library(wooldridge)
data(hprice1)
head(force(hprice1),n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
library(wooldridge)
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
modelo_precio<-lm(formula = price~lotsize+sqrft+bdrms, data=hprice1)
stargazer(modelo_precio,title = "modelo precio",type="text")
##
## modelo precio
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## lotsize 0.002***
## (0.001)
##
## sqrft 0.123***
## (0.013)
##
## bdrms 13.853
## (9.010)
##
## Constant -21.770
## (29.475)
##
## -----------------------------------------------
## Observations 88
## R2 0.672
## Adjusted R2 0.661
## Residual Std. Error 59.833 (df = 84)
## F Statistic 57.460*** (df = 3; 84)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
library(car)
## Loading required package: carData
durbinWatsonTest(modelo_precio,simulate=TRUE,reps=1000)
## lag Autocorrelation D-W Statistic p-value
## 1 -0.05900522 2.109796 0.574
## Alternative hypothesis: rho != 0
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
dwtest(modelo_precio,alternative = "two.sided",iterations = 1000)
##
## Durbin-Watson test
##
## data: modelo_precio
## DW = 2.1098, p-value = 0.6218
## alternative hypothesis: true autocorrelation is not 0
#No se rechaza la hipotesis nula, por lo que se descarta la presencia de autocorrelación
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
##
## recode
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyr)
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
library(stargazer)
residuos<-modelo_precio$residuals
cbind(residuos,hprice1)%>%
as.data.frame()%>%
mutate(Lag_1=dplyr::lag(residuos,1),
Lag_2=dplyr::lag(residuos,2))%>%
replace_na(list(Lag_1=0,Lag_2=0))->data_prueba_BG
regresion_auxiliar_BG<-lm(residuos~lotsize+sqrft+bdrms+Lag_1+Lag_2,data=data_prueba_BG)
sumario_BG<-summary(regresion_auxiliar_BG)
R_2_BG<-sumario_BG$r.squared
n<-nrow(data_prueba_BG)
gl<-2
LM_BG<-n*R_2_BG
p_value<-1-pchisq(q=LM_BG,df=gl)
VC<-qchisq(p=0.95,df=gl)
salida_bg<-c(LM_BG,VC,p_value)
names(salida_bg)<-c("LMbg","Valor Critico","p value")
stargazer(salida_bg, title = "Resultados de la prueba Breusch Godfrey",digits=6,type = "text")
##
## Resultados de la prueba Breusch Godfrey
## ===============================
## LMbg Valor Critico p value
## -------------------------------
## 3.033403 5.991465 0.219435
## -------------------------------
library(lmtest)
bgtest(modelo_precio,order=2)
##
## Breusch-Godfrey test for serial correlation of order up to 2
##
## data: modelo_precio
## LM test = 3.0334, df = 2, p-value = 0.2194
#No se rechaza la hipótesis nula por lo que los residuos del modelo no siguen autocorrelación de orden 2
library(lmtest)
bgtest(modelo_precio,order=2)
##
## Breusch-Godfrey test for serial correlation of order up to 2
##
## data: modelo_precio
## LM test = 3.0334, df = 2, p-value = 0.2194
#No se rechaza la hipótesis nula por lo que los residuos del modelo no siguen autocorrelación de orden 1