded source packages are in\n\t%s", 
##                 sQuote(normalizePath(tmpd, mustWork = FALSE))), 
##                 "\n", sep = "", file = stderr())
##         libs_used <- unique(update[, 2L])
##         if (.Platform$OS.type == "unix" && .Library %in% libs_used) {
##             message("Updating HTML index of packages in '.Library'")
##             make.packages.html(.Library)
##         }
##     }
##     else if (!is.null(tmpd) && is.null(destdir)) 
##         unlink(tmpd, TRUE)
##     invisible()
## }
## <bytecode: 0x11ebda278>
## <environment: namespace:utils>

2. Data

#Subset
#Business organizations (V179 ,21-26 + V178, 7)
only_business <- subset(data, data$v_178 == '7' | data$v_179 %in% c(21:26))
#Public Interest groups
public_interest <- subset(data, !(data$v_178 == '7' | data$v_179 %in% c(21:26)))

#sum of people who contacted the Bundesrat and the committee of of inquiries about the EU 
sum(data$v_258 == 1 & data$v_100 == 1)
## [1] 0

2.1 Adding value labels

  • The labels are created with the expss package
  • To view the variable lable simply use var_lab()
  • To viw the value lable simply use val_lab()
  • or simply with base R attributes(data$variable) or attr(data$variable, “value.labels”)
#list_arg = list( ID.Gesetz = "Number of Law",
#                ID.Gesetz = num_lab("
#            2 Fachkräfteeinwanderungsgesetz
#                                        3 Starke-Familien-Gesetz
#                                        4 Gesetz für mehr Sicherheit in der Arzneimittelversorgung
#                                        5 Gesetz gegen illegale Beschäftigung und Sozialleistungsmissbrauch
#                                        22 Gesetz zur Änderung des Strafgesetzbuchs
#                                        23 Gesetz zur Beschleunigung von Investitionen
#                                        6 Achtes Gesetz zur Änderung des Hochschulrahmengesetzes
#                                        7 Gesetz zur Änderung der zweiten Aktionärsrichtlinie
#                                        8 Drittes Gesetz zur Änderung des Asylbewerberleistungsgesetzes
#                                        10 Gesetz zur Änderung des Grundsteuergesetzes zur Mobilisierung von baureifen Grundstücken für die Bebauung 
#                                        11 Gesetz zur weiteren steuerlichen Förderung der Elektromobilität und zur Änderung weiterer steuerlicher Vorschriften 
#                                        21 Wohungseigentumsmodernisierungsgesetz
#                                        12 Gesetz zur Stärkung der Vor-Ort-Apotheken
#                                        13 Gesetz zur Entlastung unterhaltspflichtiger Angehöriger in der Sozialhilfe und in der Eingliederungshilfe
#                                        14 Gesetz Strukturänderungsgesetz Kohleregion 
#                                        16 Gesetz zur Änderung des Aufstiegsfortbildungsfördergesetzes
#                                        17 Gesetz zur Umsetzung des Klimaschutzprogramms 2030 im Steuerrecht
#                                        15 Gesetz zur Einführung und Verwendung eines Tierwohlkennzeichens
#                                        24 Jahressteuergesetz 2020
#                                        25 Gestz zur Stärkung von Kindern und Jugendlichen
#                                        "),
#                 titel.Gesetz = "name of the law",
#                 Subnational_jurisdiction  = "is second chamber approval nessacery",
#                 Subnational_jurisdiction  = num_lab("
#                                        0 no approval needed
#                                        1 approval of second chamber needed"),
#                 EU.origin = "law is crafted because of prior EU legislation",
#                 EU.origin = num_lab("0 no EU legislation origin
#                                        1 EU legislation origin"),
#                 salience = "Media salience; How often the proposal was adressed in media articels; continues variable from 0-n",
#                 lfdn = "anonymized ID of the surveyed persons; numbers are randomly assigned and cannot be used for Information of the Person",
#                 organization_long = "name of the interest group; character variable",
#                 organization_short = "abbreviation of the organizations name",
#                 organization_short = num_lab("
#                                              -99 no abbreviation available"),
#                 v_176 = "identifyer of the organzation for the informations collected by Bochum; numbered consecutively",
#                 v_178 = "Actor type of the organization",
#                 v_178 = num_lab("
#                                 1 national interest group, Includes all forms of associations of individuals, businesses, public authorities and organizations
#                                 2 Politician or party, includes external politicians giving evidence to the committee such as Members of the Parliament or Members of the European Parliament, who are not members of the committee
#                                 3 Experts, includes experts with professional knowledge and instituional independence. University employees, jduges and medical staff. However, not if teh committee deals with matters in which the perosn may have personal or institutional interests
#                                 4 Central government actor, Includes government entities. Staff in departments and agencies, when acting on behalf of the unit
#                                 5 Local government actor, includes individual municipalities and municipal politicians in casses where the agent does not represent a local or regional interest group
#                                 6 Institutions, includes public and private institutions and staff group 
#                                 7 Private firm, includes individual businesses, not representing a larger organization
#                                 8 Individuals, includes individual person who are not linked to any of teh above mentioned categories 
#                                 9 Public committees, including public commissions, boards, councils and committees
#                                 10 Local interest group, includes non-national organizations, eg. local civic groups, sports associations and the like 
#                                 11 International group, includes all international groups, however, German affiliations of international groups are coded 01
#                                 12 Regional group, includes regional groups such as Bavarian groups
#                                 13 Regional government actor, includdes government entities at the Federal State level
#                                 14 International organization
#                                 15 EU-Institutions
#                                 16 Other actors"),
#                 v_179 = "National Interest Group Categorization; Only used of v_178 is '[...] interest group'",
#                 v_179 = num_lab("
#                                 10 Unions, Associations of employees
#                                 11 Blue-collar unions, unions affiliated with the DGB
#                                 12 Other unions, unions not affiliated with the DGB
#                                 13 Other labour groups, groups that clearly represent the interests of organized labour but do not fit in ohter categories
#                                 20 Business groups, Associations of firms
#                                 21 Peak-level business groups, business groups representing all or major sectors of production according to the ISIC scheme
#                                 22 Sectoral business groups
#                                 23 Breed associations, associations of farmers with a focus on the breeding of animals
#                                 24 Technical associations, associations of business with a focus on technical issues
#                                 25 Other business groups, groups that represent business interests but do not fit in other categories
#                                 26 Agricultural groups
#                                 30 Institutional associations, Associations of public authorities or institutions
#                                 31 Associations of local authorities, associations where members are local or regional authorities
#                                 32 Associations of other public institutions, associations of institutions formally within the public sector 
#                                 33 Associatoins of directors of institutions, associations of directors of institutions where the association represents the instituional interst not terms and conditinos of directors
#                                 34 Other institutional associations, associations of other institutions such as non-public schools or theaters
#                                 40 Occupational associations, associations of employees not negotiating terms and conditions, associations negotiating work-related terms and conditions are categorized in 11-13, 41-44 divison into categories is based on what profession the organization organizes
#                                 41 Doctos' associations 
#                                 42 Associations of other medical professions
#                                 43 Teachers' associations
#                                 44 Other occupational associations
#                                 50 Identity groups associations where members/supporters have a selective interest in group goals (not work related), 51-56 division into categories is based on which group the organization organizes
#                                 51 Groups of patients or disabled 
#                                 52 Elderly groups 
#                                 53 Student groups 
#                                 54 Friendship groups 
#                                 55 Racial or ethnic groups 
#                                 56 other identity groups 
#                                 57 Gender
#                                 60 Hobby/leisure groups, associations of people with a common sport/leisure interest
#                                 61 Sport associations, associations of people engaged in sports
#                                 62 Other hobby/leisure groups, associations of people engaged in ohter leisure activities
#                                 63 Other cultural or leisure related groups
#                                 70 Religious groups, associations of people sharing a religion
#                                 71 Groups associated with the state church, groups declaring themselves as related to the state church
#                                 72 Other religious groups, other churches or groups representing people sharing a religion
#                                 73 Groups related to the Christian churches
#                                 80 Public interst groups, associations where members/supporters do not have a selective interst in group goals
#                                 81 Environment and animal welfare groups, groups working for causes related to the enhancement or protection of the environment, endangered species or animal welfare
#                                 82 Humanitarian groups - international, groups working with international causes such as human rights, world peace or general development
#                                 83 Humanitarian groups - national, Groups working with national causes such as child welfare, ethnic integration or alcohol abuse
#                                 84 Consumer groups, groups organizing consumers of general or specific goods 
#                                 85 Other public interest groups, groups working with other causes"),
#                 Business.organization = "Is the interest group a Business organization?", 
#                 Business.organization = num_lab("
#                                                 1 Group is business organization
#                                                 0 Group is not business organization"),
#                 duration = "Time it took the participant in seconds, continues variable",
#                 duration = num_lab("
#                                    -1 Survey was restarted"),
#                 v_257 = "Part of National route: Deutscher Bundestag",
#                 v_257 = num_lab("
#                                 1 Yes 
#                                 0 No"),
#                 v_259 = "Part of National route: Bundesregierung",
#                 v_259 = num_lab("
#                                 1 Yes
#                                 0 No"), 
#                 national_route = "Was the National route taken?, only one of the two parts necessary",
#                 national_route = num_lab("
#                                          1 Route was taken
#                                          0 Route was not taken"),
#                 v_262 = "Part of Brussels route: Europäisches Parlament",
#                 v_262 = num_lab("
#                                 1 Yes
#                                 0 No"),
#                 v_263 = "Part of Brussels route: Rat der EU", 
#                 v_263 = num_lab("
#                                 1 Yes 
#                                 0 No"),
#                 v_264 = "Part of Brussels route: Europäische Kommission",
#                 v_264 = num_lab("
#                                1 Yes 
#                                 0 No"),
#                 v_266 = "Part of Brussels route: EWASA",
#                 v_266 = num_lab("
#                                 1 Yes
#                                 0 No"),
#                 brussels_route = "Was the Brussels route taken?, only one of the parts neccessary",
#                 brussels_route = num_lab("
#                                          1 Route was taken
#                                          0 Route was not taken"),
                 
#                 v_258 = "Part of Subnational Berlin route : Bundesrat",
#                 v_258 = num_lab("
#                                 1 Yes
#                                 0 No"),
#                 v_260 = "Part of Subnational Berlin route : Landsregierungen",
#                 v_260 = num_lab("
#                                 1 Yes
#                                 0 No"),
#                 v_267 = "Part of Subnational Berlin route : Fachministerkonferenz der deutschen Länder",
#                 v_267 = num_lab("
#                                 1 Yes
#                                 0 No"),
#                 v_271 = "Part of Subnational Berlin route : Gemeinsame Wissenschaftsknoferenz",
#                 v_271 = num_lab("
#                                 1 Yes
#                                 0 No"),
#                 v_268 = "Part of Subnational Berlin route : Vertretung der Länder beim Bund",
#                 v_268 = num_lab("
#                                 1 Yes 
#                                 0 No"),
#                 second_chamber_route = "Was the Subnational Berlin route  taken?, only one of the parts neccessary",
#                 second_chamber_route = num_lab("
#                                                1 Route was taken
#                                                0 Route was not taken"),
#                 v_265 = "Part of Subnational-Brussels route: Europäischer Auschuss der Regionen",
#                 v_265 = num_lab("
#                                 1 Yes
#                                 0 No"),
#                 v_269 = "Part of Subnational-Brussels route: Vertretungen der Länder bei der EU",
#                 v_269 = num_lab("
#                                 1 Yes
#                                 0 No"),
#                 v_270 = "Part of Subnational-Brussels route: Beobachter der Länder bei der EU", 
#                 v_270 = num_lab("
#                                 1 Yes
#                                 0 No"),
#                 subnational_brussels_route = "Was the Subnational-Brussels route taken? only one of the parts neccessary",
#                 subnational_brussels_route = num_lab("
#                                                      1 Route was taken
#                                                      0 Route was not taken"),
#                 v_3 = "Access to national-level policymakers, metric scale 1-10",
#                 v_3 = num_lab("
#                               1 not agree
#                               10 fully agree"),
#                 v_4 = "National-level policymaker opposes the position of the interest group",
#                 v_4 = num_lab("
#                               1 not agree
#                               10 fully agree"),
#                 v_6 = "Mobilization bias (Conflict)",
#                 v_6 = num_lab("
#                               1 not agree
#                               10 fully agree"),
#                 v_256 = "Are there one ore more federal government which sympathizes with your own position?",
#                 v_256 = num_lab("
#                                 1 Yes 
#                                 0 No
#                                 3 Don't Know/No Answer
#                                 -77 Missing"),
#                 länder_collaboration = "Which federal government sympathizes with your own position, counting variable of the federal states",
#                 länder_collaboration = num_lab("
#                                                1-16 number of Länder close to own position
                             
#                   -77 Missing"),
#                 salience_igs = "Perceived salience of questioned person, the topic was visibal in the public discurse",
#                 salience_igs = num_lab("
#                                        1 not agree
#                                        10 fully agree"),
#                 v_2 = "Position of the interest group, was there seen need for change on the law",
#                 v_2 = num_lab("
#                               0 not agree
#                               10 fully agree"),
#                 v_168 = "Comments on the survey by participants, characters",
#                 v_168 = num_lab("
#                                 -99 no comments"),
#                 v_169 = "mail of participants, to mail them the findings"
                 
#                 )
                 
#data1 <- apply_labels(data, list_arg)
#attributes(data1$EU.origin)

3. Descriptive Statistics

3.1 Dependend Variables

3.1.1 Brusselsroute

  • the route is constructed with the following institutions:

    • EU Parliament (v_262)

    • Council of the EU (v_263)

    • EU Commission (v_264)

    • EESC (v_266)

Desc(data$brussels_route)
## ------------------------------------------------------------------------------ 
## data$brussels_route (integer - dichotomous)
## 
##   length      n    NAs unique
##      341    341      0      2
##          100.0%   0.0%       
## 
##    freq   perc  lci.95  uci.95'
## 0   314  92.1%   88.7%   94.5%
## 1    27   7.9%    5.5%   11.3%
## 
## ' 95%-CI (Wilson)

data$brussels_route_z <- scale(data$brussels_route)
#Frequency of used institution 
# Create a new row for the sum of variables
sum_row1 <- data.frame(
  Variable1 = sum(data$v_262),
  Variable2 = sum(data$v_263),
  Variable3 = sum(data$v_264),
  Variable4 = sum(data$v_266)
)
# Print the resulting data frame
print(sum_row1)
##   Variable1 Variable2 Variable3 Variable4
## 1        18         4        18         1
#Proportion to the total count of the variable (N=238)
#EU Parliament 
(8 / 238) * 100
## [1] 3.361345
#Council of the EU
(1 / 238) * 100
## [1] 0.4201681
#EU Commission
(11 / 238) * 100
## [1] 4.621849
#EESC
(1 / 238) * 100
## [1] 0.4201681

3.1.2 Subnational Berlin Route

  • the route is construced with the following institutions:

    • Bundesrat (v_258)

    • Länder Governments (v_260)

    • conferences of Länder ministers (v_267)

    • Joint Science Conference (v_271)

    • representations of the Länder in the federal republic (v_268)

Desc(data$second_chamber_route)
## ------------------------------------------------------------------------------ 
## data$second_chamber_route (integer - dichotomous)
## 
##   length      n    NAs unique
##      341    341      0      2
##          100.0%   0.0%       
## 
##    freq   perc  lci.95  uci.95'
## 0   221  64.8%   59.6%   69.7%
## 1   120  35.2%   30.3%   40.4%
## 
## ' 95%-CI (Wilson)

data$second_chamber_route_z <- scale(data$second_chamber_route)
#Frequency of used institution 
# Create a new row for the sum of variables
sum_row2 <- data.frame(
  Variable1 = sum(data$v_258),
  Variable2 = sum(data$v_260),
  Variable3 = sum(data$v_267),
  Variable4 = sum(data$v_271),
  Variable5 = sum(data$v_268)
)
# Print the resulting data frame
print(sum_row2)
##   Variable1 Variable2 Variable3 Variable4 Variable5
## 1        37        92        46         2        31
#Proportion to the total count of the variable (N=238)
#Bundesrat 
(29 / 238) * 100
## [1] 12.18487
#Länder Governments
(68 / 238) * 100
## [1] 28.57143
#Conferences of Länder ministers
(34 / 238) * 100
## [1] 14.28571
#Joint Science Conference
(2 / 238) * 100
## [1] 0.8403361
#representations of the Länder in the federal republic 
(25 / 238) * 100
## [1] 10.5042

3.1.3 Subnational brussels route

  • the route is construced with the following institutions:

    • Committee of the Regions (v_265)

    • representations of the Länder at the EU (v_269)

    • Observer of the Länder at the EU (v_270)

Desc(data$subnational_brussels_route)
## ------------------------------------------------------------------------------ 
## data$subnational_brussels_route (integer - dichotomous)
## 
##   length      n    NAs unique
##      341    341      0      2
##          100.0%   0.0%       
## 
##    freq   perc  lci.95  uci.95'
## 0   313  91.8%   88.4%   94.3%
## 1    28   8.2%    5.7%   11.6%
## 
## ' 95%-CI (Wilson)

data$subnational_brussels_route_z <- scale(data$subnational_brussels_route)

#Frequency of used institution 
# Create a new row for the sum of variables
sum_row3 <- data.frame(
  Variable1 = sum(data$v_265),
  Variable2 = sum(data$v_269),
  Variable3 = sum(data$v_270)
)
# Print the resulting data frame
print(sum_row3)
##   Variable1 Variable2 Variable3
## 1         2        19         7
#Proportion to the total count of the variable (N=238)
#Committee of the Regions
(2 / 238) * 100
## [1] 0.8403361
#Representations of the Länder at the EU
(16 / 238) * 100
## [1] 6.722689
#Observer of the Länder at the EU 
(7 / 238) * 100
## [1] 2.941176

3.1.4 table of depended variables

#Tabelle der deskriptiven Beschreibung: 
sumtable(data, vars = c('second_chamber_route', 'subnational_brussels_route')
          ,summ = list(
           c('notNA(x)', 'mean(x)', 'median(x)', 'sd(x)', 'min(x)', 'max(x)', 'pctile(x)[25]',  'pctile(x)[75]')
         ),
 summ.names = list(
         c('N', 'Mean', 'Median', 'Standard Error', 'Minimum', 'Maximum', '1 Quantil', '4 Quantil')
         )
         ,title = "Descriptive Statistics DV"
   ,labels = c("Subnational Berlin route", "Subnational Brussels route"), file = 'Deskriptive Statistik AV')
## Warning in sumtable(data, vars = c("second_chamber_route", "subnational_brussels_route"), : Factor variables ignore custom summ options. Cols 1 and 2 are count and percentage.
## Beware combining factors with a custom summ unless factor.numeric = TRUE.
Descriptive Statistics DV
Variable N Mean Median Standard Error Minimum Maximum 1 Quantil 4 Quantil
Subnational Berlin route 341 0.35 0 0.48 0 1 0 1
Subnational Brussels route 341 0.082 0 0.27 0 1 0 0

3.2 Independent Variables

  • Level 1

    • access to national-level policymakers (v_3)

    • national-level policymaker opposes the position of the interest group (v_4)

    • mobilization bias (v_6)

    • subnational policymaker supports the position of the group (Eigenes.BL.profitiert)

    • Subnational organization (v_178 = 5, 10, 12)

    • Level 2

      • Type of the proposal (Subnational jurisdiction)

3.2.1 Group Level

#access to national-level policymakers 
Desc(data$v_3)
## ------------------------------------------------------------------------------ 
## data$v_3 (integer)
## 
##   length       n    NAs  unique     0s  mean  meanCI'
##      341     341      0      11     46  4.16    3.84
##           100.0%   0.0%          13.5%          4.49
##                                                     
##      .05     .10    .25  median    .75   .90     .95
##     0.00    0.00   1.00    4.00   6.00  9.00   10.00
##                                                     
##    range      sd  vcoef     mad    IQR  skew    kurt
##    10.00    3.07   0.74    4.45   5.00  0.29   -1.07
##                                                     
## 
##     value  freq   perc  cumfreq  cumperc
## 1       0    46  13.5%       46    13.5%
## 2       1    46  13.5%       92    27.0%
## 3       2    31   9.1%      123    36.1%
## 4       3    36  10.6%      159    46.6%
## 5       4    23   6.7%      182    53.4%
## 6       5    48  14.1%      230    67.4%
## 7       6    26   7.6%      256    75.1%
## 8       7    19   5.6%      275    80.6%
## 9       8    31   9.1%      306    89.7%
## 10      9    15   4.4%      321    94.1%
## 11     10    20   5.9%      341   100.0%
## 
## ' 95%-CI (classic)

data$v_3_z <- scale(data$v_3)
#national-level policymaker opposes the position of the interest group
Desc(data$v_4)
## ------------------------------------------------------------------------------ 
## data$v_4 (integer)
## 
##   length       n    NAs  unique     0s  mean  meanCI'
##      341     341      0      11     49  3.32    3.04
##           100.0%   0.0%          14.4%          3.60
##                                                     
##      .05     .10    .25  median    .75   .90     .95
##     0.00    0.00   1.00    3.00   5.00  7.00    8.00
##                                                     
##    range      sd  vcoef     mad    IQR  skew    kurt
##    10.00    2.60   0.78    2.97   4.00  0.58   -0.46
##                                                     
## 
##     value  freq   perc  cumfreq  cumperc
## 1       0    49  14.4%       49    14.4%
## 2       1    63  18.5%      112    32.8%
## 3       2    36  10.6%      148    43.4%
## 4       3    48  14.1%      196    57.5%
## 5       4    29   8.5%      225    66.0%
## 6       5    46  13.5%      271    79.5%
## 7       6    31   9.1%      302    88.6%
## 8       7    12   3.5%      314    92.1%
## 9       8    13   3.8%      327    95.9%
## 10      9     7   2.1%      334    97.9%
## 11     10     7   2.1%      341   100.0%
## 
## ' 95%-CI (classic)

data$v_4_z <- scale(data$v_4)
#mobilization bias
Desc(data$v_6)
## ------------------------------------------------------------------------------ 
## data$v_6 (integer)
## 
##   length       n    NAs  unique     0s   mean  meanCI'
##      341     341      0      11     51   4.50    4.12
##           100.0%   0.0%          15.0%           4.87
##                                                      
##      .05     .10    .25  median    .75    .90     .95
##     0.00    0.00   1.00    4.00   8.00  10.00   10.00
##                                                      
##    range      sd  vcoef     mad    IQR   skew    kurt
##    10.00    3.52   0.78    4.45   7.00   0.24   -1.37
##                                                      
## 
##     value  freq   perc  cumfreq  cumperc
## 1       0    51  15.0%       51    15.0%
## 2       1    53  15.5%      104    30.5%
## 3       2    31   9.1%      135    39.6%
## 4       3    21   6.2%      156    45.7%
## 5       4    16   4.7%      172    50.4%
## 6       5    37  10.9%      209    61.3%
## 7       6    23   6.7%      232    68.0%
## 8       7    17   5.0%      249    73.0%
## 9       8    24   7.0%      273    80.1%
## 10      9    23   6.7%      296    86.8%
## 11     10    45  13.2%      341   100.0%
## 
## ' 95%-CI (classic)

data$v_6_z <- scale(data$v_6)
#Land benefits from collaboration
Desc(data$Eigenes.BL.profitiert) #0 = 210 (88,2%), 1 = 28 (11,8%)
## ------------------------------------------------------------------------------ 
## data$Eigenes.BL.profitiert (integer)
## 
##   length       n     NAs  unique      0s    mean  meanCI'
##      341     341       0       3      27  -61.98  -65.25
##           100.0%    0.0%            7.9%          -58.71
##                                                         
##      .05     .10     .25  median     .75     .90     .95
##   -77.00  -77.00  -77.00  -77.00  -77.00    1.00    1.00
##                                                         
##    range      sd   vcoef     mad     IQR    skew    kurt
##    78.00   30.70   -0.50    0.00    0.00    1.54    0.39
##                                                         
## 
##    value  freq   perc  cumfreq  cumperc
## 1    -77   275  80.6%      275    80.6%
## 2      0    27   7.9%      302    88.6%
## 3      1    39  11.4%      341   100.0%
## 
## ' 95%-CI (classic)

prop.table(table(data$Eigenes.BL.profitiert))
## 
##        -77          0          1 
## 0.80645161 0.07917889 0.11436950
data$Eigenes.BL.profitiert_z <- scale(data$Eigenes.BL.profitiert)
#Changing the Missings of variable Eigenes.BL.profitiert to 0 
data$Eigenes.BL.profitiert[data$Eigenes.BL.profitiert == -77] <- 0

#Subnational organization 

data$local_regional_actor <- ifelse(data$v_178 %in% c(5, 10, 12), 1, 0)

Desc(data$local_regional_actor)
## ------------------------------------------------------------------------------ 
## data$local_regional_actor (numeric)
## 
##   length       n    NAs  unique     0s  mean  meanCI'
##      341     341      0       2    300  0.12    0.09
##           100.0%   0.0%          88.0%          0.15
##                                                     
##      .05     .10    .25  median    .75   .90     .95
##     0.00    0.00   0.00    0.00   0.00  1.00    1.00
##                                                     
##    range      sd  vcoef     mad    IQR  skew    kurt
##     1.00    0.33   2.71    0.00   0.00  2.33    3.42
##                                                     
## 
##    value  freq   perc  cumfreq  cumperc
## 1      0   300  88.0%      300    88.0%
## 2      1    41  12.0%      341   100.0%
## 
## ' 95%-CI (classic)

3.2.2 Proposal Level

#EU origin of the proposal 
Desc(data$EU.origin)
## ------------------------------------------------------------------------------ 
## data$EU.origin (integer - dichotomous)
## 
##   length      n    NAs unique
##      341    341      0      2
##          100.0%   0.0%       
## 
##    freq   perc  lci.95  uci.95'
## 0   218  63.9%   58.7%   68.8%
## 1   123  36.1%   31.2%   41.3%
## 
## ' 95%-CI (Wilson)

data$EU.origin_z <- scale(data$EU.origin)
#Type of proposal 
Desc((data$Zustimmungsgesetz)) #0 = 96 (40,3%), 1 = 142 (59,7%)
## ------------------------------------------------------------------------------ 
## (data$Zustimmungsgesetz) (integer - dichotomous)
## 
##   length      n    NAs unique
##      341    341      0      2
##          100.0%   0.0%       
## 
##    freq   perc  lci.95  uci.95'
## 0   176  51.6%   46.3%   56.9%
## 1   165  48.4%   43.1%   53.7%
## 
## ' 95%-CI (Wilson)

data$Zustimmungsgesetz_z <- scale(data$Zustimmungsgesetz)

3.2.3 Table of Independed Variables

#Tabelle der deskriptiven Beschreibung: 
sumtable(data, vars = c('v_3', 'v_4', 'v_6', 'Eigenes.BL.profitiert','Zustimmungsgesetz', 'local_regional_actor')
          ,summ = list(
           c('notNA(x)', 'mean(x)', 'median(x)', 'sd(x)', 'min(x)', 'max(x)', 'pctile(x)[25]',  'pctile(x)[75]')
         ),
 summ.names = list(
         c('N', 'Mean', 'Median', 'Standard Error', 'Minimum', 'Maximum', '1 Quantil', '4 Quantil')
         )
         ,title = "Descriptive Statistics IV"
   ,labels = c("Access to national-level policymakers", "National-level policymaker oposses position of group", "Mobilization bias", "subnational policymaker supports the position of the group","Subnational jurisdiction", "Subnational organization" ), file = 'Deskriptive Statistik UV')
## Warning in sumtable(data, vars = c("v_3", "v_4", "v_6", "Eigenes.BL.profitiert", : Factor variables ignore custom summ options. Cols 1 and 2 are count and percentage.
## Beware combining factors with a custom summ unless factor.numeric = TRUE.
Descriptive Statistics IV
Variable N Mean Median Standard Error Minimum Maximum 1 Quantil 4 Quantil
Access to national-level policymakers 341 4.2 4 3.1 0 10 1 6
National-level policymaker oposses position of group 341 3.3 3 2.6 0 10 1 5
Mobilization bias 341 4.5 4 3.5 0 10 1 8
subnational policymaker supports the position of the group 341 0.11 0 0.32 0 1 0 0
Subnational jurisdiction 341 0.48 0 0.5 0 1 0 1
Subnational organization 341 0.12 0 0.33 0 1 0 0

3.3 Controll variables

  • the Control variables are constructed from the following variables:

    • EU origin of the proposal (EU.origin)

    • Position of the interest groups (v_2)

    • Business organization (Business.organization)

    • Perceived Salience (salience_igs)

    • Media Salience (salience)

    • all routes from 3.1 besids the one thats already been used as the depened variable

    • Ressources:

      • Number of Lobbyist within the organization

      • Lobbyingbudget of Organization (in 10K steps)

#National route = Reference is route was not taken 
#Frequency of used institution 
# Create a new row for the sum of variables
sum_row4 <- data.frame(
  Variable1 = sum(data$v_257),
  Variable2 = sum(data$v_259)
)

data$national_route_z <- scale(data$national_route)

# Print the resulting data frame
print(sum_row4)
##   Variable1 Variable2
## 1       181       155
#Proportion to the total count of the variable (N=238)
#Deutscher Bundestag 
(136 / 238) * 100
## [1] 57.14286
#Bundesregierung
(113 / 238) * 100
## [1] 47.47899
#Business organization 
Desc(data$Business.organization) #0 = 219 (64,2%), 1 = 122 (35,8%)
## ------------------------------------------------------------------------------ 
## data$Business.organization (integer - dichotomous)
## 
##   length      n    NAs unique
##      341    341      0      2
##          100.0%   0.0%       
## 
##    freq   perc  lci.95  uci.95'
## 0   219  64.2%   59.0%   69.1%
## 1   122  35.8%   30.9%   41.0%
## 
## ' 95%-CI (Wilson)

data$Business.organization_z <- scale(data$Business.organization)
#Perceived Salience 
Desc(data$salience_igs)
## ------------------------------------------------------------------------------ 
## data$salience_igs (integer)
## 
##   length       n    NAs  unique     0s  mean  meanCI'
##      341     341      0      11     45  4.45    4.12
##           100.0%   0.0%          13.2%          4.77
##                                                     
##      .05     .10    .25  median    .75   .90     .95
##     0.00    0.00   2.00    4.00   7.00  9.00   10.00
##                                                     
##    range      sd  vcoef     mad    IQR  skew    kurt
##    10.00    3.05   0.69    2.97   5.00  0.19   -1.06
##                                                     
## 
##     value  freq   perc  cumfreq  cumperc
## 1       0    45  13.2%       45    13.2%
## 2       1    25   7.3%       70    20.5%
## 3       2    35  10.3%      105    30.8%
## 4       3    38  11.1%      143    41.9%
## 5       4    35  10.3%      178    52.2%
## 6       5    40  11.7%      218    63.9%
## 7       6    25   7.3%      243    71.3%
## 8       7    29   8.5%      272    79.8%
## 9       8    29   8.5%      301    88.3%
## 10      9    17   5.0%      318    93.3%
## 11     10    23   6.7%      341   100.0%
## 
## ' 95%-CI (classic)

data$salience_igs_z <- scale(data$salience_igs)

#Position of the interest groups
Desc(data$v_2)
## ------------------------------------------------------------------------------ 
## data$v_2 (integer)
## 
##   length       n    NAs  unique     0s   mean  meanCI'
##      341     341      0      11     42   7.03    6.65
##           100.0%   0.0%          12.3%           7.41
##                                                      
##      .05     .10    .25  median    .75    .90     .95
##     0.00    0.00   5.00    8.00  10.00  10.00   10.00
##                                                      
##    range      sd  vcoef     mad    IQR   skew    kurt
##    10.00    3.56   0.51    2.97   5.00  -0.98   -0.52
##                                                      
## 
##     value  freq   perc  cumfreq  cumperc
## 1       0    42  12.3%       42    12.3%
## 2       1    11   3.2%       53    15.5%
## 3       2     7   2.1%       60    17.6%
## 4       3    11   3.2%       71    20.8%
## 5       4     3   0.9%       74    21.7%
## 6       5    22   6.5%       96    28.2%
## 7       6    11   3.2%      107    31.4%
## 8       7    22   6.5%      129    37.8%
## 9       8    44  12.9%      173    50.7%
## 10      9    36  10.6%      209    61.3%
## 11     10   132  38.7%      341   100.0%
## 
## ' 95%-CI (classic)

data$v_2_z <- scale(data$v_2)

#Media Salience 
Desc(data$salience)
## ------------------------------------------------------------------------------ 
## data$salience (integer)
## 
##   length       n    NAs  unique      0s    mean  meanCI'
##      341     341      0      21      12  166.13  138.32
##           100.0%   0.0%            3.5%          193.93
##                                                        
##      .05     .10    .25  median     .75     .90     .95
##     1.00    5.00  10.00   87.00  184.00  906.00  906.00
##                                                        
##    range      sd  vcoef     mad     IQR    skew    kurt
##   906.00  261.03   1.57  114.16  174.00    2.24    3.68
##                                                        
## lowest : 0 (12), 1 (8), 2 (2), 3 (8), 5 (17)
## highest: 154 (21), 184 (45), 208 (15), 211 (14), 906 (35)
## 
## heap(?): remarkable frequency (13.8%) for the mode(s) (= 10)
## 
## ' 95%-CI (classic)

data$salience_z <- scale(data$salience)

#Number of Lobbyists 
data$lobbyists <- data$Beschäftigte..die.Interessenvertretung.unmittelbar.ausüben
Desc(data$lobbyists)
## ------------------------------------------------------------------------------ 
## data$lobbyists (integer)
## 
##   length      n    NAs  unique     0s   mean  meanCI'
##      341    185    156      38     27  13.46   10.14
##           54.3%  45.7%           7.9%          16.79
##                                                     
##      .05    .10    .25  median    .75    .90     .95
##     0.00   0.00   1.00    5.00  12.00  43.40   62.80
##                                                     
##    range     sd  vcoef     mad    IQR   skew    kurt
##   122.00  22.93   1.70    5.93  11.00   2.77    8.09
##                                                     
## lowest : 0 (27), 1 (23), 2 (17), 3 (9), 4 (11)
## highest: 63 (2), 67, 77, 86 (3), 122 (3)
## 
## heap(?): remarkable frequency (14.6%) for the mode(s) (= 0)
## 
## ' 95%-CI (classic)

#Lobbybudget of Organization 
data$budget <- data$Jährliche.finanzielle.Aufwendungen.im.Bereich.der.Interessenvertretung
Desc(data$budget)
## ------------------------------------------------------------------------------ 
## data$budget (integer)
## 
##   length       n    NAs  unique     0s    mean  meanCI'
##      341     177    164      78      4   92.31   67.47
##            51.9%  48.1%           1.2%          117.14
##                                                       
##      .05     .10    .25  median    .75     .90     .95
##     1.00    1.00   3.00   25.00  93.00  277.60  444.00
##                                                       
##    range      sd  vcoef     mad    IQR    skew    kurt
##   824.00  167.41   1.81   35.58  90.00    2.84    8.24
##                                                       
## lowest : 0 (4), 1 (29), 2 (6), 3 (8), 4 (5)
## highest: 720, 741 (3), 789, 817, 824
## 
## heap(?): remarkable frequency (16.4%) for the mode(s) (= 1)
## 
## ' 95%-CI (classic)

#descripitive statistic control 
sumtable(data, vars = c('EU.origin', 'v_2', 'Business.organization', 'salience_igs', 'salience', 'Bundesratsinitiative', 'national_route', 'subnational_brussels_route', 'second_chamber_route', 'brussels_route', 'lobbyists', 'budget')
         ,summ = list(
           c('notNA(x)', 'mean(x)', 'median(x)', 'sd(x)', 'min(x)', 'max(x)', 'pctile(x)[25]',  'pctile(x)[75]')
         ),
summ.names = list(
       c('N', 'Mean', 'Median', 'Standard Error', 'Minimum', 'Maximum', '1 Quantil', '4 Quantil')
        )
        ,title = "descriptive statistics control"
  ,labels = c("EU origin of the proposal", "Position of the interest groups", "Business organization", "Perceived salience", "Media Salience", "Second Chamber Initiative", "National route", "Subnational Brussels route", "Subnational Berlin route", "Brussels route", "Number of Lobbyists within the Organization", "Budget used for lobbying") ,file = "Deskriptive Statistic Control")
## Warning in sumtable(data, vars = c("EU.origin", "v_2", "Business.organization", : Factor variables ignore custom summ options. Cols 1 and 2 are count and percentage.
## Beware combining factors with a custom summ unless factor.numeric = TRUE.
descriptive statistics control
Variable N Mean Median Standard Error Minimum Maximum 1 Quantil 4 Quantil
EU origin of the proposal 341 0.36 0 0.48 0 1 0 1
Position of the interest groups 341 7 8 3.6 0 10 5 10
Business organization 341 0.36 0 0.48 0 1 0 1
Perceived salience 341 4.4 4 3.1 0 10 2 7
Media Salience 341 166 87 261 0 906 10 184
Second Chamber Initiative 341 0.21 0 0.4 0 1 0 0
National route 341 0.6 1 0.49 0 1 0 1
Subnational Brussels route 341 0.082 0 0.27 0 1 0 0
Subnational Berlin route 341 0.35 0 0.48 0 1 0 1
Brussels route 341 0.079 0 0.27 0 1 0 0
Number of Lobbyists within the Organization 185 13 5 23 0 122 1 12
Budget used for lobbying 177 92 25 167 0 824 3 93

5.Regression

  • there will be calculated 3 different binominal regressions, for the different routes. The first three will be without the routes as control variables and the second three will be with the routes as control variables

5.1 null model

m0 <- glm(brussels_route ~ 1, data = data)
summary(m0)
## 
## Call:
## glm(formula = brussels_route ~ 1, data = data)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.07918    0.01464   5.407 1.21e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.07312403)
## 
##     Null deviance: 24.862  on 340  degrees of freedom
## Residual deviance: 24.862  on 340  degrees of freedom
## AIC: 78.796
## 
## Number of Fisher Scoring iterations: 2
#transform = Null noch hinzufügen damit logOdds angezeigt werden und nicht mehr Odds Ratios 
tab_model(m0, transform = NULL)
  brussels_route
Predictors Estimates CI p
(Intercept) 0.08 0.05 – 0.11 <0.001
Observations 341
R2 0.000
# exp() / (1+exp())
PseudoR2(m0, which = "all")
##        McFadden     McFaddenAdj        CoxSnell      Nagelkerke   AldrichNelson 
##      0.00000000     -0.02673954      0.00000000      0.00000000      0.00000000 
## VeallZimmermann           Efron McKelveyZavoina            Tjur             AIC 
##      0.00000000      0.00000000              NA              NA     78.79560964 
##             BIC          logLik         logLik0              G2 
##     86.45937459    -37.39780482    -37.39780482      0.00000000

5.2 Level I (Group level)

5.2.1 Brusselsroute

m1 <- glm(brussels_route ~ 1 + v_3 + v_4 + v_6 + v_2 + salience_igs + Eigenes.BL.profitiert + Business.organization + EU.origin, data = data, family = binomial())
summary(m1)
## 
## Call:
## glm(formula = brussels_route ~ 1 + v_3 + v_4 + v_6 + v_2 + salience_igs + 
##     Eigenes.BL.profitiert + Business.organization + EU.origin, 
##     family = binomial(), data = data)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -4.40019    0.74181  -5.932    3e-09 ***
## v_3                    0.01831    0.09020   0.203 0.839099    
## v_4                    0.04610    0.09904   0.465 0.641622    
## v_6                    0.08547    0.07003   1.221 0.222252    
## v_2                    0.05424    0.07771   0.698 0.485171    
## salience_igs          -0.11699    0.09416  -1.242 0.214084    
## Eigenes.BL.profitiert  1.26478    0.52547   2.407 0.016086 *  
## Business.organization  0.51612    0.43624   1.183 0.236774    
## EU.origin              1.72312    0.48255   3.571 0.000356 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 188.75  on 340  degrees of freedom
## Residual deviance: 159.96  on 332  degrees of freedom
## AIC: 177.96
## 
## Number of Fisher Scoring iterations: 6
tab_model(m1, transform = NULL)
  brussels_route
Predictors Log-Odds CI p
(Intercept) -4.40 -6.03 – -3.09 <0.001
v 3 0.02 -0.16 – 0.19 0.839
v 4 0.05 -0.15 – 0.24 0.642
v 6 0.09 -0.05 – 0.23 0.222
v 2 0.05 -0.09 – 0.22 0.485
salience igs -0.12 -0.31 – 0.06 0.214
Eigenes BL profitiert 1.26 0.19 – 2.28 0.016
Business organization 0.52 -0.34 – 1.38 0.237
EU origin 1.72 0.82 – 2.74 <0.001
Observations 341
R2 Tjur 0.099
PseudoR2(m1, which = "all")
##        McFadden     McFaddenAdj        CoxSnell      Nagelkerke   AldrichNelson 
##      0.15253785      0.05717354      0.08096635      0.19047469      0.07785873 
## VeallZimmermann           Efron McKelveyZavoina            Tjur             AIC 
##      0.21852018      0.09360414      0.27824994      0.09886051    177.95836573 
##             BIC          logLik         logLik0              G2 
##    212.44530803    -79.97918286    -94.37493180     28.79149786

with routes as control variables

m1.1 <- glm(brussels_route ~ 1 + v_3 + v_4 + v_6 + v_2 + salience_igs + Eigenes.BL.profitiert + Business.organization + EU.origin + national_route + second_chamber_route + subnational_brussels_route, data = data, family = binomial())
summary(m1.1)
## 
## Call:
## glm(formula = brussels_route ~ 1 + v_3 + v_4 + v_6 + v_2 + salience_igs + 
##     Eigenes.BL.profitiert + Business.organization + EU.origin + 
##     national_route + second_chamber_route + subnational_brussels_route, 
##     family = binomial(), data = data)
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                -6.198315   1.062142  -5.836 5.36e-09 ***
## v_3                        -0.053921   0.100549  -0.536  0.59178    
## v_4                         0.063795   0.107174   0.595  0.55168    
## v_6                         0.045898   0.078538   0.584  0.55894    
## v_2                         0.003515   0.089729   0.039  0.96875    
## salience_igs               -0.061859   0.104029  -0.595  0.55209    
## Eigenes.BL.profitiert       0.271312   0.631431   0.430  0.66743    
## Business.organization       0.467855   0.489868   0.955  0.33955    
## EU.origin                   2.173952   0.558503   3.892 9.92e-05 ***
## national_route              1.586786   0.816515   1.943  0.05197 .  
## second_chamber_route        1.534518   0.575605   2.666  0.00768 ** 
## subnational_brussels_route  1.754138   0.708589   2.476  0.01330 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 188.75  on 340  degrees of freedom
## Residual deviance: 130.16  on 329  degrees of freedom
## AIC: 154.16
## 
## Number of Fisher Scoring iterations: 7
PseudoR2(m1.1, which = "all")
##        McFadden     McFaddenAdj        CoxSnell      Nagelkerke   AldrichNelson 
##       0.3104177       0.1832653       0.1578709       0.3713939       0.1466281 
## VeallZimmermann           Efron McKelveyZavoina            Tjur             AIC 
##       0.4115298       0.2645979       0.4942681       0.2584842     154.1585709 
##             BIC          logLik         logLik0              G2 
##     200.1411606     -65.0792854     -94.3749318      58.5912927

5.2.2 Subnational Berlin route

m2 <- glm(second_chamber_route ~ 1  + v_3 + v_4 + v_6 + v_2 + salience_igs + Eigenes.BL.profitiert + Business.organization + EU.origin, data = data, family = binomial())
summary(m2)
## 
## Call:
## glm(formula = second_chamber_route ~ 1 + v_3 + v_4 + v_6 + v_2 + 
##     salience_igs + Eigenes.BL.profitiert + Business.organization + 
##     EU.origin, family = binomial(), data = data)
## 
## Coefficients:
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -2.009093   0.383771  -5.235 1.65e-07 ***
## v_3                    0.051187   0.053631   0.954   0.3399    
## v_4                   -0.005493   0.062024  -0.089   0.9294    
## v_6                    0.094536   0.040670   2.324   0.0201 *  
## v_2                    0.116344   0.046090   2.524   0.0116 *  
## salience_igs          -0.071524   0.051554  -1.387   0.1653    
## Eigenes.BL.profitiert  2.041227   0.425596   4.796 1.62e-06 ***
## Business.organization  0.222421   0.267654   0.831   0.4060    
## EU.origin             -0.306807   0.269815  -1.137   0.2555    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 442.36  on 340  degrees of freedom
## Residual deviance: 382.86  on 332  degrees of freedom
## AIC: 400.86
## 
## Number of Fisher Scoring iterations: 4
PseudoR2(m2, which = "all")
##        McFadden     McFaddenAdj        CoxSnell      Nagelkerke   AldrichNelson 
##      0.13449209      0.09380106      0.16009640      0.22030173      0.14855078 
## VeallZimmermann           Efron McKelveyZavoina            Tjur             AIC 
##      0.26306396      0.16941802      0.22566597      0.16928685    400.86427535 
##             BIC          logLik         logLik0              G2 
##    435.35121764   -191.43213767   -221.17895858     59.49364182

with routes as control variables

m2.1 <- glm(second_chamber_route ~ 1  + v_3 + v_4 + v_6 + v_2 + salience_igs + Eigenes.BL.profitiert + Business.organization + EU.origin + national_route + brussels_route + subnational_brussels_route , data = data, family = binomial())
summary(m2.1)
## 
## Call:
## glm(formula = second_chamber_route ~ 1 + v_3 + v_4 + v_6 + v_2 + 
##     salience_igs + Eigenes.BL.profitiert + Business.organization + 
##     EU.origin + national_route + brussels_route + subnational_brussels_route, 
##     family = binomial(), data = data)
## 
## Coefficients:
##                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                -2.91095    0.48473  -6.005 1.91e-09 ***
## v_3                        -0.03054    0.05922  -0.516 0.606074    
## v_4                        -0.00316    0.06912  -0.046 0.963533    
## v_6                         0.10546    0.04441   2.374 0.017576 *  
## v_2                         0.08726    0.05222   1.671 0.094685 .  
## salience_igs               -0.05246    0.05609  -0.935 0.349636    
## Eigenes.BL.profitiert       2.11689    0.48106   4.400 1.08e-05 ***
## Business.organization       0.21824    0.29513   0.739 0.459636    
## EU.origin                  -0.52307    0.31323  -1.670 0.094940 .  
## national_route              1.63932    0.34146   4.801 1.58e-06 ***
## brussels_route              1.64874    0.55888   2.950 0.003177 ** 
## subnational_brussels_route  1.86869    0.56085   3.332 0.000863 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 442.36  on 340  degrees of freedom
## Residual deviance: 329.58  on 329  degrees of freedom
## AIC: 353.58
## 
## Number of Fisher Scoring iterations: 5
PseudoR2(m2.1, which = "all")
##        McFadden     McFaddenAdj        CoxSnell      Nagelkerke   AldrichNelson 
##       0.2549572       0.2007025       0.2816081       0.3875087       0.2485384 
## VeallZimmermann           Efron McKelveyZavoina            Tjur             AIC 
##       0.4401290       0.3001337       0.4515256       0.2994960     353.5755753 
##             BIC          logLik         logLik0              G2 
##     399.5581651    -164.7877877    -221.1789586     112.7823418
tab_model(m2.1, p.style = "stars", transform = NULL)
  second_chamber_route
Predictors Log-Odds CI
(Intercept) -2.91 *** -3.93 – -2.02
v 3 -0.03 -0.15 – 0.09
v 4 -0.00 -0.14 – 0.13
v 6 0.11 * 0.02 – 0.19
v 2 0.09 -0.01 – 0.19
salience igs -0.05 -0.16 – 0.06
Eigenes BL profitiert 2.12 *** 1.22 – 3.12
Business organization 0.22 -0.36 – 0.80
EU origin -0.52 -1.15 – 0.08
national route 1.64 *** 0.99 – 2.34
brussels route 1.65 ** 0.59 – 2.81
subnational brussels
route
1.87 *** 0.80 – 3.02
Observations 341
R2 Tjur 0.299
  • p<0.05   ** p<0.01   *** p<0.001
#without brussels route as control variable 
m2.2 <- glm(second_chamber_route ~ 1  + v_3 + v_4 + v_6 + v_2 + salience_igs + Eigenes.BL.profitiert + Business.organization + EU.origin + national_route  + subnational_brussels_route , data = data, family = binomial())

tab_model(m2, m2.1, m2.2, p.style = "stars", transform = NULL)
  second_chamber_route second_chamber_route second_chamber_route
Predictors Log-Odds CI Log-Odds CI Log-Odds CI
(Intercept) -2.01 *** -2.81 – -1.30 -2.91 *** -3.93 – -2.02 -2.95 *** -3.95 – -2.08
v 3 0.05 -0.05 – 0.16 -0.03 -0.15 – 0.09 -0.04 -0.15 – 0.08
v 4 -0.01 -0.13 – 0.12 -0.00 -0.14 – 0.13 0.01 -0.12 – 0.14
v 6 0.09 * 0.02 – 0.18 0.11 * 0.02 – 0.19 0.11 * 0.02 – 0.19
v 2 0.12 * 0.03 – 0.21 0.09 -0.01 – 0.19 0.09 -0.01 – 0.19
salience igs -0.07 -0.17 – 0.03 -0.05 -0.16 – 0.06 -0.06 -0.17 – 0.04
Eigenes BL profitiert 2.04 *** 1.25 – 2.94 2.12 *** 1.22 – 3.12 2.07 *** 1.19 – 3.06
Business organization 0.22 -0.30 – 0.75 0.22 -0.36 – 0.80 0.22 -0.34 – 0.79
EU origin -0.31 -0.84 – 0.22 -0.52 -1.15 – 0.08 -0.27 -0.85 – 0.30
national route 1.64 *** 0.99 – 2.34 1.76 *** 1.12 – 2.45
brussels route 1.65 ** 0.59 – 2.81
subnational brussels
route
1.87 *** 0.80 – 3.02 1.99 *** 0.96 – 3.10
Observations 341 341 341
R2 Tjur 0.169 0.299 0.272
  • p<0.05   ** p<0.01   *** p<0.001

5.2.3 Subnational_brussels_route

m3 <- glm(subnational_brussels_route ~ 1  + v_3 + v_4 + v_6 + v_2 + salience_igs +  Eigenes.BL.profitiert + Business.organization + EU.origin, data = data, family = binomial())
summary(m3)
## 
## Call:
## glm(formula = subnational_brussels_route ~ 1 + v_3 + v_4 + v_6 + 
##     v_2 + salience_igs + Eigenes.BL.profitiert + Business.organization + 
##     EU.origin, family = binomial(), data = data)
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -2.1202585  0.5166622  -4.104 4.06e-05 ***
## v_3                    0.0812378  0.0865072   0.939  0.34769    
## v_4                    0.0181455  0.1093074   0.166  0.86815    
## v_6                    0.0005827  0.0699422   0.008  0.99335    
## v_2                   -0.0536790  0.0704732  -0.762  0.44624    
## salience_igs          -0.0593886  0.0854883  -0.695  0.48724    
## Eigenes.BL.profitiert  1.4748924  0.4754194   3.102  0.00192 ** 
## Business.organization -0.4292384  0.4716046  -0.910  0.36274    
## EU.origin             -0.8792230  0.5245949  -1.676  0.09374 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 193.62  on 340  degrees of freedom
## Residual deviance: 176.67  on 332  degrees of freedom
## AIC: 194.67
## 
## Number of Fisher Scoring iterations: 6
PseudoR2(m3, which = "all")
##        McFadden     McFaddenAdj        CoxSnell      Nagelkerke   AldrichNelson 
##     0.087541812    -0.005425135     0.048490467     0.111929134     0.047351919 
## VeallZimmermann           Efron McKelveyZavoina            Tjur             AIC 
##     0.130748459     0.055226922     0.149502035     0.060113597   194.667599123 
##             BIC          logLik         logLik0              G2 
##   229.154541419   -88.333799562   -96.808599830    16.949600536

with routes as control variables

m3.1 <- glm(subnational_brussels_route ~ 1  + v_3 + v_4 + v_6 + v_2 + salience_igs +  Eigenes.BL.profitiert + Business.organization + EU.origin +  national_route + second_chamber_route + brussels_route, data = data, family = binomial())
summary(m3.1)
## 
## Call:
## glm(formula = subnational_brussels_route ~ 1 + v_3 + v_4 + v_6 + 
##     v_2 + salience_igs + Eigenes.BL.profitiert + Business.organization + 
##     EU.origin + national_route + second_chamber_route + brussels_route, 
##     family = binomial(), data = data)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -2.25163    0.56705  -3.971 7.16e-05 ***
## v_3                    0.11939    0.09593   1.244  0.21333    
## v_4                    0.03204    0.11842   0.271  0.78670    
## v_6                   -0.03685    0.07374  -0.500  0.61723    
## v_2                   -0.05798    0.07447  -0.779  0.43622    
## salience_igs          -0.07471    0.09332  -0.801  0.42338    
## Eigenes.BL.profitiert  0.79302    0.52753   1.503  0.13277    
## Business.organization -0.63464    0.51719  -1.227  0.21978    
## EU.origin             -1.38983    0.62117  -2.237  0.02526 *  
## national_route        -1.24372    0.56355  -2.207  0.02732 *  
## second_chamber_route   1.79442    0.57407   3.126  0.00177 ** 
## brussels_route         2.08644    0.69762   2.991  0.00278 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 193.62  on 340  degrees of freedom
## Residual deviance: 152.61  on 329  degrees of freedom
## AIC: 176.61
## 
## Number of Fisher Scoring iterations: 6
PseudoR2(m3.1, which = "all")
##        McFadden     McFaddenAdj        CoxSnell      Nagelkerke   AldrichNelson 
##      0.21176958      0.08781365      0.11329342      0.26151190      0.10733506 
## VeallZimmermann           Efron McKelveyZavoina            Tjur             AIC 
##      0.29637434      0.11450164      0.38127853      0.14238569    176.61496715 
##             BIC          logLik         logLik0              G2 
##    222.59755688    -76.30748357    -96.80859983     41.00223251
m3.2 <- glm(subnational_brussels_route ~ 1  + v_3 + v_4 + v_6 + v_2 + salience_igs +  Eigenes.BL.profitiert + Business.organization + EU.origin +  national_route + second_chamber_route , data = data, family = binomial())
tab_model(m3, m3.1, m3.2, p.style = "stars", transform = NULL)
  subnational_brussels_route subnational_brussels_route subnational_brussels_route
Predictors Log-Odds CI Log-Odds CI Log-Odds CI
(Intercept) -2.12 *** -3.24 – -1.19 -2.25 *** -3.48 – -1.23 -2.24 *** -3.43 – -1.25
v 3 0.08 -0.09 – 0.25 0.12 -0.07 – 0.31 0.11 -0.08 – 0.29
v 4 0.02 -0.20 – 0.23 0.03 -0.21 – 0.26 0.02 -0.21 – 0.25
v 6 0.00 -0.14 – 0.14 -0.04 -0.19 – 0.11 -0.03 -0.17 – 0.11
v 2 -0.05 -0.19 – 0.09 -0.06 -0.21 – 0.09 -0.08 -0.22 – 0.06
salience igs -0.06 -0.23 – 0.10 -0.07 -0.27 – 0.10 -0.09 -0.27 – 0.09
Eigenes BL profitiert 1.47 ** 0.51 – 2.40 0.79 -0.28 – 1.81 0.91 -0.10 – 1.88
Business organization -0.43 -1.42 – 0.45 -0.63 -1.73 – 0.33 -0.51 -1.53 – 0.41
EU origin -0.88 -2.02 – 0.08 -1.39 * -2.75 – -0.27 -0.87 -2.02 – 0.12
national route -1.24 * -2.38 – -0.16 -0.86 -1.89 – 0.15
second chamber route 1.79 ** 0.71 – 2.98 1.98 *** 0.95 – 3.12
brussels route 2.09 ** 0.74 – 3.52
Observations 341 341 341
R2 Tjur 0.060 0.142 0.108
  • p<0.05   ** p<0.01   *** p<0.001

Table with only Level 1 variables

tab_model(m1, m2, m3, p.style = "stars")
  brussels_route second_chamber_route subnational_brussels_route
Predictors Odds Ratios CI Odds Ratios CI Odds Ratios CI
(Intercept) 0.01 *** 0.00 – 0.05 0.13 *** 0.06 – 0.27 0.12 *** 0.04 – 0.31
v 3 1.02 0.85 – 1.21 1.05 0.95 – 1.17 1.08 0.91 – 1.28
v 4 1.05 0.86 – 1.27 0.99 0.88 – 1.12 1.02 0.82 – 1.26
v 6 1.09 0.95 – 1.25 1.10 * 1.02 – 1.19 1.00 0.87 – 1.15
v 2 1.06 0.91 – 1.24 1.12 * 1.03 – 1.23 0.95 0.83 – 1.09
salience igs 0.89 0.73 – 1.06 0.93 0.84 – 1.03 0.94 0.79 – 1.11
Eigenes BL profitiert 3.54 * 1.21 – 9.77 7.70 *** 3.49 – 18.89 4.37 ** 1.67 – 10.98
Business organization 1.68 0.71 – 3.98 1.25 0.74 – 2.11 0.65 0.24 – 1.58
EU origin 5.60 *** 2.27 – 15.45 0.74 0.43 – 1.24 0.42 0.13 – 1.08
Observations 341 341 341
R2 Tjur 0.099 0.169 0.060
  • p<0.05   ** p<0.01   *** p<0.001

5.3 Level I+II (Group + Proposal)

5.3.1 Brusselsroute

m4 <- glm(brussels_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin, data = data, family = binomial())

summary(m4)
## 
## Call:
## glm(formula = brussels_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + 
##     Business.organization + salience_igs + Zustimmungsgesetz + 
##     salience + v_2 + EU.origin, family = binomial(), data = data)
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -3.7495484  0.7794258  -4.811  1.5e-06 ***
## v_3                    0.0331797  0.0927128   0.358 0.720436    
## v_4                    0.0362958  0.1005710   0.361 0.718176    
## v_6                    0.0566572  0.0733671   0.772 0.439971    
## Eigenes.BL.profitiert  1.2334739  0.5402705   2.283 0.022426 *  
## Business.organization  0.3177338  0.4464643   0.712 0.476671    
## salience_igs          -0.1255292  0.0954207  -1.316 0.188330    
## Zustimmungsgesetz     -1.1273576  0.5420011  -2.080 0.037526 *  
## salience              -0.0008789  0.0007880  -1.115 0.264706    
## v_2                    0.0723459  0.0809696   0.893 0.371593    
## EU.origin              1.8360876  0.5046289   3.638 0.000274 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 188.75  on 340  degrees of freedom
## Residual deviance: 155.34  on 330  degrees of freedom
## AIC: 177.34
## 
## Number of Fisher Scoring iterations: 6
PseudoR2(m4, which = "all")
##        McFadden     McFaddenAdj        CoxSnell      Nagelkerke   AldrichNelson 
##      0.17698278      0.06042641      0.09331780      0.21953166      0.08922272 
## VeallZimmermann           Efron McKelveyZavoina            Tjur             AIC 
##      0.25041462      0.11762630      0.31500498      0.12253233    177.34438786 
##             BIC          logLik         logLik0              G2 
##    219.49509511    -77.67219393    -94.37493180     33.40547574

with routes as control variables

m4.1 <- glm(brussels_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + national_route + subnational_brussels_route + second_chamber_route, data = data, family = binomial())

summary(m4.1)
## 
## Call:
## glm(formula = brussels_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + 
##     Business.organization + salience_igs + Zustimmungsgesetz + 
##     salience + v_2 + EU.origin + national_route + subnational_brussels_route + 
##     second_chamber_route, family = binomial(), data = data)
## 
## Coefficients:
##                              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                -5.3164474  1.0889206  -4.882 1.05e-06 ***
## v_3                        -0.0760898  0.1054309  -0.722  0.47048    
## v_4                         0.0758524  0.1140737   0.665  0.50609    
## v_6                        -0.0147777  0.0838791  -0.176  0.86015    
## Eigenes.BL.profitiert       0.0674617  0.6762788   0.100  0.92054    
## Business.organization       0.0321747  0.5239201   0.061  0.95103    
## salience_igs               -0.0948979  0.1088624  -0.872  0.38336    
## Zustimmungsgesetz          -2.0098929  0.6779759  -2.965  0.00303 ** 
## salience                   -0.0013090  0.0009443  -1.386  0.16567    
## v_2                         0.0444930  0.0969348   0.459  0.64623    
## EU.origin                   2.4387689  0.6198370   3.935 8.34e-05 ***
## national_route              1.8894701  0.8539906   2.213  0.02693 *  
## subnational_brussels_route  1.9397112  0.7859553   2.468  0.01359 *  
## second_chamber_route        1.8056497  0.6131306   2.945  0.00323 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 188.75  on 340  degrees of freedom
## Residual deviance: 120.03  on 327  degrees of freedom
## AIC: 148.03
## 
## Number of Fisher Scoring iterations: 7
PseudoR2(m4.1, which = "all")
##        McFadden     McFaddenAdj        CoxSnell      Nagelkerke   AldrichNelson 
##       0.3640663       0.2157218       0.1825107       0.4293595       0.1677191 
## VeallZimmermann           Efron McKelveyZavoina            Tjur             AIC 
##       0.4707246       0.3536253       0.5667644       0.3315402     148.0324003 
##             BIC          logLik         logLik0              G2 
##     201.6787550     -60.0162002     -94.3749318      68.7174633

5.3.2 Subnational Berlin route

m5 <- glm(second_chamber_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Zustimmungsgesetz + local_regional_actor  + EU.origin + v_2 + Business.organization + salience_igs +  salience + Bundesratsinitiative + v_3:v_4, data = data, family = binomial())

summary(m5)
## 
## Call:
## glm(formula = second_chamber_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + 
##     Zustimmungsgesetz + local_regional_actor + EU.origin + v_2 + 
##     Business.organization + salience_igs + salience + Bundesratsinitiative + 
##     v_3:v_4, family = binomial(), data = data)
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -2.505e+00  4.955e-01  -5.055 4.29e-07 ***
## v_3                    3.138e-02  8.265e-02   0.380   0.7042    
## v_4                   -7.009e-02  1.127e-01  -0.622   0.5338    
## v_6                    1.002e-01  4.242e-02   2.363   0.0181 *  
## Eigenes.BL.profitiert  1.984e+00  4.350e-01   4.560 5.12e-06 ***
## Zustimmungsgesetz      6.534e-01  3.229e-01   2.024   0.0430 *  
## local_regional_actor   9.908e-01  4.121e-01   2.404   0.0162 *  
## EU.origin             -2.559e-01  3.009e-01  -0.851   0.3950    
## v_2                    1.225e-01  4.997e-02   2.450   0.0143 *  
## Business.organization  3.154e-01  2.813e-01   1.121   0.2621    
## salience_igs          -5.307e-02  5.410e-02  -0.981   0.3266    
## salience               9.122e-05  6.090e-04   0.150   0.8809    
## Bundesratsinitiative  -2.128e-01  3.521e-01  -0.605   0.5455    
## v_3:v_4                9.050e-03  1.754e-02   0.516   0.6059    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 442.36  on 340  degrees of freedom
## Residual deviance: 372.89  on 327  degrees of freedom
## AIC: 400.89
## 
## Number of Fisher Scoring iterations: 4
tab_model(m5, transform = NULL)
  second_chamber_route
Predictors Log-Odds CI p
(Intercept) -2.51 -3.53 – -1.58 <0.001
v 3 0.03 -0.13 – 0.19 0.704
v 4 -0.07 -0.30 – 0.15 0.534
v 6 0.10 0.02 – 0.18 0.018
Eigenes BL profitiert 1.98 1.17 – 2.90 <0.001
Zustimmungsgesetz 0.65 0.03 – 1.30 0.043
local regional actor 0.99 0.19 – 1.81 0.016
EU origin -0.26 -0.85 – 0.33 0.395
v 2 0.12 0.03 – 0.22 0.014
Business organization 0.32 -0.24 – 0.87 0.262
salience igs -0.05 -0.16 – 0.05 0.327
salience 0.00 -0.00 – 0.00 0.881
Bundesratsinitiative -0.21 -0.91 – 0.47 0.545
v 3 × v 4 0.01 -0.03 – 0.04 0.606
Observations 341
R2 Tjur 0.196
m5.z <- glm(second_chamber_route ~ 1 +  v_3_z + v_4_z + v_6_z + Eigenes.BL.profitiert_z + Business.organization_z + salience_igs_z + Zustimmungsgesetz_z + salience_z + v_2_z + EU.origin_z + Business.organization_z:Eigenes.BL.profitiert_z + v_3_z:v_4_z, data = data, family = binomial())

