Ejercicio De Autocorrelación
Base de datos.
Utilizando los datos del dataframe hprice1: disponible en el paquete wooldridge use el siguiente código para generar el dataframe:
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
1. Estimación del siguiente modelo.
\(price = ˆα + ˆα1(lotsize) + ˆα2(sqrft) + ˆα3(bdrms) + e\)
library(stargazer)
modelo_estimado<-lm(formula = price~lotsize+sqrft+bdrms, data=hprice1)
stargazer(modelo_estimado, title = "Modelo Estimado", type = "text") ##
## Modelo Estimado
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## lotsize 0.002***
## (0.001)
##
## sqrft 0.123***
## (0.013)
##
## bdrms 13.853
## (9.010)
##
## Constant -21.770
## (29.475)
##
## -----------------------------------------------
## Observations 88
## R2 0.672
## Adjusted R2 0.661
## Residual Std. Error 59.833 (df = 84)
## F Statistic 57.460*** (df = 3; 84)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
2. Verifique si los residuos del modelo son independientes entre sí (no autocorrelación), a través de:
a) Prueba de Durbin Watson.
Utilizando libreria lmtest.
##
## Durbin-Watson test
##
## data: modelo_estimado
## DW = 2.1098, p-value = 0.6218
## alternative hypothesis: true autocorrelation is not 0
Se puede rechazar la presencia de autocorrelación (No se rechaza la H0), ya que el p-value > 0.05, por lo tanto puede concluirse que los residuos del modelo, no siguen autocorrelación de 1° orden.
Utilizando libreria car.
## lag Autocorrelation D-W Statistic p-value
## 1 -0.05900522 2.109796 0.636
## Alternative hypothesis: rho != 0
Se puede rechazar la presencia de autocorrelación (No se rechaza la H0), ya que el p-value > 0.05, por lo tanto puede concluirse que los residuos del modelo, no siguen autocorrelación de 1° orden.
Usando la tabla.
library(png)
library(grid)
img <-readPNG("C:/Users/USER/Desktop/ejercicio-autocorrelacion/dw.png")
grid.raster(img)De acuerdo al esquema, el DW calculado, cae en la zona de no Rechazo de H0, por lo tanto no hay presencia de autocorrelación lineal.
library(png)
library(grid)
img <-readPNG("C:/Users/USER/Desktop/ejercicio-autocorrelacion/autocorrelacion.png")
grid.raster(img)b) Prueba del Multiplicador de Lagrange (verifique autocorrelación de primer y segundo orden).
Preparación de datos:
library(stargazer)
library(dplyr)
library(tidyr)
library(kableExtra)
u_i<-modelo_estimado$residuals
cbind(u_i,hprice1) %>%
as.data.frame() %>%
mutate(Lag_1=dplyr::lag(u_i,1),
Lag_2=dplyr::lag(u_i,2)) %>%
replace_na(list(Lag_1=0,Lag_2=0))->data_prueba_BG
kable(head(data_prueba_BG,6))| u_i | price | assess | bdrms | lotsize | sqrft | colonial | lprice | lassess | llotsize | lsqrft | Lag_1 | Lag_2 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| -45.639765 | 300.000 | 349.1 | 4 | 6126 | 2438 | 1 | 5.703783 | 5.855359 | 8.720297 | 7.798934 | 0.000000 | 0.000000 |
| 74.848732 | 370.000 | 351.5 | 3 | 9903 | 2076 | 1 | 5.913503 | 5.862210 | 9.200593 | 7.638198 | -45.639765 | 0.000000 |
| -8.236558 | 191.000 | 217.7 | 3 | 5200 | 1374 | 0 | 5.252274 | 5.383118 | 8.556414 | 7.225481 | 74.848732 | -45.639765 |
| -12.081520 | 195.000 | 231.8 | 3 | 4600 | 1448 | 1 | 5.273000 | 5.445875 | 8.433811 | 7.277938 | -8.236558 | 74.848732 |
| 18.093192 | 373.000 | 319.1 | 4 | 6095 | 2514 | 1 | 5.921578 | 5.765504 | 8.715224 | 7.829630 | -12.081520 | -8.236558 |
| 62.939597 | 466.275 | 414.5 | 5 | 8566 | 2754 | 1 | 6.144775 | 6.027073 | 9.055556 | 7.920810 | 18.093192 | -12.081520 |
Calculando la regresión auxiliar y el estadístico LM
library(stargazer)
regresion_auxiliar_BG<-lm(u_i~lotsize+sqrft+bdrms+Lag_1+Lag_2,data = data_prueba_BG)
sumario_BG<-summary(regresion_auxiliar_BG)
R_2_BG<-sumario_BG$r.squared
n<-nrow(data_prueba_BG)
LM_BG<-n*R_2_BG
gl=2
p_value<-1-pchisq(q = LM_BG,df = gl)
VC<-qchisq(p = 0.95,df = gl)
salida_bg<-c(LM_BG,VC,p_value)
names(salida_bg)<-c("LMbg","Valor Crítico","p value")
stargazer(salida_bg,title = "Resultados de la Prueba de Breusch Godfrey",type = "text",digits = 6)##
## Resultados de la Prueba de Breusch Godfrey
## ===============================
## LMbg Valor Crítico p value
## -------------------------------
## 3.033403 5.991465 0.219435
## -------------------------------
Como p-value > 0.05, No se rechaza H0, por lo tanto puede concluirse que los residuos del modelo, no siguen autocorrelación de orden “2”.
Usando la librería “lmtest”.
##
## Breusch-Godfrey test for serial correlation of order up to 2
##
## data: modelo_estimado
## LM test = 3.0334, df = 2, p-value = 0.2194
Como p-value > 0.05, No se rechaza H0, por lo tanto puede concluirse que los residuos del modelo, no siguen autocorrelación de orden “2”.