cor.test(as.numeric(b$bias), b$reliability) #page 5: R = -0.35
## Warning in cor.test(as.numeric(b$bias), b$reliability): NAs introduced by
## coercion
##
## Pearson's product-moment correlation
##
## data: as.numeric(b$bias) and b$reliability
## t = -2.1345, df = 32, p-value = 0.04056
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.6174788 -0.0168784
## sample estimates:
## cor
## -0.3530291
mean(d$education, na.rm = T) #page 6
## [1] 14.63202
sd(d$education, na.rm = T) #page 6
## [1] 2.622589
mean(d$CRT, na.rm = T) #page 6
## [1] 0.404966
sd(d$CRT, na.rm = T) #page 6
## [1] 0.3141821
corr.test(af$bias.af[af$country == "US"], af$bias.as[af$country == "US"]) #page 7
## Call:corr.test(x = af$bias.af[af$country == "US"], y = af$bias.as[af$country ==
## "US"])
## Correlation matrix
## [1] 0.97
## Sample Size
## [1] 18
## These are the unadjusted probability values.
## The probability values adjusted for multiple tests are in the p.adj object.
## [1] 0
##
## To see confidence intervals of the correlations, print with the short=FALSE option
cor.test(af$bias.af[af$country == "US"], af$reliability[af$country == "US"])
##
## Pearson's product-moment correlation
##
## data: af$bias.af[af$country == "US"] and af$reliability[af$country == "US"]
## t = -3.1192, df = 17, p-value = 0.006243
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8300629 -0.2053931
## sample estimates:
## cor
## -0.603318
library(apaTables)
corr <- data.frame(d$vaxxIntent.w1w2.z)
colnames(corr)[colnames(corr) == "d.vaxxIntent.w1w2.z"] <- "vaxxIntentions"
corr$trustSci <- d$trustSci.z
corr$Age <- d$age.z
corr$Education <- d$education.z
corr$Ethnicity <- d$white_1
corr$Ideology <- d$ideology.z
corr$CRT <- d$crt.z
corr$CMC.2020 <- d$bias.mean.1.15.z
corr$CMC.2022 <- d$bias.mean.3.20.z
corr$DMC.2020 <- d$bias.sd.w1w2.15.z
corr$DMC.2022 <- d$bias.sd.3.20.z
# create APA table
apa.cor.table(
corr,
filename = "Table1.doc",
table.number = 1,
show.conf.interval = FALSE,
show.sig.stars = TRUE,
landscape = TRUE
)