summary(m5)
## 
## Call:
## glm(formula = second_chamber_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + 
##     Zustimmungsgesetz + local_regional_actor + EU.origin + v_2 + 
##     Business.organization + salience_igs + salience + Bundesratsinitiative + 
##     v_3:v_4, family = binomial(), data = data)
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -2.505e+00  4.955e-01  -5.055 4.29e-07 ***
## v_3                    3.138e-02  8.265e-02   0.380   0.7042    
## v_4                   -7.009e-02  1.127e-01  -0.622   0.5338    
## v_6                    1.002e-01  4.242e-02   2.363   0.0181 *  
## Eigenes.BL.profitiert  1.984e+00  4.350e-01   4.560 5.12e-06 ***
## Zustimmungsgesetz      6.534e-01  3.229e-01   2.024   0.0430 *  
## local_regional_actor   9.908e-01  4.121e-01   2.404   0.0162 *  
## EU.origin             -2.559e-01  3.009e-01  -0.851   0.3950    
## v_2                    1.225e-01  4.997e-02   2.450   0.0143 *  
## Business.organization  3.154e-01  2.813e-01   1.121   0.2621    
## salience_igs          -5.307e-02  5.410e-02  -0.981   0.3266    
## salience               9.122e-05  6.090e-04   0.150   0.8809    
## Bundesratsinitiative  -2.128e-01  3.521e-01  -0.605   0.5455    
## v_3:v_4                9.050e-03  1.754e-02   0.516   0.6059    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 442.36  on 340  degrees of freedom
## Residual deviance: 372.89  on 327  degrees of freedom
## AIC: 400.89
## 
## Number of Fisher Scoring iterations: 4
PseudoR2(m5, which = "all")
##        McFadden     McFaddenAdj        CoxSnell      Nagelkerke   AldrichNelson 
##      0.15704532      0.09374816      0.18431338      0.25362566      0.16924550 
## VeallZimmermann           Efron McKelveyZavoina            Tjur             AIC 
##      0.29971160      0.19621182      0.26241381      0.19584028    400.88767790 
##             BIC          logLik         logLik0              G2 
##    454.53403258   -186.44383895   -221.17895858     69.47023927
m5.r <- glm(second_chamber_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + local_regional_actor + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + budget + lobbyists + v_3:v_4, data = data, family = binomial())
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(m5.r)
## 
## Call:
## glm(formula = second_chamber_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + 
##     Business.organization + local_regional_actor + salience_igs + 
##     Zustimmungsgesetz + salience + v_2 + EU.origin + budget + 
##     lobbyists + v_3:v_4, family = binomial(), data = data)
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)   
## (Intercept)           -2.535e+00  7.752e-01  -3.270  0.00107 **
## v_3                    2.277e-02  1.191e-01   0.191  0.84836   
## v_4                   -4.583e-02  1.659e-01  -0.276  0.78241   
## v_6                    8.588e-02  6.232e-02   1.378  0.16819   
## Eigenes.BL.profitiert  1.937e+01  1.616e+03   0.012  0.99044   
## Business.organization  5.966e-01  4.404e-01   1.355  0.17553   
## local_regional_actor   1.924e+01  2.075e+03   0.009  0.99260   
## salience_igs           2.525e-02  7.273e-02   0.347  0.72846   
## Zustimmungsgesetz      4.680e-01  4.744e-01   0.987  0.32387   
## salience               4.161e-04  8.870e-04   0.469  0.63899   
## v_2                    7.040e-02  7.345e-02   0.958  0.33783   
## EU.origin             -2.529e-01  4.300e-01  -0.588  0.55638   
## budget                -7.995e-05  1.711e-03  -0.047  0.96272   
## lobbyists             -7.905e-03  1.315e-02  -0.601  0.54758   
## v_3:v_4                6.000e-03  2.413e-02   0.249  0.80365   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 225.33  on 176  degrees of freedom
## Residual deviance: 175.22  on 162  degrees of freedom
##   (164 observations deleted due to missingness)
## AIC: 205.22
## 
## Number of Fisher Scoring iterations: 17
m5.r.robust <- logistf(second_chamber_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Zustimmungsgesetz + local_regional_actor  + EU.origin + v_2 + Business.organization + salience_igs +  salience +  lobbyists + budget + Bundesratsinitiative + v_3:v_4, data = data)


tab_model(m5, m5.r.robust, transform = NULL)
  second_chamber_route second_chamber_route
Predictors Log-Odds CI p Log-Odds CI p
(Intercept) -2.51 -3.53 – -1.58 <0.001 -2.00 -3.36 – -0.64 0.003
v 3 0.03 -0.13 – 0.19 0.704 0.02 -0.19 – 0.24 0.833
v 4 -0.07 -0.30 – 0.15 0.534 -0.02 -0.30 – 0.26 0.885
v 6 0.10 0.02 – 0.18 0.018 0.07 -0.04 – 0.18 0.227
Eigenes BL profitiert 1.98 1.17 – 2.90 <0.001 4.11 1.38 – 6.85 <0.001
Zustimmungsgesetz 0.65 0.03 – 1.30 0.043 0.54 -0.32 – 1.41 0.230
local regional actor 0.99 0.19 – 1.81 0.016 3.41 0.35 – 6.47 0.007
EU origin -0.26 -0.85 – 0.33 0.395 -0.38 -1.18 – 0.41 0.358
v 2 0.12 0.03 – 0.22 0.014 0.05 -0.08 – 0.18 0.431
Business organization 0.32 -0.24 – 0.87 0.262 0.46 -0.33 – 1.25 0.267
salience igs -0.05 -0.16 – 0.05 0.327 0.02 -0.11 – 0.16 0.729
salience 0.00 -0.00 – 0.00 0.881 0.00 -0.00 – 0.00 0.737
Bundesratsinitiative -0.21 -0.91 – 0.47 0.545 -0.81 -1.75 – 0.14 0.093
v 3 × v 4 0.01 -0.03 – 0.04 0.606 0.00 -0.04 – 0.05 0.882
lobbyists -0.01 -0.03 – 0.01 0.484
budget 0.00 -0.00 – 0.00 0.953
Observations 341 177
R2 Tjur 0.196 0.261
#m_interaction <- glm(second_chamber_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + Business.organization:Eigenes.BL.profitiert + v_3:v_4, data = data, family = binomial())

with routes as control variables

m5.1 <- glm(second_chamber_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Zustimmungsgesetz + local_regional_actor  + EU.origin + v_2 + Business.organization + salience_igs +  salience + Bundesratsinitiative + v_3:v_4 +  national_route + subnational_brussels_route + brussels_route, data = data, family = binomial())

standardize_parameters( m5.1,
  method = "sdy",
  ci = 0.95,
  robust = TRUE,
  two_sd = FALSE,
  include_response = TRUE,
  verbose = TRUE
)
## # Standardization method: sdy
## 
## Parameter                  | Std. Coef. |         95% CI
## --------------------------------------------------------
## (Intercept)                |      -1.95 | [-2.67, -1.33]
## v_3                        |      -0.03 | [-0.11,  0.06]
## v_4                        |      -0.06 | [-0.19,  0.07]
## v_6                        |       0.05 | [ 0.00,  0.09]
## Eigenes.BL.profitiert      |       0.91 | [ 0.46,  1.42]
## Zustimmungsgesetz          |       0.35 | [-0.01,  0.71]
## local_regional_actor       |       1.09 | [ 0.61,  1.63]
## EU.origin                  |      -0.29 | [-0.63,  0.04]
## v_2                        |       0.04 | [-0.01,  0.10]
## Business.organization      |       0.13 | [-0.17,  0.43]
## salience_igs               |  -8.23e-03 | [-0.07,  0.05]
## salience                   |   2.86e-04 | [ 0.00,  0.00]
## Bundesratsinitiative       |      -0.34 | [-0.76,  0.05]
## national_route             |       1.13 | [ 0.73,  1.59]
## subnational_brussels_route |       1.31 | [ 0.68,  2.01]
## brussels_route             |       0.93 | [ 0.38,  1.53]
## v_3:v_4                    |   7.43e-03 | [-0.01,  0.03]
## 
## - Scaled by one MAD from the median.
## - Response is unstandardized.
summary(m5.1)
## 
## Call:
## glm(formula = second_chamber_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + 
##     Zustimmungsgesetz + local_regional_actor + EU.origin + v_2 + 
##     Business.organization + salience_igs + salience + Bundesratsinitiative + 
##     v_3:v_4 + national_route + subnational_brussels_route + brussels_route, 
##     family = binomial(), data = data)
## 
## Coefficients:
##                              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                -4.0967860  0.7134178  -5.742 9.33e-09 ***
## v_3                        -0.0539785  0.0932448  -0.579 0.562664    
## v_4                        -0.1165818  0.1397453  -0.834 0.404143    
## v_6                         0.0963187  0.0471207   2.044 0.040945 *  
## Eigenes.BL.profitiert       1.9108059  0.5098937   3.747 0.000179 ***
## Zustimmungsgesetz           0.7248907  0.3816394   1.899 0.057510 .  
## local_regional_actor        2.2974921  0.5416566   4.242 2.22e-05 ***
## EU.origin                  -0.6003149  0.3563889  -1.684 0.092097 .  
## v_2                         0.0917698  0.0585818   1.567 0.117226    
## Business.organization       0.2765602  0.3201265   0.864 0.387638    
## salience_igs               -0.0172811  0.0615745  -0.281 0.778976    
## salience                    0.0006011  0.0007060   0.851 0.394528    
## Bundesratsinitiative       -0.7232394  0.4308214  -1.679 0.093202 .  
## national_route              2.3674954  0.4572790   5.177 2.25e-07 ***
## subnational_brussels_route  2.7452638  0.7065904   3.885 0.000102 ***
## brussels_route              1.9483267  0.6039956   3.226 0.001257 ** 
## v_3:v_4                     0.0156108  0.0210379   0.742 0.458066    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 442.36  on 340  degrees of freedom
## Residual deviance: 301.77  on 324  degrees of freedom
## AIC: 335.77
## 
## Number of Fisher Scoring iterations: 6
m5.1.r <- glm(second_chamber_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + local_regional_actor + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + budget + lobbyists + v_3:v_4 + national_route + subnational_brussels_route + brussels_route, data = data, family = binomial())
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(m5.1.r)
## 
## Call:
## glm(formula = second_chamber_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + 
##     Business.organization + local_regional_actor + salience_igs + 
##     Zustimmungsgesetz + salience + v_2 + EU.origin + budget + 
##     lobbyists + v_3:v_4 + national_route + subnational_brussels_route + 
##     brussels_route, family = binomial(), data = data)
## 
## Coefficients:
##                              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                -3.846e+00  1.043e+00  -3.687 0.000227 ***
## v_3                        -1.887e-02  1.281e-01  -0.147 0.882868    
## v_4                         6.205e-03  1.957e-01   0.032 0.974709    
## v_6                         8.055e-02  6.846e-02   1.177 0.239348    
## Eigenes.BL.profitiert       1.860e+01  1.484e+03   0.013 0.989994    
## Business.organization       5.899e-01  4.766e-01   1.238 0.215817    
## local_regional_actor        2.086e+01  2.029e+03   0.010 0.991797    
## salience_igs               -4.340e-03  8.227e-02  -0.053 0.957924    
## Zustimmungsgesetz           2.760e-01  5.353e-01   0.516 0.606163    
## salience                    3.532e-04  1.013e-03   0.349 0.727293    
## v_2                         5.740e-03  8.615e-02   0.067 0.946874    
## EU.origin                  -7.685e-01  4.987e-01  -1.541 0.123294    
## budget                      6.674e-04  1.887e-03   0.354 0.723587    
## lobbyists                  -6.096e-03  1.410e-02  -0.432 0.665455    
## national_route              2.446e+00  8.547e-01   2.862 0.004213 ** 
## subnational_brussels_route  1.632e+00  1.264e+00   1.291 0.196806    
## brussels_route              1.797e+00  8.516e-01   2.110 0.034858 *  
## v_3:v_4                     3.117e-03  2.781e-02   0.112 0.910742    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 225.33  on 176  degrees of freedom
## Residual deviance: 152.49  on 159  degrees of freedom
##   (164 observations deleted due to missingness)
## AIC: 188.49
## 
## Number of Fisher Scoring iterations: 17
m5.1.r.robust <- logistf(second_chamber_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Zustimmungsgesetz + local_regional_actor  + EU.origin + v_2 + Business.organization + salience_igs +  salience +  lobbyists + budget + Bundesratsinitiative + v_3:v_4 + national_route + subnational_brussels_route + brussels_route, data = data)

tab_model(m5.1, m5.1.r.robust, p.style = "stars", transform = NULL)
  second_chamber_route second_chamber_route
Predictors Log-Odds CI Log-Odds CI
(Intercept) -4.10 *** -5.60 – -2.79 -2.91 *** -4.58 – -1.23
v 3 -0.05 -0.24 – 0.13 -0.02 -0.25 – 0.21
v 4 -0.12 -0.39 – 0.16 0.05 -0.28 – 0.39
v 6 0.10 * 0.00 – 0.19 0.06 -0.06 – 0.18
Eigenes BL profitiert 1.91 *** 0.96 – 2.97 3.74 *** 0.84 – 6.64
Zustimmungsgesetz 0.72 -0.01 – 1.49 0.41 -0.54 – 1.36
local regional actor 2.30 *** 1.28 – 3.42 4.85 ** 1.37 – 8.33
EU origin -0.60 -1.32 – 0.09 -0.91 * -1.80 – -0.02
v 2 0.09 -0.02 – 0.21 -0.01 -0.16 – 0.14
Business organization 0.28 -0.35 – 0.91 0.40 -0.43 – 1.23
salience igs -0.02 -0.14 – 0.10 0.00 -0.15 – 0.15
salience 0.00 -0.00 – 0.00 0.00 -0.00 – 0.00
Bundesratsinitiative -0.72 -1.60 – 0.10 -1.19 * -2.20 – -0.17
national route 2.37 *** 1.53 – 3.35 2.10 *** 0.77 – 3.42
subnational brussels
route
2.75 *** 1.43 – 4.22 1.89 -0.31 – 4.08
brussels route 1.95 ** 0.81 – 3.20 1.57 * 0.12 – 3.02
v 3 × v 4 0.02 -0.03 – 0.06 -0.00 -0.05 – 0.05
lobbyists -0.01 -0.03 – 0.02
budget 0.00 -0.00 – 0.00
Observations 341 177
R2 Tjur 0.360 0.378
  • p<0.05   ** p<0.01   *** p<0.001
m5.1.z <- glm(second_chamber_route ~ 1 +  v_3_z + v_4_z + v_6_z + Eigenes.BL.profitiert_z + Business.organization_z + salience_igs_z + Zustimmungsgesetz_z + salience_z + v_2_z + EU.origin_z + Business.organization_z:Eigenes.BL.profitiert_z + v_3_z:v_4_z + national_route_z + subnational_brussels_route_z + brussels_route_z, data = data, family = binomial())


PseudoR2(m5.1, which = "all")
##        McFadden     McFaddenAdj        CoxSnell      Nagelkerke   AldrichNelson 
##       0.3178200       0.2409592       0.3378664       0.4649234       0.2919291 
## VeallZimmermann           Efron McKelveyZavoina            Tjur             AIC 
##       0.5169682       0.3603301       0.5727925       0.3595990     335.7677113 
##             BIC          logLik         logLik0              G2 
##     400.9097134    -150.8838556    -221.1789586     140.5902059
m5.2 <- glm(second_chamber_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + national_route + subnational_brussels_route, data = data, family = binomial())
tab_model(m5, m5.1, m5.2, p.style = "stars", transform = NULL)
  second_chamber_route second_chamber_route second_chamber_route
Predictors Log-Odds CI Log-Odds CI Log-Odds CI
(Intercept) -2.51 *** -3.53 – -1.58 -4.10 *** -5.60 – -2.79 -3.18 *** -4.32 – -2.16
v 3 0.03 -0.13 – 0.19 -0.05 -0.24 – 0.13 -0.04 -0.15 – 0.08
v 4 -0.07 -0.30 – 0.15 -0.12 -0.39 – 0.16 0.01 -0.12 – 0.14
v 6 0.10 * 0.02 – 0.18 0.10 * 0.00 – 0.19 0.11 * 0.03 – 0.20
Eigenes BL profitiert 1.98 *** 1.17 – 2.90 1.91 *** 0.96 – 2.97 2.04 *** 1.16 – 3.03
Zustimmungsgesetz 0.65 * 0.03 – 1.30 0.72 -0.01 – 1.49 0.25 -0.41 – 0.91
local regional actor 0.99 * 0.19 – 1.81 2.30 *** 1.28 – 3.42
EU origin -0.26 -0.85 – 0.33 -0.60 -1.32 – 0.09 -0.36 -0.98 – 0.25
v 2 0.12 * 0.03 – 0.22 0.09 -0.02 – 0.21 0.09 -0.01 – 0.19
Business organization 0.32 -0.24 – 0.87 0.28 -0.35 – 0.91 0.28 -0.30 – 0.86
salience igs -0.05 -0.16 – 0.05 -0.02 -0.14 – 0.10 -0.06 -0.17 – 0.05
salience 0.00 -0.00 – 0.00 0.00 -0.00 – 0.00 0.00 -0.00 – 0.00
Bundesratsinitiative -0.21 -0.91 – 0.47 -0.72 -1.60 – 0.10
v 3 × v 4 0.01 -0.03 – 0.04 0.02 -0.03 – 0.06
national route 2.37 *** 1.53 – 3.35 1.76 *** 1.11 – 2.46
subnational brussels
route
2.75 *** 1.43 – 4.22 1.95 *** 0.92 – 3.08
brussels route 1.95 ** 0.81 – 3.20
Observations 341 341 341
R2 Tjur 0.196 0.360 0.273
  • p<0.05   ** p<0.01   *** p<0.001
#m_interaction <- glm(second_chamber_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + Business.organization:Eigenes.BL.profitiert + v_3:v_4 + national_route + subnational_brussels_route + brussels_route, data = data, family = binomial())

5.3.3 Subnational brussels route

m6 <- glm(subnational_brussels_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Zustimmungsgesetz + local_regional_actor + EU.origin + v_2 + Business.organization + salience_igs +  salience + Bundesratsinitiative + v_3:v_4 , data = data, family = binomial())

tab_model(m6, p.style = "stars", transform = NULL)
  subnational_brussels_route
Predictors Log-Odds CI
(Intercept) -3.75 *** -5.63 – -2.19
v 3 0.11 -0.18 – 0.39
v 4 -0.00 -0.46 – 0.42
v 6 0.04 -0.11 – 0.20
Eigenes BL profitiert 2.13 *** 1.01 – 3.30
Zustimmungsgesetz 0.12 -1.07 – 1.37
local regional actor -1.14 -4.12 – 0.67
EU origin -0.52 -1.96 – 0.69
v 2 -0.08 -0.25 – 0.10
Business organization 0.03 -1.07 – 1.07
salience igs -0.01 -0.22 – 0.18
salience 0.00 -0.00 – 0.00
Bundesratsinitiative 2.46 *** 1.37 – 3.70
v 3 × v 4 -0.01 -0.07 – 0.06
Observations 341
R2 Tjur 0.181
  • p<0.05   ** p<0.01   *** p<0.001
m6.r <- glm(subnational_brussels_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + local_regional_actor + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + budget + lobbyists + v_3:v_4, data = data, family = binomial())

m6.r.robust <- logistf(subnational_brussels_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Zustimmungsgesetz + local_regional_actor  + EU.origin + v_2 + Business.organization + salience_igs +  salience +  lobbyists + budget + Bundesratsinitiative + v_3:v_4, data = data, control = logistf.control(maxit = 1000,maxstep = -1))
## Warning in logistf(subnational_brussels_route ~ 1 + v_3 + v_4 + v_6 +
## Eigenes.BL.profitiert + : Nonconverged PL confidence limits: maximum number of
## iterations for variables: EU.origin exceeded. Try to increase the number of
## iterations by passing 'logistpl.control(maxit=...)' to parameter plcontrol
summary(m6.r)
## 
## Call:
## glm(formula = subnational_brussels_route ~ 1 + v_3 + v_4 + v_6 + 
##     Eigenes.BL.profitiert + Business.organization + local_regional_actor + 
##     salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + 
##     budget + lobbyists + v_3:v_4, family = binomial(), data = data)
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -2.234e+00  1.339e+00  -1.668 0.095218 .  
## v_3                    2.102e-01  2.866e-01   0.733 0.463359    
## v_4                    2.276e-02  4.310e-01   0.053 0.957879    
## v_6                   -2.329e-03  1.335e-01  -0.017 0.986076    
## Eigenes.BL.profitiert  4.933e+00  1.368e+00   3.604 0.000313 ***
## Business.organization -9.157e-01  9.650e-01  -0.949 0.342683    
## local_regional_actor  -1.899e+01  2.184e+03  -0.009 0.993064    
## salience_igs           3.009e-01  1.793e-01   1.678 0.093374 .  
## Zustimmungsgesetz      4.895e-01  1.099e+00   0.445 0.655966    
## salience               2.577e-03  1.863e-03   1.384 0.166468    
## v_2                   -4.360e-01  1.736e-01  -2.512 0.012010 *  
## EU.origin             -3.786e-01  9.342e-01  -0.405 0.685324    
## budget                 7.237e-04  5.530e-03   0.131 0.895877    
## lobbyists             -6.348e-02  5.467e-02  -1.161 0.245579    
## v_3:v_4               -3.461e-02  6.083e-02  -0.569 0.569320    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 76.895  on 176  degrees of freedom
## Residual deviance: 52.530  on 162  degrees of freedom
##   (164 observations deleted due to missingness)
## AIC: 82.53
## 
## Number of Fisher Scoring iterations: 17
m6.z <- glm(subnational_brussels_route ~ 1 +  v_3_z + v_4_z + v_6_z + Eigenes.BL.profitiert_z + Business.organization_z + salience_igs_z + Zustimmungsgesetz_z + salience_z + v_2_z + EU.origin_z + Business.organization_z:Eigenes.BL.profitiert_z + v_3_z:v_4_z, data = data, family = binomial())



