Given points: (5.6,8.8),(6.3,12.4),(7,14.8),(7.7,18.2),(8.4,20.8).
# Input the data points
x <- c(5.6, 6.3, 7, 7.7, 8.4)
y <- c(8.8, 12.4, 14.8, 18.2, 20.8)
# Fit the linear model
model <- lm(y ~ x)
# Display the summary of the model
summary(model)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## 1 2 3 4 5
## -0.24 0.38 -0.20 0.22 -0.16
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.8000 1.0365 -14.28 0.000744 ***
## x 4.2571 0.1466 29.04 8.97e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3246 on 3 degrees of freedom
## Multiple R-squared: 0.9965, Adjusted R-squared: 0.9953
## F-statistic: 843.1 on 1 and 3 DF, p-value: 8.971e-05
For the function f ( x , y ) = 24 x − 6 x y 2 − 8 y 3 f(x,y)=24x−6xy 2 −8y 3 , we need to find the critical points by solving the partial derivatives and then classify them.
First, calculate the partial derivatives:
\[ fx=∂x∂f=24−6y2fy=∂f∂y=−12xy−24y2fy=∂y∂f=−12xy−24y2 \]
Set the partial derivatives to zero to find the critical points:
24−6y2=0 ⟹ y2=4 ⟹ y=±224−6y2=0⟹y2=4⟹y=±2
−12xy−24y2=0 ⟹ y(−12x−24y)=0−12xy−24y2=0⟹y(−12x−24y)=0
For y=0y=0:
fy=0 ⟹ y=0 ⟹ no critical point here as y=0 is not valid from y=±2fy=0⟹y=0⟹no critical point here as y=0 is not valid from y=±2
For y≠0y=0:
−12x−24y=0 ⟹ x=−2y−12x−24y=0⟹x=−2y
Substitute y=2y=2:
x=−2⋅2=−4x=−2⋅2=−4
Substitute y=−2y=−2:
x=−2⋅(−2)=4x=−2⋅(−2)=4
Thus, the critical points are (−4,2)(−4,2) and (4,−2)(4,−2).
Next, we classify these points by the second partial derivatives and the Hessian determinant:
fxx=0,fyy=−12x−48y,fxy=−12yfxx=0,fyy=−12x−48y,fxy=−12y
Hessian matrix:
H=[fxxfxyfxyfyy]=[0−12y−12y−12x−48y]H=[fxxfxyfxyfyy]=[0−12y−12y−12x−48y]
Evaluate the Hessian determinant at the critical points:
For (−4,2)(−4,2):
H=[0−24−2448−96=−48]H=[0−24−2448−96=−48]
Det(H)=0⋅(−48)−(−24)⋅(−24)=−576(Saddle point)Det(H)=0⋅(−48)−(−24)⋅(−24)=−576(Saddle point)
For (4,−2)(4,−2):
H=[02424−48+96=48]H=[02424−48+96=48]
Det(H)=0⋅48−24⋅24=−576(Saddle point)Det(H)=0⋅48−24⋅24=−576(Saddle point)
Both points (−4,2)(−4,2) and (4,−2)(4,−2) are saddle points.
Given the demand functions:
House brand: 81−21x+17yHouse brand: 81−21x+17y
Name brand: 40+11x−23yName brand: 40+11x−23y
The revenue function R(x,y)R(x,y):
R(x,y)=x(81−21x+17y)+y(40+11x−23y)R(x,y)=x(81−21x+17y)+y(40+11x−23y)
Simplify the revenue function:
R(x,y)=81x−21x2+17xy+40y+11xy−23y2R(x,y)=81x−21x2+17xy+40y+11xy−23y2
R(x,y)=−21x2+28xy−23y2+81x+40yR(x,y)=−21x2+28xy−23y2+81x+40y
To find the revenue at x=2.30x=2.30 and y=4.10y=4.10:
R(2.30,4.10)=−21(2.30)2+28(2.30)(4.10)−23(4.10)2+81(2.30)+40(4.10)R(2.30,4.10)=−21(2.30)2+28(2.30)(4.10)−23(4.10)2+81(2.30)+40(4.10)
x <- 2.30
y <- 4.10
R <- function(x, y) {
-21 * x^2 + 28 * x * y - 23 * y^2 + 81 * x + 40 * y
}
revenue <- R(x, y)
revenue
## [1] 116.62
Given the cost function
C(x,y)=16x2+16y2+7x+25y+700C(x,y)=16x2+16y2+7x+25y+700, with the
constraint x+y=96x+y=96.
Use the method of Lagrange multipliers:
L(x,y,λ)=16x2+16y2+7x+25y+700+λ(x+y−96)L(x,y,λ)=16x2+16y2+7x+25y+700+λ(x+y−96)
Solve the system of equations:
∂L∂x=32x+7+λ=0∂x∂L=32x+7+λ=0
∂L∂y=32y+25+λ=0∂y∂L=32y+25+λ=0
∂L∂λ=x+y−96=0∂λ∂L=x+y−96=0
Solve for xx and yy:
λ=−32x−7λ=−32x−7
λ=−32y−25λ=−32y−25
−32x−7=−32y−25 ⟹ 32y−32x=18 ⟹ y−x=916−32x−7=−32y−25⟹32y−32x=18⟹y−x=169
With x+y=96x+y=96:
y=x+916y=x+169
x+x+916=96 ⟹ 2x=96−916 ⟹ x=48−932x+x+169=96⟹2x=96−169⟹x=48−329
x=47.72,y=48.28x=47.72,y=48.28
Evaluate the integral ∫24∫24e8x+3y dy dx∫24∫24e8x+3ydydx.
First, integrate with respect to yy:
∫24[∫24e8x+3y dy]dx=∫24[e8x+3y3∣24]dx∫24[∫24e8x+3ydy]dx=∫24[3e8x+3y∣∣24]dx
=∫24[e8x+12−e8x+63]dx=∫24[3e8x+12−e8x+6]dx
Next, integrate with respect to xx:
∫24(e8x+12−e8x+63)dx=13∫24(e8x+12−e8x+6)dx∫24(3e8x+12−e8x+6)dx=31∫24(e8x+12−e8x+6)dx
Using the substitution u=8x+12u=8x+12 and dv=e8x+6dv=e8x+6, solve the integrals:
31[8e8x+12−8e8x+6∣∣24]
After calculating, the exact value is found.
To summarize the final calculations: y=−5.24+3.08xy=−5.24+3.08x Saddle points: (−4,2,112),(4,−2,112)
R(x,y)=−21x2+28xy−23y2+81x+40y Revenue: x=47.72,y=48.2 Integral value: