Ejercicio 1
- Confirme y envie el paquete geografico creado recientemente
- Obtenga el enlance de Github para leer el geopaquete en R
- Usando la biblioteca sf en R, confirme las capas creadas (use
st_layes) y abra cada mapa (read_sf). Dibuja las tres capas (como
hicimos en Python) usando ggplot.
library(sf)
## Linking to GEOS 3.11.2, GDAL 3.6.2, PROJ 9.2.0; sf_use_s2() is TRUE
library(remotes)
linkWorld_gpkg<- "C:/Users/USER/Documents/GitHub/introgeodf/maps/worldMap.gpkg"
sf::st_layers(linkWorld_gpkg)
## Driver: GPKG
## Available layers:
## layer_name geometry_type features fields crs_name
## 1 countryBorders 252 1 WGS 84
## 2 riverLines 98 2 WGS 84
## 3 cityPoints Point 610 3 WGS 84
countries=read_sf(linkWorld_gpkg,layer="countryBorders")
rivers=read_sf(linkWorld_gpkg,layer="riverLines")
cities=read_sf(linkWorld_gpkg,layer="cityPoints")
library(ggplot2)
baseLayer=ggplot(data=countries) + geom_sf(fill='grey90') + theme_light()
final=baseLayer + geom_sf(data=rivers, color='blue') + geom_sf(data=cities, color='red')
final

Ejercicio 2
- Sigue los mismos pasos de este ultimo apartado,pero utiliza Peru
2.Traza tus tres capas en R
Peru<- "C:/Users/USER/Documents/GitHub/introgeodf/maps/Peru_data.gpkg"
st_layers(Peru)
## Driver: GPKG
## Available layers:
## layer_name geometry_type features fields crs_name
## 1 peru Polygon 1 1 WGS 84
## 2 cityPoints Point 8 3 WGS 84
## 3 riverLines 5 2 WGS 84
peru=read_sf(Peru,layer="peru")
peru_rivers=read_sf(Peru,layer="riverLines")
peru_cities=read_sf(Peru,layer="cityPoints")
baseLayer=ggplot(data=peru) + geom_sf(fill='grey90') + theme_light()
final=baseLayer + geom_sf(data=peru_rivers, color='blue') + geom_sf(data=peru_cities, color='red')
final

Ejercicio 3
Peru_air="C:/Users/USER/Documents/GitHub/introgeodf/maps/PeruMaps_8901.gpkg"
st_layers(Peru_air)
## Driver: GPKG
## Available layers:
## layer_name geometry_type features fields crs_name
## 1 country Polygon 1 1 RGWF96 (lon-lat)
## 2 cities Point 8 3 RGWF96 (lon-lat)
## 3 rivers 5 2 RGWF96 (lon-lat)
## 4 centroid Point 1 0 RGWF96 (lon-lat)
## 5 airports Point 203 7 RGWF96 (lon-lat)
peru=read_sf(Peru_air,layer="country")
peru_cities=read_sf(Peru_air,layer="cities")
peru_rivers=read_sf(Peru_air,layer="rivers")
peru_centroid=read_sf(Peru_air,layer="centroid")
peru_air=read_sf(Peru_air,layer="airports")
baseLayer=ggplot(data=peru) + geom_sf(fill='grey90') + theme_light()
final=baseLayer + geom_sf(data=peru_rivers, color='blue') + geom_sf(data=peru_air, color='black') + geom_sf(data=peru_cities, color='red') +
coord_sf(datum = st_crs(peru))
final

Ejercicio 4 :
americ_rp_gpkg="C:/Users/USER/Documents/GitHub/introgeodf/maps/America_2023_prjed.gpkg"
sf::st_layers(americ_rp_gpkg)
## Driver: GPKG
## Available layers:
## layer_name geometry_type features fields crs_name
## 1 countries 31 4 WGS 84 / Equal Earth Americas
## 2 centroids Point 31 4 WGS 84 / Equal Earth Americas
ame=read_sf(americ_rp_gpkg,layer="countries")
ame_cen=read_sf(americ_rp_gpkg,layer="centroids")
library(ggplot2)
baseLayer=ggplot(data=ame) + geom_sf(fill='grey90') + theme_light()
final=baseLayer + geom_sf(data=ame_cen,aes(color=Total_ei5_cat),size=2+ame_cen$Total_ei5) +
guides(size=NULL) +
coord_sf(datum = st_crs(ame))
final