m0.1 <- glm(subnational_brussels_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + brussels_route + national_route + subnational_brussels_route + Business.organization:Eigenes.BL.profitiert, data = data, family = binomial())
## Warning in model.matrix.default(mt, mf, contrasts): the response appeared on
## the right-hand side and was dropped
## Warning in model.matrix.default(mt, mf, contrasts): problem with term 13 in
## model.matrix: no columns are assigned
tab_model(m0.1, p.style = "stars", transform = NULL)
  subnational_brussels_route
Predictors Log-Odds CI
(Intercept) -3.30 *** -5.06 – -1.81
v 3 0.08 -0.11 – 0.28
v 4 0.00 -0.24 – 0.24
v 6 0.03 -0.11 – 0.18
Eigenes BL profitiert 0.82 -0.53 – 2.07
Business organization -0.93 -2.49 – 0.30
salience igs 0.00 -0.19 – 0.18
Zustimmungsgesetz 1.73 ** 0.55 – 3.12
salience -0.00 -0.00 – 0.00
v 2 -0.04 -0.19 – 0.11
EU origin -1.38 * -2.89 – -0.16
brussels route 2.97 *** 1.51 – 4.56
national route -0.89 -1.93 – 0.13
Eigenes BL profitiert ×
Business organization
2.09 -0.18 – 4.49
Observations 341
R2 Tjur 0.156
  • p<0.05   ** p<0.01   *** p<0.001
#GLMM (sind ja zwei Ebenen, vlt wäre das korrekter als Berechnung)
m6.2 <- glmer(subnational_brussels_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + brussels_route + national_route + subnational_brussels_route + Business.organization:Eigenes.BL.profitiert + (1 | ID.Gesetz), data = data, family = binomial())
## Warning in model.matrix.default(fixedform, fr, contrasts): the response
## appeared on the right-hand side and was dropped
## Warning in model.matrix.default(fixedform, fr, contrasts): problem with term 13
## in model.matrix: no columns are assigned
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0843791 (tol = 0.002, component 1)
tab_model(m6.2, p.style = "stars", transform = NULL)
  subnational_brussels_route
Predictors Log-Odds CI
(Intercept) -4.86 *** -7.72 – -1.99
v 3 0.13 -0.11 – 0.37
v 4 -0.18 -0.49 – 0.12
v 6 0.07 -0.12 – 0.26
Eigenes BL profitiert 1.67 -0.02 – 3.36
Business organization 0.10 -1.56 – 1.75
salience igs 0.05 -0.19 – 0.29
Zustimmungsgesetz 0.48 -2.18 – 3.13
salience 0.00 -0.00 – 0.01
v 2 -0.05 -0.24 – 0.14
EU origin -1.05 -3.63 – 1.53
brussels route 3.62 *** 1.73 – 5.50
national route -0.72 -1.89 – 0.45
Eigenes BL profitiert ×
Business organization
1.03 -1.71 – 3.77
Random Effects
σ2 3.29
τ00 ID.Gesetz 2.91
ICC 0.47
N ID.Gesetz 23
Observations 341
Marginal R2 / Conditional R2 0.221 / 0.587
  • p<0.05   ** p<0.01   *** p<0.001
summary(m6)
## 
## Call:
## glm(formula = subnational_brussels_route ~ 1 + v_3 + v_4 + v_6 + 
##     Eigenes.BL.profitiert + Zustimmungsgesetz + local_regional_actor + 
##     EU.origin + v_2 + Business.organization + salience_igs + 
##     salience + Bundesratsinitiative + v_3:v_4, family = binomial(), 
##     data = data)
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -3.7548216  0.8709862  -4.311 1.63e-05 ***
## v_3                    0.1121891  0.1458263   0.769 0.441695    
## v_4                   -0.0041715  0.2249161  -0.019 0.985202    
## v_6                    0.0417084  0.0779666   0.535 0.592683    
## Eigenes.BL.profitiert  2.1339750  0.5783295   3.690 0.000224 ***
## Zustimmungsgesetz      0.1198258  0.6135788   0.195 0.845166    
## local_regional_actor  -1.1419497  1.1125115  -1.026 0.304674    
## EU.origin             -0.5234739  0.6572705  -0.796 0.425779    
## v_2                   -0.0759020  0.0878362  -0.864 0.387516    
## Business.organization  0.0271866  0.5377913   0.051 0.959682    
## salience_igs          -0.0138844  0.1010254  -0.137 0.890687    
## salience               0.0009697  0.0013637   0.711 0.477061    
## Bundesratsinitiative   2.4629147  0.5891425   4.181 2.91e-05 ***
## v_3:v_4               -0.0055141  0.0329348  -0.167 0.867036    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 193.62  on 340  degrees of freedom
## Residual deviance: 147.55  on 327  degrees of freedom
## AIC: 175.55
## 
## Number of Fisher Scoring iterations: 6
PseudoR2(m6, which = "all")
##        McFadden     McFaddenAdj        CoxSnell      Nagelkerke   AldrichNelson 
##      0.23792789      0.09331264      0.12636590      0.29168673      0.11901541 
## VeallZimmermann           Efron McKelveyZavoina            Tjur             AIC 
##      0.32862622      0.17218762      0.34937494      0.18054544    175.55026818 
##             BIC          logLik         logLik0              G2 
##    229.19662286    -73.77513409    -96.80859983     46.06693148
nulmodell <- glmer(subnational_brussels_route ~ 1 + (1 | ID.Gesetz), data = data, family = binomial())

tab_model(nulmodell, p.style = "stars", transform = NULL)
  subnational_brussels_route
Predictors Log-Odds CI
(Intercept) -3.74 *** -4.94 – -2.53
Random Effects
σ2 3.29
τ00 ID.Gesetz 2.11
ICC 0.39
N ID.Gesetz 23
Observations 341
Marginal R2 / Conditional R2 0.000 / 0.391
  • p<0.05   ** p<0.01   *** p<0.001
#m_interaction <- glm(subnational_brussels_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + Business.organization:Eigenes.BL.profitiert + v_3:v_4, data = data, family = binomial())

with routes as control variables

m6.1 <- glm(subnational_brussels_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Zustimmungsgesetz + local_regional_actor + EU.origin + v_2 + Business.organization + salience_igs +  salience + Bundesratsinitiative + v_3:v_4 + national_route + second_chamber_route + brussels_route, data = data, family = binomial())

m6.1.r <- glm(subnational_brussels_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + local_regional_actor + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + budget + lobbyists + v_3:v_4 + national_route + second_chamber_route + brussels_route, data = data, family = binomial())

summary(m6.1.r)
## 
## Call:
## glm(formula = subnational_brussels_route ~ 1 + v_3 + v_4 + v_6 + 
##     Eigenes.BL.profitiert + Business.organization + local_regional_actor + 
##     salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + 
##     budget + lobbyists + v_3:v_4 + national_route + second_chamber_route + 
##     brussels_route, family = binomial(), data = data)
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)   
## (Intercept)           -3.360e+00  2.323e+00  -1.447  0.14799   
## v_3                    5.299e-01  4.839e-01   1.095  0.27348   
## v_4                    5.428e-01  5.682e-01   0.955  0.33942   
## v_6                   -1.327e-01  2.259e-01  -0.588  0.55673   
## Eigenes.BL.profitiert  4.895e+00  2.201e+00   2.224  0.02613 * 
## Business.organization -2.582e+00  1.870e+00  -1.381  0.16724   
## local_regional_actor  -2.046e+01  2.306e+03  -0.009  0.99292   
## salience_igs           5.267e-01  3.765e-01   1.399  0.16181   
## Zustimmungsgesetz      1.995e+00  1.898e+00   1.051  0.29316   
## salience               3.711e-03  2.879e-03   1.289  0.19750   
## v_2                   -6.944e-01  3.194e-01  -2.174  0.02969 * 
## EU.origin             -9.004e-01  1.382e+00  -0.652  0.51466   
## budget                 2.323e-03  6.295e-03   0.369  0.71216   
## lobbyists             -7.775e-02  9.825e-02  -0.791  0.42876   
## national_route        -2.226e+00  1.813e+00  -1.228  0.21948   
## second_chamber_route   1.188e+00  1.777e+00   0.669  0.50366   
## brussels_route         6.073e+00  2.332e+00   2.604  0.00921 **
## v_3:v_4               -1.434e-01  1.173e-01  -1.222  0.22161   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 76.895  on 176  degrees of freedom
## Residual deviance: 32.736  on 159  degrees of freedom
##   (164 observations deleted due to missingness)
## AIC: 68.736
## 
## Number of Fisher Scoring iterations: 17
m6.1.r.robust <- logistf(subnational_brussels_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Zustimmungsgesetz + local_regional_actor  + EU.origin + v_2 + Business.organization + salience_igs +  salience +  lobbyists + budget + Bundesratsinitiative + v_3:v_4 + national_route + second_chamber_route + brussels_route, data = data, plcontrol = logistf.control(maxit = 1000, maxstep = -1))
## Warning in logistf(subnational_brussels_route ~ 1 + v_3 + v_4 + v_6 +
## Eigenes.BL.profitiert + : logistf.fit: Maximum number of iterations for full
## model exceeded. Try to increase the number of iterations or alter step size by
## passing 'logistf.control(maxit=..., maxstep=...)' to parameter control
m6.1.z <- glm(subnational_brussels_route ~ 1 +  v_3_z + v_4_z + v_6_z + Eigenes.BL.profitiert_z + Business.organization_z + salience_igs_z + Zustimmungsgesetz_z + salience_z + v_2_z + EU.origin_z + Business.organization_z:Eigenes.BL.profitiert_z + v_3_z:v_4_z + national_route_z + subnational_brussels_route_z + brussels_route_z, data = data, family = binomial())
## Warning: glm.fit: algorithm did not converge
summary(m6.1)
## 
## Call:
## glm(formula = subnational_brussels_route ~ 1 + v_3 + v_4 + v_6 + 
##     Eigenes.BL.profitiert + Zustimmungsgesetz + local_regional_actor + 
##     EU.origin + v_2 + Business.organization + salience_igs + 
##     salience + Bundesratsinitiative + v_3:v_4 + national_route + 
##     second_chamber_route + brussels_route, family = binomial(), 
##     data = data)
## 
## Coefficients:
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -5.057904   1.100366  -4.597 4.30e-06 ***
## v_3                    0.270760   0.176517   1.534 0.125052    
## v_4                    0.044745   0.285332   0.157 0.875389    
## v_6                   -0.024257   0.098495  -0.246 0.805465    
## Eigenes.BL.profitiert  1.670758   0.671683   2.487 0.012867 *  
## Zustimmungsgesetz      0.822201   0.771110   1.066 0.286308    
## local_regional_actor  -2.586485   1.349034  -1.917 0.055202 .  
## EU.origin             -1.140810   0.820804  -1.390 0.164569    
## v_2                   -0.130076   0.108798  -1.196 0.231865    
## Business.organization -0.303114   0.632814  -0.479 0.631943    
## salience_igs           0.031192   0.127151   0.245 0.806215    
## salience               0.001922   0.001530   1.256 0.209044    
## Bundesratsinitiative   3.281807   0.758709   4.326 1.52e-05 ***
## national_route        -2.145991   0.775771  -2.766 0.005670 ** 
## second_chamber_route   2.834204   0.793061   3.574 0.000352 ***
## brussels_route         3.422191   0.891261   3.840 0.000123 ***
## v_3:v_4               -0.025731   0.042713  -0.602 0.546899    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 193.62  on 340  degrees of freedom
## Residual deviance: 108.65  on 324  degrees of freedom
## AIC: 142.65
## 
## Number of Fisher Scoring iterations: 7
PseudoR2(m6.1, which = "all")
##        McFadden     McFaddenAdj        CoxSnell      Nagelkerke   AldrichNelson 
##       0.4388554       0.2632512       0.2205594       0.5091108       0.1994741 
## VeallZimmermann           Efron McKelveyZavoina            Tjur             AIC 
##       0.5507892       0.3713236       0.6587894       0.3717573     142.6472381 
##             BIC          logLik         logLik0              G2 
##     207.7892402     -54.3236190     -96.8085998      84.9699616
m6.2 <- glm(subnational_brussels_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + national_route + second_chamber_route + Business.organization:Eigenes.BL.profitiert, data = data, family = binomial())
tab_model(m6, m6.1, m6.2, p.style = "stars", transform = NULL)
  subnational_brussels_route subnational_brussels_route subnational_brussels_route
Predictors Log-Odds CI Log-Odds CI Log-Odds CI
(Intercept) -3.75 *** -5.63 – -2.19 -5.06 *** -7.45 – -3.10 -2.93 *** -4.63 – -1.48
v 3 0.11 -0.18 – 0.39 0.27 -0.08 – 0.62 0.10 -0.10 – 0.29
v 4 -0.00 -0.46 – 0.42 0.04 -0.54 – 0.59 0.00 -0.24 – 0.25
v 6 0.04 -0.11 – 0.20 -0.02 -0.22 – 0.17 -0.01 -0.16 – 0.14
Eigenes BL profitiert 2.13 *** 1.01 – 3.30 1.67 * 0.36 – 3.03 0.35 -0.99 – 1.57
Zustimmungsgesetz 0.12 -1.07 – 1.37 0.82 -0.64 – 2.43 1.13 0.02 – 2.40
local regional actor -1.14 -4.12 – 0.67 -2.59 -5.94 – -0.35
EU origin -0.52 -1.96 – 0.69 -1.14 -2.92 – 0.37 -0.70 -1.94 – 0.35
v 2 -0.08 -0.25 – 0.10 -0.13 -0.35 – 0.08 -0.10 -0.25 – 0.05
Business organization 0.03 -1.07 – 1.07 -0.30 -1.61 – 0.91 -0.94 -2.46 – 0.28
salience igs -0.01 -0.22 – 0.18 0.03 -0.22 – 0.28 -0.02 -0.22 – 0.17
salience 0.00 -0.00 – 0.00 0.00 -0.00 – 0.00 -0.00 -0.00 – 0.00
Bundesratsinitiative 2.46 *** 1.37 – 3.70 3.28 *** 1.91 – 4.93
v 3 × v 4 -0.01 -0.07 – 0.06 -0.03 -0.11 – 0.06
national route -2.15 ** -3.81 – -0.72 -0.92 -1.97 – 0.10
second chamber route 2.83 *** 1.41 – 4.56 1.91 *** 0.86 – 3.08
brussels route 3.42 *** 1.76 – 5.32
Eigenes BL profitiert ×
Business organization
2.21 0.04 – 4.54
Observations 341 341 341
R2 Tjur 0.181 0.372 0.141
  • p<0.05   ** p<0.01   *** p<0.001
#m_interaction <- glm(subnational_brussels_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + Business.organization:Eigenes.BL.profitiert + v_3:v_4 + national_route + second_chamber_route + brussels_route, data = data, family = binomial())

table with Level I+II+interaction term

tab_model(m4, m5, m6, p.style = "stars", transform = NULL)
  brussels_route second_chamber_route subnational_brussels_route
Predictors Log-Odds CI Log-Odds CI Log-Odds CI
(Intercept) -3.75 *** -5.44 – -2.35 -2.51 *** -3.53 – -1.58 -3.75 *** -5.63 – -2.19
v 3 0.03 -0.15 – 0.21 0.03 -0.13 – 0.19 0.11 -0.18 – 0.39
v 4 0.04 -0.17 – 0.23 -0.07 -0.30 – 0.15 -0.00 -0.46 – 0.42
v 6 0.06 -0.09 – 0.20 0.10 * 0.02 – 0.18 0.04 -0.11 – 0.20
Eigenes BL profitiert 1.23 * 0.13 – 2.28 1.98 *** 1.17 – 2.90 2.13 *** 1.01 – 3.30
Business organization 0.32 -0.57 – 1.20 0.32 -0.24 – 0.87 0.03 -1.07 – 1.07
salience igs -0.13 -0.32 – 0.06 -0.05 -0.16 – 0.05 -0.01 -0.22 – 0.18
Zustimmungsgesetz -1.13 * -2.24 – -0.09 0.65 * 0.03 – 1.30 0.12 -1.07 – 1.37
salience -0.00 -0.00 – 0.00 0.00 -0.00 – 0.00 0.00 -0.00 – 0.00
v 2 0.07 -0.08 – 0.24 0.12 * 0.03 – 0.22 -0.08 -0.25 – 0.10
EU origin 1.84 *** 0.88 – 2.89 -0.26 -0.85 – 0.33 -0.52 -1.96 – 0.69
local regional actor 0.99 * 0.19 – 1.81 -1.14 -4.12 – 0.67
Bundesratsinitiative -0.21 -0.91 – 0.47 2.46 *** 1.37 – 3.70
v 3 × v 4 0.01 -0.03 – 0.04 -0.01 -0.07 – 0.06
Observations 341 341 341
R2 Tjur 0.123 0.196 0.181
  • p<0.05   ** p<0.01   *** p<0.001

5.3.4 Tables

tab_model(m1, m2, m3, m4, m5, m6, transform = NULL, 
          show.aic = T,
          show.dev = T,
          show.fstat = T,
          p.style = "stars",
          title = "Routes",
          dv.labels = c("Brussels route", "Subnational Berlin route ", "subnational Brussels route", "Brussels route", "Subnational Berlin route ", "subnational Brussels route"),
          pred.labels = c("Intercept", "Access to national-level policymakers", "National-level policymaker oposses position of group", "Mobilization bias", "Land benefits from collaboration", "Business organization", "Perceived salience", "Subnational jurisdiction", "Media salience", "Position of group", "EU origin", "Interaction Land benefits x Business organization", "Second Chamber initiative","Interaction national policy makers opposes position of group x group has no access to national level policy-maker", "National route", "Subnational Brussels route", "Subnational Berlin route ", "Brussels route"),
          file = "Regression_komplett.html")
## Length of `pred.labels` does not equal number of predictors, no labelling applied.
Routes
  Brussels route Subnational Berlin route subnational Brussels route Brussels route Subnational Berlin route subnational Brussels route
Predictors Log-Odds CI Log-Odds CI Log-Odds CI Log-Odds CI Log-Odds CI Log-Odds CI
(Intercept) -4.40 *** -6.03 – -3.09 -2.01 *** -2.81 – -1.30 -2.12 *** -3.24 – -1.19 -3.75 *** -5.44 – -2.35 -2.51 *** -3.53 – -1.58 -3.75 *** -5.63 – -2.19
v_3 0.02 -0.16 – 0.19 0.05 -0.05 – 0.16 0.08 -0.09 – 0.25 0.03 -0.15 – 0.21 0.03 -0.13 – 0.19 0.11 -0.18 – 0.39
v_4 0.05 -0.15 – 0.24 -0.01 -0.13 – 0.12 0.02 -0.20 – 0.23 0.04 -0.17 – 0.23 -0.07 -0.30 – 0.15 -0.00 -0.46 – 0.42
v_6 0.09 -0.05 – 0.23 0.09 * 0.02 – 0.18 0.00 -0.14 – 0.14 0.06 -0.09 – 0.20 0.10 * 0.02 – 0.18 0.04 -0.11 – 0.20
v_2 0.05 -0.09 – 0.22 0.12 * 0.03 – 0.21 -0.05 -0.19 – 0.09 0.07 -0.08 – 0.24 0.12 * 0.03 – 0.22 -0.08 -0.25 – 0.10
salience_igs -0.12 -0.31 – 0.06 -0.07 -0.17 – 0.03 -0.06 -0.23 – 0.10 -0.13 -0.32 – 0.06 -0.05 -0.16 – 0.05 -0.01 -0.22 – 0.18
Eigenes.BL.profitiert 1.26 * 0.19 – 2.28 2.04 *** 1.25 – 2.94 1.47 ** 0.51 – 2.40 1.23 * 0.13 – 2.28 1.98 *** 1.17 – 2.90 2.13 *** 1.01 – 3.30
Business.organization 0.52 -0.34 – 1.38 0.22 -0.30 – 0.75 -0.43 -1.42 – 0.45 0.32 -0.57 – 1.20 0.32 -0.24 – 0.87 0.03 -1.07 – 1.07
EU.origin 1.72 *** 0.82 – 2.74 -0.31 -0.84 – 0.22 -0.88 -2.02 – 0.08 1.84 *** 0.88 – 2.89 -0.26 -0.85 – 0.33 -0.52 -1.96 – 0.69
Zustimmungsgesetz -1.13 * -2.24 – -0.09 0.65 * 0.03 – 1.30 0.12 -1.07 – 1.37
salience -0.00 -0.00 – 0.00 0.00 -0.00 – 0.00 0.00 -0.00 – 0.00
local_regional_actor 0.99 * 0.19 – 1.81 -1.14 -4.12 – 0.67
Bundesratsinitiative -0.21 -0.91 – 0.47 2.46 *** 1.37 – 3.70
v_3:v_4 0.01 -0.03 – 0.04 -0.01 -0.07 – 0.06
Observations 341 341 341 341 341 341
R2 Tjur 0.099 0.169 0.060 0.123 0.196 0.181
Deviance 159.958 382.864 176.668 155.344 372.888 147.550
AIC 177.958 400.864 194.668 177.344 400.888 175.550
  • p<0.05   ** p<0.01   *** p<0.001

with routes as control variables

tab_model(m4, m5, m6, m4.1, m5.1, m6.1, transform = NULL,
          show.aic = T,
          show.dev = T,
          show.fstat = T,
          p.style = "stars",
          title = "Routes",
          dv.labels = c("Brussels route", "Subnational Berlin route", "subnational Brussels route", "Brussels route", "Subnational Berlin route", "subnational Brussels route"),
          pred.labels = c("Intercept", "Access to national-level policymakers", "National-level policymaker oposses position of group", "Mobilization bias", "Land benefits from collaboration", "Business organization", "Perceived salience", "Subnational jurisdiction", "Media salience", "Position of group", "EU origin", "Interaction Land benefits x Business organization", "Interaction national policy makers opposes position of group x group has no access to national level policy-maker", "National route", "Subnational Brussels route", "Subnational Berlin route ", "Brussels route"),
          file = "Regression_paper.html")
## Length of `pred.labels` does not equal number of predictors, no labelling applied.
Routes
  Brussels route Subnational Berlin route subnational Brussels route Brussels route Subnational Berlin route subnational Brussels route
Predictors Log-Odds CI Log-Odds CI Log-Odds CI Log-Odds CI Log-Odds CI Log-Odds CI
(Intercept) -3.75 *** -5.44 – -2.35 -2.51 *** -3.53 – -1.58 -3.75 *** -5.63 – -2.19 -5.32 *** -7.79 – -3.44 -4.10 *** -5.60 – -2.79 -5.06 *** -7.45 – -3.10
v_3 0.03 -0.15 – 0.21 0.03 -0.13 – 0.19 0.11 -0.18 – 0.39 -0.08 -0.29 – 0.13 -0.05 -0.24 – 0.13 0.27 -0.08 – 0.62
v_4 0.04 -0.17 – 0.23 -0.07 -0.30 – 0.15 -0.00 -0.46 – 0.42 0.08 -0.15 – 0.30 -0.12 -0.39 – 0.16 0.04 -0.54 – 0.59
v_6 0.06 -0.09 – 0.20 0.10 * 0.02 – 0.18 0.04 -0.11 – 0.20 -0.01 -0.18 – 0.15 0.10 * 0.00 – 0.19 -0.02 -0.22 – 0.17
Eigenes.BL.profitiert 1.23 * 0.13 – 2.28 1.98 *** 1.17 – 2.90 2.13 *** 1.01 – 3.30 0.07 -1.34 – 1.35 1.91 *** 0.96 – 2.97 1.67 * 0.36 – 3.03
Business.organization 0.32 -0.57 – 1.20 0.32 -0.24 – 0.87 0.03 -1.07 – 1.07 0.03 -1.02 – 1.06 0.28 -0.35 – 0.91 -0.30 -1.61 – 0.91
salience_igs -0.13 -0.32 – 0.06 -0.05 -0.16 – 0.05 -0.01 -0.22 – 0.18 -0.09 -0.32 – 0.11 -0.02 -0.14 – 0.10 0.03 -0.22 – 0.28
Zustimmungsgesetz -1.13 * -2.24 – -0.09 0.65 * 0.03 – 1.30 0.12 -1.07 – 1.37 -2.01 ** -3.43 – -0.75 0.72 -0.01 – 1.49 0.82 -0.64 – 2.43
salience -0.00 -0.00 – 0.00 0.00 -0.00 – 0.00 0.00 -0.00 – 0.00 -0.00 -0.00 – 0.00 0.00 -0.00 – 0.00 0.00 -0.00 – 0.00
v_2 0.07 -0.08 – 0.24 0.12 * 0.03 – 0.22 -0.08 -0.25 – 0.10 0.04 -0.14 – 0.25 0.09 -0.02 – 0.21 -0.13 -0.35 – 0.08
EU.origin 1.84 *** 0.88 – 2.89 -0.26 -0.85 – 0.33 -0.52 -1.96 – 0.69 2.44 *** 1.29 – 3.76 -0.60 -1.32 – 0.09 -1.14 -2.92 – 0.37
local_regional_actor 0.99 * 0.19 – 1.81 -1.14 -4.12 – 0.67 2.30 *** 1.28 – 3.42 -2.59 -5.94 – -0.35
Bundesratsinitiative -0.21 -0.91 – 0.47 2.46 *** 1.37 – 3.70 -0.72 -1.60 – 0.10 3.28 *** 1.91 – 4.93
v_3:v_4 0.01 -0.03 – 0.04 -0.01 -0.07 – 0.06 0.02 -0.03 – 0.06 -0.03 -0.11 – 0.06
national_route 1.89 * 0.39 – 3.88 2.37 *** 1.53 – 3.35 -2.15 ** -3.81 – -0.72
subnational_brussels_route 1.94 * 0.40 – 3.54 2.75 *** 1.43 – 4.22
second_chamber_route 1.81 ** 0.65 – 3.09 2.83 *** 1.41 – 4.56
brussels_route 1.95 ** 0.81 – 3.20 3.42 *** 1.76 – 5.32
Observations 341 341 341 341 341 341
R2 Tjur 0.123 0.196 0.181 0.332 0.360 0.372
Deviance 155.344 372.888 147.550 120.032 301.768 108.647
AIC 177.344 400.888 175.550 148.032 335.768 142.647
  • p<0.05   ** p<0.01   *** p<0.001

Table for Paper

tab_model(m5, m6, m5.1, m6.1, transform = NULL,
          show.aic = T,
          show.dev = T,
          show.fstat = T,
          p.style = "stars",
          title = "Routes",
          dv.labels = c("Subnational Berlin route ", "subnational Brussels route", "Subnational Berlin route", "subnational Brussels route"),
          pred.labels = c("Intercept", "Access to national-level policymakers",
          "National-level policymaker oposses position of group", "Mobilization bias", "subnational policymaker supports the position of the group", "Subnational jurisdiction", "Subnational organization", "EU origin", "Position of interest group", "Business organization", "Perceived salience", "Media salience", "Second Chamber Initiative","Interaction national policy makers opposes position of group x group has no access to national level policy-maker", "National route", "Subnational Brussels route", "Subnational Berlin route ", "Brussels route"),
        file = "Regression_paper.html")
Routes
  Subnational Berlin route subnational Brussels route Subnational Berlin route subnational Brussels route
Predictors Log-Odds CI Log-Odds CI Log-Odds CI Log-Odds CI
Intercept -2.51 *** -3.53 – -1.58 -3.75 *** -5.63 – -2.19 -4.10 *** -5.60 – -2.79 -5.06 *** -7.45 – -3.10
Access to national-level policymakers 0.03 -0.13 – 0.19 0.11 -0.18 – 0.39 -0.05 -0.24 – 0.13 0.27 -0.08 – 0.62
National-level policymaker oposses position of group -0.07 -0.30 – 0.15 -0.00 -0.46 – 0.42 -0.12 -0.39 – 0.16 0.04 -0.54 – 0.59
Mobilization bias 0.10 * 0.02 – 0.18 0.04 -0.11 – 0.20 0.10 * 0.00 – 0.19 -0.02 -0.22 – 0.17
subnational policymaker supports the position of the group 1.98 *** 1.17 – 2.90 2.13 *** 1.01 – 3.30 1.91 *** 0.96 – 2.97 1.67 * 0.36 – 3.03
Subnational jurisdiction 0.65 * 0.03 – 1.30 0.12 -1.07 – 1.37 0.72 -0.01 – 1.49 0.82 -0.64 – 2.43
Subnational organization 0.99 * 0.19 – 1.81 -1.14 -4.12 – 0.67 2.30 *** 1.28 – 3.42 -2.59 -5.94 – -0.35
EU origin -0.26 -0.85 – 0.33 -0.52 -1.96 – 0.69 -0.60 -1.32 – 0.09 -1.14 -2.92 – 0.37
Position of interest group 0.12 * 0.03 – 0.22 -0.08 -0.25 – 0.10 0.09 -0.02 – 0.21 -0.13 -0.35 – 0.08
Business organization 0.32 -0.24 – 0.87 0.03 -1.07 – 1.07 0.28 -0.35 – 0.91 -0.30 -1.61 – 0.91
Perceived salience -0.05 -0.16 – 0.05 -0.01 -0.22 – 0.18 -0.02 -0.14 – 0.10 0.03 -0.22 – 0.28
Media salience 0.00 -0.00 – 0.00 0.00 -0.00 – 0.00 0.00 -0.00 – 0.00 0.00 -0.00 – 0.00
Second Chamber Initiative -0.21 -0.91 – 0.47 2.46 *** 1.37 – 3.70 -0.72 -1.60 – 0.10 3.28 *** 1.91 – 4.93
Interaction national policy makers opposes position of group x group has no access to national level policy-maker 0.01 -0.03 – 0.04 -0.01 -0.07 – 0.06 0.02 -0.03 – 0.06 -0.03 -0.11 – 0.06
National route 2.37 *** 1.53 – 3.35 -2.15 ** -3.81 – -0.72
Subnational Brussels route 2.75 *** 1.43 – 4.22
Subnational Berlin route 1.95 ** 0.81 – 3.20 3.42 *** 1.76 – 5.32
Brussels route 2.83 *** 1.41 – 4.56
Observations 341 341 341 341
R2 Tjur 0.196 0.181 0.360 0.372
Deviance 372.888 147.550 301.768 108.647
AIC 400.888 175.550 335.768 142.647
  • p<0.05   ** p<0.01   *** p<0.001
#with ressources 
tab_model(m5, m5.r.robust, m6, m6.r.robust, m5.1, m5.1.r.robust, m6.1, m6.1.r.robust, transform = NULL,
          show.aic = T,
          show.dev = T,
          show.fstat = T,
          p.style = "stars",
          title = "Routes",
          dv.labels = c("Subnational Berlin route", "Subnational Berlin route + Ressources", "subnational Brussels route", "subnational Brussels route + Ressources", "Subnational Berlin route", "Subnational Berlin route + Ressources", "subnational Brussels route", "subnational Brussels route + Ressources"),
          pred.labels = c("Intercept", "Access to national-level policymakers",
          "National-level policymaker oposses position of group", "Mobilization bias", "subnational policymaker supports the position of the group", "Subnational jurisdiction", "Subnational organization", "EU origin", "Position of interest group", "Business organization", "Perceived salience", "Media salience","Number of Lobbyists within the organization", "Lobbybudget of organization (10K € steps)", "Second Chamber Initiative","Interaction national policy makers opposes position of group x group has no access to national level policy-maker", "National route", "Subnational Brussels route", "Subnational Berlin route ", "Brussels route"),
         file = "Regression_paper_Ressources.html")
Routes
  Subnational Berlin route Subnational Berlin route + Ressources subnational Brussels route subnational Brussels route + Ressources Subnational Berlin route Subnational Berlin route + Ressources subnational Brussels route subnational Brussels route + Ressources
Predictors Log-Odds CI Log-Odds CI Log-Odds CI Log-Odds CI Log-Odds CI Log-Odds CI Log-Odds CI Log-Odds CI
Intercept -2.51 *** -3.53 – -1.58 -2.00 ** -3.36 – -0.64 -3.75 *** -5.63 – -2.19 -2.57 * -4.61 – -0.54 -4.10 *** -5.60 – -2.79 -2.91 *** -4.58 – -1.23 -5.06 *** -7.45 – -3.10 -2.85 * -5.01 – -0.69
Access to national-level policymakers 0.03 -0.13 – 0.19 0.02 -0.19 – 0.24 0.11 -0.18 – 0.39 0.20 -0.20 – 0.59 -0.05 -0.24 – 0.13 -0.02 -0.25 – 0.21 0.27 -0.08 – 0.62 0.37 -0.13 – 0.87
National-level policymaker oposses position of group -0.07 -0.30 – 0.15 -0.02 -0.30 – 0.26 -0.00 -0.46 – 0.42 -0.02 -0.59 – 0.54 -0.12 -0.39 – 0.16 0.05 -0.28 – 0.39 0.04 -0.54 – 0.59 0.18 -0.32 – 0.69
Mobilization bias 0.10 * 0.02 – 0.18 0.07 -0.04 – 0.18 0.04 -0.11 – 0.20 0.03 -0.16 – 0.22 0.10 * 0.00 – 0.19 0.06 -0.06 – 0.18 -0.02 -0.22 – 0.17 -0.08 -0.30 – 0.14
subnational policymaker supports the position of the group 1.98 *** 1.17 – 2.90 4.11 *** 1.38 – 6.85 2.13 *** 1.01 – 3.30 3.70 *** 1.88 – 5.52 1.91 *** 0.96 – 2.97 3.74 *** 0.84 – 6.64 1.67 * 0.36 – 3.03 2.52 * 0.56 – 4.48
Subnational jurisdiction 0.65 * 0.03 – 1.30 0.54 -0.32 – 1.41 0.12 -1.07 – 1.37 -0.26 -1.76 – 1.23 0.72 -0.01 – 1.49 0.41 -0.54 – 1.36 0.82 -0.64 – 2.43 -0.45 -2.16 – 1.27
Subnational organization 0.99 * 0.19 – 1.81 3.41 ** 0.35 – 6.47 -1.14 -4.12 – 0.67 -1.71 -5.12 – 1.71 2.30 *** 1.28 – 3.42 4.85 ** 1.37 – 8.33 -2.59 -5.94 – -0.35 -1.75 -4.94 – 1.44
EU origin -0.26 -0.85 – 0.33 -0.38 -1.18 – 0.41 -0.52 -1.96 – 0.69 0.01 -1.38 – 1.41 -0.60 -1.32 – 0.09 -0.91 * -1.80 – -0.02 -1.14 -2.92 – 0.37 -0.27 -1.98 – 1.43
Position of interest group 0.12 * 0.03 – 0.22 0.05 -0.08 – 0.18 -0.08 -0.25 – 0.10 -0.31 * -0.54 – -0.08 0.09 -0.02 – 0.21 -0.01 -0.16 – 0.14 -0.13 -0.35 – 0.08 -0.34 -0.62 – -0.06
Business organization 0.32 -0.24 – 0.87 0.46 -0.33 – 1.25 0.03 -1.07 – 1.07 -0.64 -2.02 – 0.75 0.28 -0.35 – 0.91 0.40 -0.43 – 1.23 -0.30 -1.61 – 0.91 -1.54 -3.20 – 0.12
Perceived salience -0.05 -0.16 – 0.05 0.02 -0.11 – 0.16 -0.01 -0.22 – 0.18 0.17 -0.07 – 0.41 -0.02 -0.14 – 0.10 0.00 -0.15 – 0.15 0.03 -0.22 – 0.28 0.18 -0.10 – 0.47
Media salience 0.00 -0.00 – 0.00 0.00 -0.00 – 0.00 0.00 -0.00 – 0.00 0.00 -0.00 – 0.00 0.00 -0.00 – 0.00 0.00 -0.00 – 0.00 0.00 -0.00 – 0.00 0.00 -0.00 – 0.00
Number of Lobbyists within the organization -0.21 -0.91 – 0.47 -0.81 -1.75 – 0.14 2.46 *** 1.37 – 3.70 1.52 0.00 – 3.04 -0.72 -1.60 – 0.10 -1.19 * -2.20 – -0.17 3.28 *** 1.91 – 4.93 2.28 * 0.44 – 4.13
Lobbybudget of organization (10K € steps) 0.01 -0.03 – 0.04 0.00 -0.04 – 0.05 -0.01 -0.07 – 0.06 -0.01 -0.09 – 0.07 0.02 -0.03 – 0.06 -0.00 -0.05 – 0.05 -0.03 -0.11 – 0.06 -0.05 -0.14 – 0.04
Second Chamber Initiative -0.01 -0.03 – 0.01 -0.02 -0.07 – 0.02 -0.01 -0.03 – 0.02 -0.01 -0.04 – 0.03
Interaction national policy makers opposes position of group x group has no access to national level policy-maker 0.00 -0.00 – 0.00 0.00 -0.00 – 0.01 0.00 -0.00 – 0.00 0.00 -0.00 – 0.01
National route 2.37 *** 1.53 – 3.35 2.10 *** 0.77 – 3.42 -2.15 ** -3.81 – -0.72 -1.54 -3.38 – 0.30
Subnational Brussels route 2.75 *** 1.43 – 4.22 1.89 -0.31 – 4.08
Subnational Berlin route 1.95 ** 0.81 – 3.20 1.57 * 0.12 – 3.02 3.42 *** 1.76 – 5.32 3.35 *** 1.47 – 5.23
Brussels route 2.83 *** 1.41 – 4.56 1.44 -0.33 – 3.21
Observations 341 177 341 177 341 177 341 177
R2 Tjur 0.196 0.261 0.181 0.207 0.360 0.378 0.372 0.524
Deviance 372.888   147.550   301.768   108.647  
AIC 400.888   175.550   335.768   142.647  
  • p<0.05   ** p<0.01   *** p<0.001
#Marginal effects of the IV's
#Moblization Bias 
g_1 <- plot_model(m5, type = "pred", terms = "v_6",
           title = "Marginal effect of mobilization bias on choosing Subnational Berlin route",
           axis.title = c("Mobilization Bias", "Subnational Berlin Route"))

ggsave("./Marginal_Effect_1.png", plot = g_1, units = "cm", width = 40, height = 20)


g_2 <- plot_model(m6, type = "pred", terms = "v_6",
           title = "Marginal effect of moblization bias on choosing Subnational Brussels route",
           axis.title = c("Mobilization Bias", "Subnational Brussels Route"))

ggsave("./Marginal_Effect_2.png", plot = g_2, units = "cm", width = 40, height = 20)


g_3 <- plot_model(m5.1, type = "pred", terms = "v_6",
           title = "Marginal effect of mobilization bias on choosing Subnational Berlin route + routes as control",
           axis.title = c("Mobilization Bias", "Subnational Berlin Route"))

ggsave("./Marginal_Effect_3.png", plot = g_3, units = "cm", width = 40, height = 20)


g_4 <- plot_model(m6.1, type = "pred", terms = "v_6",
           title = "Marginal effect of moblization bias on choosing Subnational Brussels route + routes as control",
           axis.title = c("Mobilization Bias", "Subnational Brussels Route"))

ggsave("./Marginal_Effect_4.png", plot = g_4, units = "cm", width = 40, height = 20)


#subnational policymaker supports the position of the group
g_5 <- plot_model(m5, type = "pred", terms = "Eigenes.BL.profitiert",
           title = "Marginal effect of subnational policymaker supports the position of the group on choosing Subnational Berlin route",
           axis.title = c("subnational policymaker supports the position of the group", "Subnational Berlin Route"))

ggsave("./Marginal_Effect_5.png", plot = g_5, units = "cm", width = 40, height = 20)


g_6 <- plot_model(m6, type = "pred", terms = "Eigenes.BL.profitiert",
           title = "Marginal effect of subnational policymaker supports the position of the group on choosing Subnational Brussels route",
           axis.title = c("subnational policymaker supports the position of the group", "Subnational Brussels Route"))

ggsave("./Marginal_Effects_6.png", plot = g_6, units = "cm", width = 40, height = 20)


g_7 <- plot_model(m5.1, type = "pred", terms = "Eigenes.BL.profitiert",
           title = "Marginal effect of subnational policymaker supports the position of the group on choosing Subnational Berlin route + routes as control",
           axis.title = c("subnational policymaker supports the position of the group", "Subnational Berlin Route"))

ggsave("./Marginal_Effects_7.png", plot = g_7, units = "cm", width = 40, height = 20)


g_8 <- plot_model(m6.1, type = "pred", terms = "Eigenes.BL.profitiert",
           title = "Marginal effect of subnational policymaker supports the position of the group on choosing Subnational Brussels route + routes as control",
           axis.title = c("subnational policymaker supports the position of the group", "Subnational Brussels Route"))

ggsave("./Marginal_Effects_8.png", plot = g_8, units = "cm", width = 40, height = 20)


#Subnational organization
g_9 <- plot_model(m5, type = "pred", terms = "local_regional_actor",
           title = "Marginal effect of Subnational organization choosing Subnational Berlin route",
           axis.title = c("local_regional_actor", "Subnational Berlin Route"))

ggsave("./Marginal_Effects_9.png", plot = g_9, units = "cm", width = 40, height = 20)


g_10 <- plot_model(m6, type = "pred", terms = "local_regional_actor",
           title = "Marginal effect of Subnational organization choosing Subnational Brussels route",
           axis.title = c("local_regional_actor", "Subnational Brussels Route"))

ggsave("./Marginal_Effects_10.png", plot = g_10, units = "cm", width = 40, height = 20)


g_11 <- plot_model(m5.1, type = "pred", terms = "local_regional_actor",
           title = "Marginal effect of Subnational organization choosing Subnational Berlin route + routes as control",
           axis.title = c("local_regional_actor", "Subnational Berlin Route"))

ggsave("./Marginal_Effects_11.png", plot = g_11, units = "cm", width = 40, height = 20)


g_12 <- plot_model(m6.1, type = "pred", terms = "local_regional_actor",
           title = "Marginal effect of Subnational organization choosing Subnational Brussels route + routes as control",
           axis.title = c("local_regional_actor", "Subnational Brussels Route"))

ggsave("./Marginal_Effects_12.png", plot = g_12, units = "cm", width = 40, height = 20)

6. Plots for Paper

6.1 Model 1

g1 <- plot_model(m5, transform = NULL,
           show.p = TRUE,
           show.values = TRUE,
           value.offset = 0.35,
           dot.size = 2,
           show.intercept = TRUE,
           colors = c("darkred", "darkgreen" ),
           vline.color = "black",
           title = "Subnational Berlin route",           axis.title = "Log-Odds 
N = 341",
           axis.labels = c("Interaction national policy makers opposes position of group x group has no access to natonal level policy-maker", "Second Chamber Initiative", "Media salience", "Perceived salience", "Business organization", "Position of interest group", "EU origin", "Subnational organization", "Subnational jurisdiction", "Subnational policymaker supports the position of the group", "Mobilization bias", "National-level policymaker oposses position of group", "Access to national-level policymaker", "Intercept"))
g1

6.2 Model 2

g2 <- plot_model(m5.1, transform = NULL,
           show.p = TRUE,
           show.values = TRUE,
           value.offset = 0.35,
           dot.size = 2,
           show.intercept = TRUE,
           colors = c("darkred", "darkgreen" ),
           vline.color = "black",
           title = "Subnational Berlin route",           axis.title = "Log-Odds 
N = 341",
           axis.labels = c("Interaction national government opposition x no access to national government", "Subnational Brussels route", "Brussels route","National route", "Second chamber initiative", "Media salience", "Perceived salience", "Business organization", "Position of interest group", "EU origin", "Subnational organization", "Subnational jurisdiction", "Subnational government support", "Mobilization bias", "National government opposition", "No access to national government", "Intercept"))
g2

6.3 Model 3

g3 <- plot_model(m6, transform = NULL,
           show.p = TRUE,
           show.values = TRUE,
           value.offset = 0.35,
           dot.size = 2,
           show.intercept = TRUE,
           colors = c("darkred", "darkgreen" ),
           vline.color = "black",
           title = "Subnational Brussels route",           axis.title = "Log-Odds 
N = 341",
           axis.labels = c("Interaction national policy makers opposes position of group x group has no access to natonal level policy-maker", "Second Chamber Initiative", "Media salience", "Perceived salience", "Business organization", "Position of interest group", "EU origin", "Subnational organization", "Subnational jurisdiction", "Subnational policymaker supports the position of the group", "Mobilization bias", "National-level policymaker oposses position of group", "Access to national-level policymaker", "Intercept"))
g3

6.4 Model 4

g4 <- plot_model(m6.1, transform = NULL,
           show.p = TRUE,
           show.values = TRUE,
           value.offset = 0.35,
           dot.size = 2,
           show.intercept = TRUE,
           colors = c("darkred", "darkgreen" ),
           vline.color = "black",
           title = "Subnational Brussels route",  axis.title =     "Log-Odds 
N = 341",
           axis.labels = c("Interaction national government opposition x no access to national government", "Subnational Berlin route", "Brussels route","National route", "Second chamber initiative", "Media salience", "Perceived salience", "Business organization", "Position of interest group", "EU origin", "Subnational organization", "Subnational jurisdiction", "Subnational government support", "Mobilization bias", "National government opposition", "No access to national government", "Intercept"))
g4

6.5 Model 5 Ressources

g5 <- plot_model(m5.r.robust, transform = NULL,
           show.p = TRUE,
           show.values = TRUE,
           value.offset = 0.35,
           dot.size = 2,
           show.intercept = TRUE,
           colors = c("darkred", "darkgreen" ),
           vline.color = "black",
           title = "Subnational Berlin route + ressources",  axis.title ="Log-Odds
           
N = 341",
           axis.labels = c("Interaction national government opposition x no access to national government", "Second chamber initiative", "Lobbybudget of organization (steps in 10k €)", "Number of Lobbyists within the organization", "Media salience", "Perceived salience", "Business organization", "Position of interest group", "EU origin", "Subnational organization", "Subnational jurisdiction", "Subnational government support", "Mobilization bias", "National government opposition", "No access to national government", "Intercept"))
g5

6.6 Model 6 Ressources

g6 <- plot_model(m6.r.robust, transform = NULL,
           show.p = TRUE,
           show.values = TRUE,
           value.offset = 0.35,
           dot.size = 2,
           show.intercept = TRUE,
           colors = c("darkred", "darkgreen" ),
           vline.color = "black",
           title = "Subnational Brussels route + ressources",  axis.title ="Log-Odds 
N = 341",
           axis.labels = c("Interaction national government opposition x no access to national government", "Second chamber initiative", "Lobbybudget of organization (steps in 10k €)", "Number of Lobbyists within the organization", "Media salience", "Perceived salience", "Business organization", "Position of interest group", "EU origin", "Subnational organization", "Subnational jurisdiction", "Subnational government support", "Mobilization bias", "National government opposition", "No access to national government", "Intercept"))
g6

6.7 Model 7 Ressources + Routes as control

g7 <- plot_model(m5.1.r.robust, transform = NULL,
           show.p = TRUE,
           show.values = TRUE,
           value.offset = 0.35,
           dot.size = 2,
           show.intercept = TRUE,
           colors = c("darkred", "darkgreen" ),
           vline.color = "black",
           title = "Subnational Berlin route + ressources + routes as control",  axis.title ="Log-Odds 
N = 341",
           axis.labels = c("Interaction national government opposition x no access to national government", "Subnational Burssels route", "Brussels route", "National route","Second chamber initiative", "Lobbybudget of organization (steps in 10k €)", "Number of Lobbyists within the organization", "Media salience", "Perceived salience", "Business organization", "Position of interest group", "EU origin", "Subnational organization", "Subnational jurisdiction", "Subnational government support", "Mobilization bias", "National government opposition", "No access to national government", "Intercept"))
g7

6.8 Model 8 Ressources + Routes as control

g8 <- plot_model(m6.1.r.robust, transform = NULL,
           show.p = TRUE,
           show.values = TRUE,
           value.offset = 0.35,
           dot.size = 2,
           show.intercept = TRUE,
           colors = c("darkred", "darkgreen" ),
           vline.color = "black",
           title = "Subnational Brussels route + ressources + Routes as control",  axis.title ="Log-Odds 
N = 341",
           axis.labels = c("Interaction national government opposition x no access to national government", "Subnational Berlin route", "Brussels route", "National route","Second chamber initiative", "Lobbybudget of organization (steps in 10k €)", "Number of Lobbyists within the organization", "Media salience", "Perceived salience", "Business organization", "Position of interest group", "EU origin", "Subnational organization", "Subnational jurisdiction", "Subnational government support", "Mobilization bias", "National government opposition", "No access to national government", "Intercept"))
g8

7.Robustness test and testing of the BLUE criteria

  • Checks for VIF: should be below 5 best is below 3

  • Independent variance part should be above 30%

  • artifical multicolinearity due to interaction effect is corrected by a z-transformation if present

#model_dashboard(m5)
#model_dashboard(m5.1)
#model_dashboard(m6)
#model_dashboard(m6.1)

#Check for Multicolinearity 

#Mulcikolinearity
vif(m6)
## there are higher-order terms (interactions) in this model
## consider setting type = 'predictor'; see ?vif
##                   v_3                   v_4                   v_6 
##              4.414651              6.795525              1.473968 
## Eigenes.BL.profitiert     Zustimmungsgesetz  local_regional_actor 
##              1.291453              1.754406              1.100304 
##             EU.origin                   v_2 Business.organization 
##              1.472212              1.965001              1.236455 
##          salience_igs              salience  Bundesratsinitiative 
##              1.782259              1.963461              1.775153 
##               v_3:v_4 
##             10.832047
#individual variance part 
1/vif(m6)
## there are higher-order terms (interactions) in this model
## consider setting type = 'predictor'; see ?vif
##                   v_3                   v_4                   v_6 
##            0.22651847            0.14715566            0.67844076 
## Eigenes.BL.profitiert     Zustimmungsgesetz  local_regional_actor 
##            0.77432148            0.56999338            0.90883943 
##             EU.origin                   v_2 Business.organization 
##            0.67924985            0.50890549            0.80876361 
##          salience_igs              salience  Bundesratsinitiative 
##            0.56108556            0.50930482            0.56333158 
##               v_3:v_4 
##            0.09231866
#Multicolinearity
vif(m6.1)
## there are higher-order terms (interactions) in this model
## consider setting type = 'predictor'; see ?vif
##                   v_3                   v_4                   v_6 
##              4.887688              8.461826              1.741691 
## Eigenes.BL.profitiert     Zustimmungsgesetz  local_regional_actor 
##              1.389870              2.158587              1.268498 
##             EU.origin                   v_2 Business.organization 
##              1.937209              2.336690              1.286879 
##          salience_igs              salience  Bundesratsinitiative 
##              2.148333              2.051149              2.302192 
##        national_route  second_chamber_route        brussels_route 
##              2.255219              2.375200              2.356395 
##               v_3:v_4 
##             13.395344
#individual variance part 
1/vif(m6.1)
## there are higher-order terms (interactions) in this model
## consider setting type = 'predictor'; see ?vif
##                   v_3                   v_4                   v_6 
##             0.2045957             0.1181778             0.5741547 
## Eigenes.BL.profitiert     Zustimmungsgesetz  local_regional_actor 
##             0.7194920             0.4632659             0.7883337 
##             EU.origin                   v_2 Business.organization 
##             0.5162066             0.4279558             0.7770737 
##          salience_igs              salience  Bundesratsinitiative 
##             0.4654772             0.4875316             0.4343686 
##        national_route  second_chamber_route        brussels_route 
##             0.4434159             0.4210171             0.4243770 
##               v_3:v_4 
##             0.0746528
#Multicolinearity
vif(m5)
## there are higher-order terms (interactions) in this model
## consider setting type = 'predictor'; see ?vif
##                   v_3                   v_4                   v_6 
##              3.868510              5.271620              1.349736 
## Eigenes.BL.profitiert     Zustimmungsgesetz  local_regional_actor 
##              1.023706              1.628718              1.161758 
##             EU.origin                   v_2 Business.organization 
##              1.308123              1.492275              1.146235 
##          salience_igs              salience  Bundesratsinitiative 
##              1.540418              1.549636              1.273057 
##               v_3:v_4 
##              9.419772
#individual variance part
1/vif(m5)
## there are higher-order terms (interactions) in this model
## consider setting type = 'predictor'; see ?vif
##                   v_3                   v_4                   v_6 
##             0.2584975             0.1896950             0.7408856 
## Eigenes.BL.profitiert     Zustimmungsgesetz  local_regional_actor 
##             0.9768425             0.6139797             0.8607644 
##             EU.origin                   v_2 Business.organization 
##             0.7644540             0.6701177             0.8724211 
##          salience_igs              salience  Bundesratsinitiative 
##             0.6491746             0.6453128             0.7855107 
##               v_3:v_4 
##             0.1061597
#Multicolinearity
vif(m5.1)
## there are higher-order terms (interactions) in this model
## consider setting type = 'predictor'; see ?vif
##                        v_3                        v_4 
##                   4.060711                   6.250117 
##                        v_6      Eigenes.BL.profitiert 
##                   1.328722                   1.074957 
##          Zustimmungsgesetz       local_regional_actor 
##                   1.806324                   1.690145 
##                  EU.origin                        v_2 
##                   1.441432                   1.447393 
##      Business.organization               salience_igs 
##                   1.183521                   1.568334 
##                   salience       Bundesratsinitiative 
##                   1.665549                   1.449678 
##             national_route subnational_brussels_route 
##                   1.873401                   1.526742 
##             brussels_route                    v_3:v_4 
##                   1.159685                  11.098047
#independent variance part 
1/vif(m5.1)
## there are higher-order terms (interactions) in this model
## consider setting type = 'predictor'; see ?vif
##                        v_3                        v_4 
##                 0.24626228                 0.15999700 
##                        v_6      Eigenes.BL.profitiert 
##                 0.75260298                 0.93026964 
##          Zustimmungsgesetz       local_regional_actor 
##                 0.55361055                 0.59166537 
##                  EU.origin                        v_2 
##                 0.69375455                 0.69089739 
##      Business.organization               salience_igs 
##                 0.84493616                 0.63761923 
##                   salience       Bundesratsinitiative 
##                 0.60040250                 0.68980857 
##             national_route subnational_brussels_route 
##                 0.53378846                 0.65498932 
##             brussels_route                    v_3:v_4 
##                 0.86230307                 0.09010594
anova(m6, m6.1)
## Analysis of Deviance Table
## 
## Model 1: subnational_brussels_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + 
##     Zustimmungsgesetz + local_regional_actor + EU.origin + v_2 + 
##     Business.organization + salience_igs + salience + Bundesratsinitiative + 
##     v_3:v_4
## Model 2: subnational_brussels_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + 
##     Zustimmungsgesetz + local_regional_actor + EU.origin + v_2 + 
##     Business.organization + salience_igs + salience + Bundesratsinitiative + 
##     v_3:v_4 + national_route + second_chamber_route + brussels_route
##   Resid. Df Resid. Dev Df Deviance
## 1       327     147.55            
## 2       324     108.65  3   38.903
shapiro.test(residuals(m6))
## 
##  Shapiro-Wilk normality test
## 
## data:  residuals(m6)
## W = 0.60634, p-value < 2.2e-16
shapiro.test(residuals(m6.1))
## 
##  Shapiro-Wilk normality test
## 
## data:  residuals(m6.1)
## W = 0.69844, p-value < 2.2e-16
#Calculate robust standard errors 
#Full model of subnational Brussels route 
#Robust standard errors 

hc3 <- car::hccm(m6.1)
#Teststatistics of coefficents 
coeftest(m6.1, vcov. = hc3)
## 
## z test of coefficients:
## 
##                         Estimate Std. Error z value Pr(>|z|)
## (Intercept)           -5.0579036  3.4649962 -1.4597   0.1444
## v_3                    0.2707603  0.5310339  0.5099   0.6101
## v_4                    0.0447451  0.8162589  0.0548   0.9563
## v_6                   -0.0242574  0.4089631 -0.0593   0.9527
## Eigenes.BL.profitiert  1.6707580  2.0344679  0.8212   0.4115
## Zustimmungsgesetz      0.8222013  2.5633339  0.3208   0.7484
## local_regional_actor  -2.5864851  4.1691953 -0.6204   0.5350
## EU.origin             -1.1408103  2.5157844 -0.4535   0.6502
## v_2                   -0.1300756  0.3418633 -0.3805   0.7036
## Business.organization -0.3031137  1.9028134 -0.1593   0.8734
## salience_igs           0.0311916  0.4279355  0.0729   0.9419
## salience               0.0019222  0.0048445  0.3968   0.6915
## Bundesratsinitiative   3.2818068  2.6225152  1.2514   0.2108
## national_route        -2.1459907  2.2021166 -0.9745   0.3298
## second_chamber_route   2.8342040  2.2697279  1.2487   0.2118
## brussels_route         3.4221908  3.1813713  1.0757   0.2821
## v_3:v_4               -0.0257311  0.1237905 -0.2079   0.8353
coeftest(m6.1)
## 
## z test of coefficients:
## 
##                         Estimate Std. Error z value  Pr(>|z|)    
## (Intercept)           -5.0579036  1.1003657 -4.5966 4.295e-06 ***
## v_3                    0.2707603  0.1765167  1.5339 0.1250523    
## v_4                    0.0447451  0.2853317  0.1568 0.8753885    
## v_6                   -0.0242574  0.0984951 -0.2463 0.8054653    
## Eigenes.BL.profitiert  1.6707580  0.6716829  2.4874 0.0128673 *  
## Zustimmungsgesetz      0.8222013  0.7711100  1.0663 0.2863076    
## local_regional_actor  -2.5864851  1.3490343 -1.9173 0.0552016 .  
## EU.origin             -1.1408103  0.8208040 -1.3899 0.1645686    
## v_2                   -0.1300756  0.1087981 -1.1956 0.2318650    
## Business.organization -0.3031137  0.6328138 -0.4790 0.6319433    
## salience_igs           0.0311916  0.1271508  0.2453 0.8062150    
## salience               0.0019222  0.0015302  1.2562 0.2090436    
## Bundesratsinitiative   3.2818068  0.7587089  4.3255 1.522e-05 ***
## national_route        -2.1459907  0.7757705 -2.7663 0.0056702 ** 
## second_chamber_route   2.8342040  0.7930615  3.5738 0.0003519 ***
## brussels_route         3.4221908  0.8912608  3.8397 0.0001232 ***
## v_3:v_4               -0.0257311  0.0427134 -0.6024 0.5468994    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coeftest(m6.1, vcov. = hc3)[, "Std. Error"]
##           (Intercept)                   v_3                   v_4 
##           3.464996247           0.531033863           0.816258895 
##                   v_6 Eigenes.BL.profitiert     Zustimmungsgesetz 
##           0.408963123           2.034467863           2.563333938 
##  local_regional_actor             EU.origin                   v_2 
##           4.169195288           2.515784392           0.341863348 
## Business.organization          salience_igs              salience 
##           1.902813399           0.427935467           0.004844475 
##  Bundesratsinitiative        national_route  second_chamber_route 
##           2.622515250           2.202116559           2.269727921 
##        brussels_route               v_3:v_4 
##           3.181371312           0.123790463
coeftest(m6.1)
## 
## z test of coefficients:
## 
##                         Estimate Std. Error z value  Pr(>|z|)    
## (Intercept)           -5.0579036  1.1003657 -4.5966 4.295e-06 ***
## v_3                    0.2707603  0.1765167  1.5339 0.1250523    
## v_4                    0.0447451  0.2853317  0.1568 0.8753885    
## v_6                   -0.0242574  0.0984951 -0.2463 0.8054653    
## Eigenes.BL.profitiert  1.6707580  0.6716829  2.4874 0.0128673 *  
## Zustimmungsgesetz      0.8222013  0.7711100  1.0663 0.2863076    
## local_regional_actor  -2.5864851  1.3490343 -1.9173 0.0552016 .  
## EU.origin             -1.1408103  0.8208040 -1.3899 0.1645686    
## v_2                   -0.1300756  0.1087981 -1.1956 0.2318650    
## Business.organization -0.3031137  0.6328138 -0.4790 0.6319433    
## salience_igs           0.0311916  0.1271508  0.2453 0.8062150    
## salience               0.0019222  0.0015302  1.2562 0.2090436    
## Bundesratsinitiative   3.2818068  0.7587089  4.3255 1.522e-05 ***
## national_route        -2.1459907  0.7757705 -2.7663 0.0056702 ** 
## second_chamber_route   2.8342040  0.7930615  3.5738 0.0003519 ***
## brussels_route         3.4221908  0.8912608  3.8397 0.0001232 ***
## v_3:v_4               -0.0257311  0.0427134 -0.6024 0.5468994    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#How big is the difference 
coeftest(m6.1)[, "Std. Error"] - coeftest(m6.1, vcov. = hc3)[, "Std. Error"]
##           (Intercept)                   v_3                   v_4 
##          -2.364630547          -0.354517177          -0.530927188 
##                   v_6 Eigenes.BL.profitiert     Zustimmungsgesetz 
##          -0.310468046          -1.362784966          -1.792223892 
##  local_regional_actor             EU.origin                   v_2 
##          -2.820160996          -1.694980414          -0.233065222 
## Business.organization          salience_igs              salience 
##          -1.269999563          -0.300784713          -0.003314306 
##  Bundesratsinitiative        national_route  second_chamber_route 
##          -1.863806308          -1.426346023          -1.476666460 
##        brussels_route               v_3:v_4 
##          -2.290110518          -0.081077014
#clustered standard errors 
summary(m6.1, transform = NULL)
## 
## Call:
## glm(formula = subnational_brussels_route ~ 1 + v_3 + v_4 + v_6 + 
##     Eigenes.BL.profitiert + Zustimmungsgesetz + local_regional_actor + 
##     EU.origin + v_2 + Business.organization + salience_igs + 
##     salience + Bundesratsinitiative + v_3:v_4 + national_route + 
##     second_chamber_route + brussels_route, family = binomial(), 
##     data = data)
## 
## Coefficients:
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -5.057904   1.100366  -4.597 4.30e-06 ***
## v_3                    0.270760   0.176517   1.534 0.125052    
## v_4                    0.044745   0.285332   0.157 0.875389    
## v_6                   -0.024257   0.098495  -0.246 0.805465    
## Eigenes.BL.profitiert  1.670758   0.671683   2.487 0.012867 *  
## Zustimmungsgesetz      0.822201   0.771110   1.066 0.286308    
## local_regional_actor  -2.586485   1.349034  -1.917 0.055202 .  
## EU.origin             -1.140810   0.820804  -1.390 0.164569    
## v_2                   -0.130076   0.108798  -1.196 0.231865    
## Business.organization -0.303114   0.632814  -0.479 0.631943    
## salience_igs           0.031192   0.127151   0.245 0.806215    
## salience               0.001922   0.001530   1.256 0.209044    
## Bundesratsinitiative   3.281807   0.758709   4.326 1.52e-05 ***
## national_route        -2.145991   0.775771  -2.766 0.005670 ** 
## second_chamber_route   2.834204   0.793061   3.574 0.000352 ***
## brussels_route         3.422191   0.891261   3.840 0.000123 ***
## v_3:v_4               -0.025731   0.042713  -0.602 0.546899    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 193.62  on 340  degrees of freedom
## Residual deviance: 108.65  on 324  degrees of freedom
## AIC: 142.65
## 
## Number of Fisher Scoring iterations: 7
coeftest(m6.1, vcov. = vcovCL(m6.1, cluster = data$ID.Gesetz, type = "HC2"))
## 
## z test of coefficients:
## 
##                         Estimate Std. Error z value Pr(>|z|)
## (Intercept)           -5.0579036  5.4475544 -0.9285   0.3532
## v_3                    0.2707603  0.3418478  0.7920   0.4283
## v_4                    0.0447451  0.5710407  0.0784   0.9375
## v_6                   -0.0242574  0.1618334 -0.1499   0.8809
## Eigenes.BL.profitiert  1.6707580  3.4431132  0.4852   0.6275
## Zustimmungsgesetz      0.8222013  3.4612508  0.2375   0.8122
## local_regional_actor  -2.5864851 10.2323644 -0.2528   0.8004
## EU.origin             -1.1408103  4.9944756 -0.2284   0.8193
## v_2                   -0.1300756  0.1223700 -1.0630   0.2878
## Business.organization -0.3031137  0.7788286 -0.3892   0.6971
## salience_igs           0.0311916  0.3945854  0.0790   0.9370
## salience               0.0019222  0.0219345  0.0876   0.9302
## Bundesratsinitiative   3.2818068  2.4061276  1.3639   0.1726
## national_route        -2.1459907  4.3381432 -0.4947   0.6208
## second_chamber_route   2.8342040  4.6360296  0.6113   0.5410
## brussels_route         3.4221908 10.6031729  0.3228   0.7469
## v_3:v_4               -0.0257311  0.0333653 -0.7712   0.4406
model <- glm.cluster(subnational_brussels_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Zustimmungsgesetz + local_regional_actor  + EU.origin + v_2 + Business.organization + salience_igs +  salience +  lobbyists + budget + v_3:v_4 + national_route + second_chamber_route + brussels_route, cluster = "ID.Gesetz", data = data, family = "binomial")
summary(model)
##                            Estimate  Std. Error     z value     Pr(>|z|)
## (Intercept)            -3.359934410 1.107229099  -3.0345431 2.409003e-03
## v_3                     0.529901717 0.225941698   2.3453029 1.901163e-02
## v_4                     0.542769354 0.359853768   1.5083053 1.314764e-01
## v_6                    -0.132746865 0.148592353  -0.8933627 3.716630e-01
## Eigenes.BL.profitiert   4.894760327 1.120712178   4.3675445 1.256512e-05
## Zustimmungsgesetz       1.995263780 1.264653975   1.5777152 1.146311e-01
## local_regional_actor  -20.464496087 1.517242617 -13.4879523 1.841441e-41
## EU.origin              -0.900436977 1.281731250  -0.7025162 4.823573e-01
## v_2                    -0.694422226 0.204266908  -3.3995826 6.748879e-04
## Business.organization  -2.582285151 2.104709631  -1.2269080 2.198572e-01
## salience_igs            0.526709469 0.115613222   4.5557892 5.218925e-06
## salience                0.003710587 0.001690640   2.1947820 2.817924e-02
## lobbyists              -0.077748120 0.028130363  -2.7638506 5.712370e-03
## budget                  0.002322684 0.002286411   1.0158648 3.096938e-01
## national_route         -2.225851759 0.684882056  -3.2499782 1.154139e-03
## second_chamber_route    1.188012596 1.119727060   1.0609841 2.886971e-01
## brussels_route          6.072958124 1.253644912   4.8442410 1.270966e-06
## v_3:v_4                -0.143411913 0.068925921  -2.0806673 3.746437e-02
#Calculate robust standard errors
#Full model of subnational Berlin route
#Robust standard errors 

hc4 <- car::hccm(m5.1)
#Teststatistics of coefficents 
coeftest(m5.1, vcov. = hc4)
## 
## z test of coefficients:
## 
##                               Estimate  Std. Error z value Pr(>|z|)  
## (Intercept)                -4.09678600  1.95528702 -2.0952  0.03615 *
## v_3                        -0.05397846  0.25128056 -0.2148  0.82991  
## v_4                        -0.11658180  0.35436816 -0.3290  0.74217  
## v_6                         0.09631872  0.13456696  0.7158  0.47413  
## Eigenes.BL.profitiert       1.91080589  1.37116745  1.3936  0.16345  
## Zustimmungsgesetz           0.72489066  0.98640850  0.7349  0.46241  
## local_regional_actor        2.29749206  1.54144474  1.4905  0.13610  
## EU.origin                  -0.60031488  0.88731267 -0.6766  0.49869  
## v_2                         0.09176981  0.16110471  0.5696  0.56893  
## Business.organization       0.27656018  0.83579272  0.3309  0.74072  
## salience_igs               -0.01728112  0.15924331 -0.1085  0.91358  
## salience                    0.00060108  0.00177565  0.3385  0.73498  
## Bundesratsinitiative       -0.72323937  1.18147849 -0.6121  0.54044  
## national_route              2.36749536  1.39255606  1.7001  0.08911 .
## subnational_brussels_route  2.74526376  1.79007597  1.5336  0.12513  
## brussels_route              1.94832668  1.53808618  1.2667  0.20525  
## v_3:v_4                     0.01561084  0.05488161  0.2844  0.77607  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coeftest(m5.1)
## 
## z test of coefficients:
## 
##                               Estimate  Std. Error z value  Pr(>|z|)    
## (Intercept)                -4.09678600  0.71341775 -5.7425 9.330e-09 ***
## v_3                        -0.05397846  0.09324479 -0.5789 0.5626636    
## v_4                        -0.11658180  0.13974532 -0.8342 0.4041431    
## v_6                         0.09631872  0.04712070  2.0441 0.0409452 *  
## Eigenes.BL.profitiert       1.91080589  0.50989369  3.7475 0.0001786 ***
## Zustimmungsgesetz           0.72489066  0.38163938  1.8994 0.0575102 .  
## local_regional_actor        2.29749206  0.54165660  4.2416 2.219e-05 ***
## EU.origin                  -0.60031488  0.35638890 -1.6844 0.0920971 .  
## v_2                         0.09176981  0.05858183  1.5665 0.1172261    
## Business.organization       0.27656018  0.32012653  0.8639 0.3876379    
## salience_igs               -0.01728112  0.06157454 -0.2807 0.7789760    
## salience                    0.00060108  0.00070596  0.8514 0.3945280    
## Bundesratsinitiative       -0.72323937  0.43082136 -1.6787 0.0932017 .  
## national_route              2.36749536  0.45727901  5.1774 2.251e-07 ***
## subnational_brussels_route  2.74526376  0.70659043  3.8852 0.0001022 ***
## brussels_route              1.94832668  0.60399564  3.2257 0.0012565 ** 
## v_3:v_4                     0.01561084  0.02103787  0.7420 0.4580661    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coeftest(m5.1, vcov. = hc4)[, "Std. Error"]
##                (Intercept)                        v_3 
##                1.955287016                0.251280558 
##                        v_4                        v_6 
##                0.354368162                0.134566965 
##      Eigenes.BL.profitiert          Zustimmungsgesetz 
##                1.371167449                0.986408504 
##       local_regional_actor                  EU.origin 
##                1.541444740                0.887312675 
##                        v_2      Business.organization 
##                0.161104709                0.835792715 
##               salience_igs                   salience 
##                0.159243308                0.001775649 
##       Bundesratsinitiative             national_route 
##                1.181478490                1.392556059 
## subnational_brussels_route             brussels_route 
##                1.790075971                1.538086182 
##                    v_3:v_4 
##                0.054881615
coeftest(m5.1)
## 
## z test of coefficients:
## 
##                               Estimate  Std. Error z value  Pr(>|z|)    
## (Intercept)                -4.09678600  0.71341775 -5.7425 9.330e-09 ***
## v_3                        -0.05397846  0.09324479 -0.5789 0.5626636    
## v_4                        -0.11658180  0.13974532 -0.8342 0.4041431    
## v_6                         0.09631872  0.04712070  2.0441 0.0409452 *  
## Eigenes.BL.profitiert       1.91080589  0.50989369  3.7475 0.0001786 ***
## Zustimmungsgesetz           0.72489066  0.38163938  1.8994 0.0575102 .  
## local_regional_actor        2.29749206  0.54165660  4.2416 2.219e-05 ***
## EU.origin                  -0.60031488  0.35638890 -1.6844 0.0920971 .  
## v_2                         0.09176981  0.05858183  1.5665 0.1172261    
## Business.organization       0.27656018  0.32012653  0.8639 0.3876379    
## salience_igs               -0.01728112  0.06157454 -0.2807 0.7789760    
## salience                    0.00060108  0.00070596  0.8514 0.3945280    
## Bundesratsinitiative       -0.72323937  0.43082136 -1.6787 0.0932017 .  
## national_route              2.36749536  0.45727901  5.1774 2.251e-07 ***
## subnational_brussels_route  2.74526376  0.70659043  3.8852 0.0001022 ***
## brussels_route              1.94832668  0.60399564  3.2257 0.0012565 ** 
## v_3:v_4                     0.01561084  0.02103787  0.7420 0.4580661    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#How big is the difference 
coeftest(m5.1)[, "Std. Error"] - coeftest(m5.1, vcov. = hc4)[, "Std. Error"]
##                (Intercept)                        v_3 
##               -1.241869265               -0.158035766 
##                        v_4                        v_6 
##               -0.214622844               -0.087446263 
##      Eigenes.BL.profitiert          Zustimmungsgesetz 
##               -0.861273760               -0.604769123 
##       local_regional_actor                  EU.origin 
##               -0.999788140               -0.530923770 
##                        v_2      Business.organization 
##               -0.102522879               -0.515666182 
##               salience_igs                   salience 
##               -0.097668764               -0.001069686 
##       Bundesratsinitiative             national_route 
##               -0.750657128               -0.935277051 
## subnational_brussels_route             brussels_route 
##               -1.083485536               -0.934090543 
##                    v_3:v_4 
##               -0.033843744
#clustered standard errors 
summary(m5.1, transform = NULL)
## 
## Call:
## glm(formula = second_chamber_route ~ 1 + v_3 + v_4 + v_6 + Eigenes.BL.profitiert + 
##     Zustimmungsgesetz + local_regional_actor + EU.origin + v_2 + 
##     Business.organization + salience_igs + salience + Bundesratsinitiative + 
##     v_3:v_4 + national_route + subnational_brussels_route + brussels_route, 
##     family = binomial(), data = data)
## 
## Coefficients:
##                              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                -4.0967860  0.7134178  -5.742 9.33e-09 ***
## v_3                        -0.0539785  0.0932448  -0.579 0.562664    
## v_4                        -0.1165818  0.1397453  -0.834 0.404143    
## v_6                         0.0963187  0.0471207   2.044 0.040945 *  
## Eigenes.BL.profitiert       1.9108059  0.5098937   3.747 0.000179 ***
## Zustimmungsgesetz           0.7248907  0.3816394   1.899 0.057510 .  
## local_regional_actor        2.2974921  0.5416566   4.242 2.22e-05 ***
## EU.origin                  -0.6003149  0.3563889  -1.684 0.092097 .  
## v_2                         0.0917698  0.0585818   1.567 0.117226    
## Business.organization       0.2765602  0.3201265   0.864 0.387638    
## salience_igs               -0.0172811  0.0615745  -0.281 0.778976    
## salience                    0.0006011  0.0007060   0.851 0.394528    
## Bundesratsinitiative       -0.7232394  0.4308214  -1.679 0.093202 .  
## national_route              2.3674954  0.4572790   5.177 2.25e-07 ***
## subnational_brussels_route  2.7452638  0.7065904   3.885 0.000102 ***
## brussels_route              1.9483267  0.6039956   3.226 0.001257 ** 
## v_3:v_4                     0.0156108  0.0210379   0.742 0.458066    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 442.36  on 340  degrees of freedom
## Residual deviance: 301.77  on 324  degrees of freedom
## AIC: 335.77
## 
## Number of Fisher Scoring iterations: 6
coeftest(m5.1, vcov. = vcovCL(m5.1, cluster = data$ID.Gesetz, type = "HC2"))
## 
## z test of coefficients:
## 
##                               Estimate  Std. Error z value  Pr(>|z|)    
## (Intercept)                -4.09678600  0.93030167 -4.4037 1.064e-05 ***
## v_3                        -0.05397846  0.07930454 -0.6806 0.4960944    
## v_4                        -0.11658180  0.16258573 -0.7170 0.4733444    
## v_6                         0.09631872  0.05988115  1.6085 0.1077261    
## Eigenes.BL.profitiert       1.91080589  0.53427876  3.5764 0.0003483 ***
## Zustimmungsgesetz           0.72489066  0.57244270  1.2663 0.2054016    
## local_regional_actor        2.29749206  0.74964241  3.0648 0.0021783 ** 
## EU.origin                  -0.60031488  0.46347858 -1.2952 0.1952383    
## v_2                         0.09176981  0.05880309  1.5606 0.1186113    
## Business.organization       0.27656018  0.34267730  0.8071 0.4196335    
## salience_igs               -0.01728112  0.07075766 -0.2442 0.8070529    
## salience                    0.00060108  0.00069101  0.8699 0.3843770    
## Bundesratsinitiative       -0.72323937  0.56745604 -1.2745 0.2024759    
## national_route              2.36749536  0.41808635  5.6627 1.490e-08 ***
## subnational_brussels_route  2.74526376  0.50125541  5.4768 4.331e-08 ***
## brussels_route              1.94832668  0.51972849  3.7487 0.0001777 ***
## v_3:v_4                     0.01561084  0.02668816  0.5849 0.5585914    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model_2 <- glm.cluster(second_chamber_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + national_route + brussels_route + subnational_brussels_route + Business.organization:Eigenes.BL.profitiert, cluster = "ID.Gesetz", data = data, family = "binomial")
summary(model_2)
##                                                  Estimate   Std. Error
## (Intercept)                                 -3.3217197063 0.5733196776
## v_3                                         -0.0271533124 0.0583395868
## v_4                                         -0.0094161146 0.0603504410
## v_6                                          0.1166928542 0.0520109936
## Eigenes.BL.profitiert                        1.7361284008 0.5472507621
## Business.organization                        0.2009171574 0.3027789090
## salience_igs                                -0.0372872112 0.0603681762
## Zustimmungsgesetz                            0.4971043810 0.4448825180
## salience                                     0.0009150252 0.0005126581
## v_2                                          0.0782636879 0.0554842285
## EU.origin                                   -0.6650288988 0.4037802868
## national_route                               1.6524952141 0.2864604375
## brussels_route                               1.7864789466 0.4379908159
## subnational_brussels_route                   1.7774899670 0.3256233984
## Eigenes.BL.profitiert:Business.organization  1.6169518619 1.4918171214
##                                                z value     Pr(>|z|)
## (Intercept)                                 -5.7938352 6.879699e-09
## v_3                                         -0.4654355 6.416196e-01
## v_4                                         -0.1560240 8.760141e-01
## v_6                                          2.2436190 2.485692e-02
## Eigenes.BL.profitiert                        3.1724550 1.511560e-03
## Business.organization                        0.6635771 5.069610e-01
## salience_igs                                -0.6176634 5.367973e-01
## Zustimmungsgesetz                            1.1173835 2.638304e-01
## salience                                     1.7848644 7.428331e-02
## v_2                                          1.4105574 1.583752e-01
## EU.origin                                   -1.6470069 9.955664e-02
## national_route                               5.7686682 7.990044e-09
## brussels_route                               4.0788046 4.526787e-05
## subnational_brussels_route                   5.4587292 4.795544e-08
## Eigenes.BL.profitiert:Business.organization  1.0838808 2.784177e-01

Table for robustness check 1

#tab_model(model, model_2, transform = NULL,
#          show.aic = T,
#          show.dev = T,
#          show.fstat = T,
#          p.style = "stars",
#          title = "Routes",
#          dv.labels = c("Subnational Berlin route - clustered standard errors", "Subnational Brussels route - clustered standard errors"),
#          pred.labels = c("Intercept", "Access to national-level policymakers",
#          "National-level policymaker oposses position of group", "Mobilization bias", "subnational policymaker supports the position of the group", "Subnational jurisdiction", "Subnational organization", "EU origin", "Position of interest group", "Business organization", "Perceived salience", "Media salience", "Number of Lobbyists within the organization", "Lobbybudget of organization (10K € steps)", "Interaction national policy makers opposes position of group x group has no access to national level policy-maker", "National route", "Subnational Brussels route", "Subnational Berlin route ", "Brussels route"))#,
        # file = "Regression_paper_Ressources.html")

7.1 Differentiating between business groups and public interest groups

7.1.1 Business groups

#Brussels route 
a <- glm(brussels_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + national_route + subnational_brussels_route + second_chamber_route, data = only_business, family = binomial())
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#Subnational Berlin route  
b <- glm(second_chamber_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + brussels_route + national_route + subnational_brussels_route, data = only_business, family = binomial())
#Subnational brussels route 
c <- glm(subnational_brussels_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + brussels_route + national_route + second_chamber_route + Business.organization:Eigenes.BL.profitiert, data = only_business, family = binomial())

#tab_model(a, b, c, p.style = "stars") N ist noch zu klein um eine Berechnung durchführen zu können 

7.1.2 Public interest groups

#Brussels route 
a1 <- glm(brussels_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + national_route + subnational_brussels_route + second_chamber_route, data = public_interest, family = binomial())
#Subnational Berlin route  
b1 <- glm(second_chamber_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + brussels_route + national_route + subnational_brussels_route, data = public_interest, family = binomial())
#Subnational brussels route 
c1 <- glm(subnational_brussels_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + brussels_route + national_route + second_chamber_route, data = public_interest, family = binomial())
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#Brussels route 
a2 <- glm(brussels_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + national_route + subnational_brussels_route + second_chamber_route, data = data, family = binomial())
#Subnational Berlin route  
b2 <- glm(second_chamber_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + brussels_route + national_route + subnational_brussels_route, data = data, family = binomial())
#Subnational brussels route 
c2 <- glm(subnational_brussels_route ~ 1 +  v_3 + v_4 + v_6 + Eigenes.BL.profitiert + Business.organization + salience_igs + Zustimmungsgesetz + salience + v_2 + EU.origin + brussels_route + national_route + second_chamber_route, data = data, family = binomial())

tab_model(a1, b1, c1, a2, b2, c2, transform = NULL,
          show.aic = T,
          show.dev = T,
          show.fstat = T,
          p.style = "stars",
          title = " Only Public interest groups (first 3 models), All interest groups",
          dv.labels = c("Brussels route", "Subnational Berlin route ", "subnational Brussels route", "Brussels route", "Subnational Berlin route ", "subnational Brussels route"),
          pred.labels = c("Intercept", "Access to national-level policymakers", "National-level policymaker oposses position of group", "Mobilization bias", "Land benefits from collaboration", "Business organization", "Perceived salience", "Subnational jurisdiction", "Media salience", "Position of group", "EU origin", "National route", "Subnational Brussels route", "Subnational Berlin route ", "Brussels route"),
          file = "Regression_public_interest.html")
Only Public interest groups (first 3 models), All interest groups
  Brussels route Subnational Berlin route subnational Brussels route Brussels route Subnational Berlin route subnational Brussels route
Predictors Log-Odds CI Log-Odds CI Log-Odds CI Log-Odds CI Log-Odds CI Log-Odds CI
Intercept -3.60 ** -6.47 – -1.28 -2.37 ** -3.99 – -0.90 0.55 -2.21 – 3.14 -5.32 *** -7.79 – -3.44 -3.30 *** -4.49 – -2.25 -3.34 *** -5.11 – -1.82
Access to national-level policymakers -0.14 -0.42 – 0.12 -0.08 -0.23 – 0.06 0.17 -0.09 – 0.45 -0.08 -0.29 – 0.13 -0.03 -0.15 – 0.08 0.10 -0.09 – 0.30
National-level policymaker oposses position of group -0.04 -0.37 – 0.25 0.08 -0.09 – 0.25 -0.01 -0.30 – 0.27 0.08 -0.15 – 0.30 -0.01 -0.15 – 0.13 0.01 -0.24 – 0.25
Mobilization bias -0.06 -0.26 – 0.14 0.11 * 0.00 – 0.21 -0.09 -0.31 – 0.12 -0.01 -0.18 – 0.15 0.12 * 0.03 – 0.21 -0.01 -0.16 – 0.14
Land benefits from collaboration 0.01 -0.01 – 0.03 0.02 ** 0.00 – 0.03 0.02 0.00 – 0.04 0.07 -1.34 – 1.35 2.09 *** 1.19 – 3.11 0.94 -0.17 – 2.02
Business organization 0.33 -1.83 – 2.15 0.33 -1.16 – 1.73 -0.02 -3.89 – 3.05 0.03 -1.02 – 1.06 0.31 -0.28 – 0.91 -0.35 -1.48 – 0.67
Perceived salience -0.00 -0.28 – 0.26 -0.05 -0.19 – 0.09 -0.04 -0.34 – 0.23 -0.09 -0.32 – 0.11 -0.04 -0.16 – 0.07 -0.02 -0.22 – 0.17
Subnational jurisdiction -2.00 * -3.80 – -0.43 0.73 -0.10 – 1.60 -0.18 -1.76 – 1.57 -2.01 ** -3.43 – -0.75 0.45 -0.23 – 1.16 1.45 * 0.30 – 2.77
Media salience -0.00 -0.00 – 0.00 0.00 -0.00 – 0.00 -0.04 ** -0.07 – -0.02 -0.00 -0.00 – 0.00 0.00 -0.00 – 0.00 -0.00 -0.00 – 0.00
Position of group 0.01 -0.21 – 0.25 0.08 -0.04 – 0.21 0.02 -0.19 – 0.24 0.04 -0.14 – 0.25 0.08 -0.02 – 0.19 -0.07 -0.22 – 0.08
EU origin 1.95 ** 0.60 – 3.49 -0.18 -1.01 – 0.61 -3.28 ** -6.06 – -1.31 2.44 *** 1.29 – 3.76 -0.68 * -1.37 – -0.02 -1.25 -2.69 – -0.06
National route 1.76 0.07 – 3.91 1.46 *** 0.69 – 2.29 -2.39 ** -4.18 – -0.90 1.89 * 0.39 – 3.88 1.62 *** 0.96 – 2.33 -1.47 * -2.67 – -0.35
Subnational Brussels route 1.14 -1.01 – 3.18 1.76 ** 0.61 – 3.02 1.94 * 0.40 – 3.54 1.78 ** 0.70 – 2.95
Subnational Berlin route 1.70 * 0.24 – 3.33 2.38 ** 0.95 – 4.09 1.81 ** 0.65 – 3.09 1.75 ** 0.65 – 2.96
Brussels route 1.43 * 0.11 – 2.90 2.32 * 0.12 – 4.80 1.79 ** 0.71 – 2.98 2.66 *** 1.21 – 4.22
Observations 234 234 234 341 341 341
R2 Tjur 0.249 0.280 0.351 0.332 0.303 0.171
Deviance 80.590 229.329 80.756 120.032 327.409 144.592
AIC 108.590 257.329 108.756 148.032 355.409 172.592
  • p<0.05   ** p<0.01   *** p<0.001