## The ability to suppress reporting of reporting confidence intervals has been deprecated in this version.
## The function argument show.conf.interval will be removed in a later version.
##
##
## Table 1
##
## Means, standard deviations, and correlations with confidence intervals
##
##
## Variable M SD 1 2 3
## 1. vaxxIntentions -0.00 1.00
##
## 2. trustSci 0.00 1.00 .40**
## [.34, .45]
##
## 3. Age 0.27 0.93 .17** .06
## [.10, .23] [-.00, .13]
##
## 4. Education 0.12 0.91 .07* .13** -.00
## [.01, .13] [.07, .19] [-.07, .06]
##
## 5. Ideology 0.07 1.07 -.18** -.45** .13**
## [-.24, -.11] [-.50, -.40] [.07, .19]
##
## 6. CRT 0.00 1.00 .10** .14** .03
## [.04, .16] [.08, .20] [-.03, .10]
##
## 7. CMC.2020 0.00 1.00 -.21** -.32** .13**
## [-.27, -.14] [-.38, -.26] [.07, .20]
##
## 8. CMC.2022 0.00 1.00 -.20** -.51** -.03
## [-.26, -.13] [-.56, -.46] [-.09, .04]
##
## 9. DMC.2020 0.00 1.00 .23** .09** -.03
## [.17, .29] [.03, .15] [-.09, .04]
##
## 10. DMC.2022 -0.00 1.00 .19** -.03 -.10**
## [.13, .25] [-.09, .03] [-.17, -.04]
##
## 4 5 6 7 8 9
##
##
##
##
##
##
##
##
##
##
##
## -.06
## [-.12, .00]
##
## .21** .01
## [.15, .27] [-.06, .07]
##
## -.02 .49** .14**
## [-.08, .04] [.44, .54] [.08, .21]
##
## -.07* .53** .03 .66**
## [-.13, -.00] [.48, .57] [-.03, .09] [.62, .69]
##
## -.02 -.08* -.17** -.48** -.22**
## [-.08, .04] [-.14, -.02] [-.23, -.11] [-.52, -.43] [-.28, -.16]
##
## -.04 -.10** -.24** -.42** -.17** .61**
## [-.10, .03] [-.16, -.04] [-.30, -.18] [-.47, -.37] [-.23, -.11] [.56, .64]
##
##
## Note. M and SD are used to represent mean and standard deviation, respectively.
## Values in square brackets indicate the 95% confidence interval.
## The confidence interval is a plausible range of population correlations
## that could have caused the sample correlation (Cumming, 2014).
## * indicates p < .05. ** indicates p < .01.
##
m.vaxx <- polr(vaxxBehavior ~ bias.mean.3.20.z * bias.sd.3.20.z +
(bias.mean.3.20.z + bias.sd.3.20.z) *
(crt.z + ideology.z + white_.5 + age.z + education.z), data = d, Hess = TRUE)
tab_model(m.vaxx,
string.est = "OR",
dv.labels = "Standardized Vaccination Behavior",
pred.labels = c("1|2",
"2|3",
"Conservative Media Consumption (CMC)",
"Diversity ofMedia Consumption (DMC)",
"Cognitive Reflection (CRT)",
"Ideology",
"Ethnicity",
"Age",
"Education",
"CMC x DMC",
"CMC x CRT",
"CMC x Ideology",
"CMC x Ethnicity",
"CMC x Age",
"CMC x Education",
"DMC x CRT",
"DMC x Ideology",
"DMC x Ethnicity",
"DMC x Age",
"DMC x Education"),
show.stat = T,
show.se = T,
string.se = "SE",
string.stat = "t",
digits = 2)
| Standardized Vaccination Behavior | |||||
|---|---|---|---|---|---|
| Predictors | OR | SE | CI | t | p |
| 1|2 | 0.20 | 0.02 | 0.15 – 0.25 | -13.76 | <0.001 |
| 2|3 | 0.55 | 0.06 | 0.45 – 0.68 | -5.63 | <0.001 |
| Conservative Media Consumption (CMC) | 0.52 | 0.07 | 0.40 – 0.66 | -5.16 | <0.001 |
| Diversity ofMedia Consumption (DMC) | 1.53 | 0.16 | 1.26 – 1.88 | 4.19 | <0.001 |
| Cognitive Reflection (CRT) | 1.22 | 0.11 | 1.03 – 1.45 | 2.28 | 0.023 |
| Ideology | 0.77 | 0.07 | 0.65 – 0.91 | -3.03 | 0.003 |
| Ethnicity | 0.91 | 0.16 | 0.64 – 1.29 | -0.50 | 0.617 |
| Age | 1.74 | 0.15 | 1.47 – 2.07 | 6.32 | <0.001 |
| Education | 1.35 | 0.12 | 1.14 – 1.61 | 3.43 | 0.001 |
| CMC x DMC | 1.47 | 0.20 | 1.13 – 1.92 | 2.91 | 0.004 |
| CMC x CRT | 1.01 | 0.09 | 0.85 – 1.19 | 0.07 | 0.944 |
| CMC x Ideology | 0.93 | 0.08 | 0.79 – 1.10 | -0.83 | 0.405 |
| CMC x Ethnicity | 0.82 | 0.17 | 0.55 – 1.22 | -0.99 | 0.325 |
| CMC x Age | 0.92 | 0.09 | 0.76 – 1.12 | -0.79 | 0.427 |
| CMC x Education | 0.95 | 0.10 | 0.78 – 1.16 | -0.54 | 0.586 |
| DMC x CRT | 1.05 | 0.10 | 0.88 – 1.27 | 0.57 | 0.571 |
| DMC x Ideology | 1.10 | 0.09 | 0.94 – 1.29 | 1.15 | 0.249 |
| DMC x Ethnicity | 0.82 | 0.14 | 0.58 – 1.14 | -1.18 | 0.237 |
| DMC x Age | 1.03 | 0.10 | 0.86 – 1.25 | 0.35 | 0.727 |
| DMC x Education | 0.93 | 0.07 | 0.80 – 1.07 | -0.94 | 0.346 |
| Observations | 909 | ||||
| R2 Nagelkerke | 0.416 | ||||
d$hi.diversity <- d$bias.sd.3.20.z - 1
d$low.diversity <- d$bias.sd.3.20.z + 1
m.low <- polr(vaxxBehavior ~ (bias.mean.3.20.z * low.diversity) +
(bias.mean.3.20.z + low.diversity) *
(crt.z + ideology.z + white_.5 + age.z + education.z), data = d, Hess = TRUE)
m.hi <- polr(vaxxBehavior ~ (bias.mean.3.20.z * hi.diversity) +
(bias.mean.3.20.z + hi.diversity) *
(crt.z + ideology.z + white_.5 + age.z + education.z), data = d, Hess = TRUE)
tab_model(m.low, m.vaxx, m.hi,
string.est = "OR",
title = "Outcome: Standardized Vaccination Behavior",
dv.labels = c("Low diversity","Mean", "High diversity"),
pred.labels = c("1|2",
"2|3",
"Conservative Media Consumption (CMC)",
"Diversity of Media Consumption (DMC)",
"Cognitive Reflection (CRT)",
"Ideology",
"Ethnicity",
"Age",
"Education",
"CMC x DMC",
"CMC x CRT",
"CMC x Ideology",
"CMC x Ethnicity",
"CMC x Age",
"CMC x Education",
"DMC x CRT",
"DMC x Ideology",
"DMC x Ethnicity",
"DMC x Age",
"DMC x Education"),
show.stat = T,
show.se = T,
string.se = "SE",
string.stat = "t",
digits = 2)
## Length of `pred.labels` does not equal number of predictors, no labelling applied.
| Low diversity | Mean | High diversity | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | OR | SE | CI | t | p | OR | SE | CI | t | p | OR | SE | CI | t | p |
| 1|2 | 0.30 | 0.04 | 0.23 – 0.39 | -8.58 | <0.001 | 0.20 | 0.02 | 0.15 – 0.25 | -13.76 | <0.001 | 0.13 | 0.02 | 0.09 – 0.18 | -12.09 | <0.001 |
| 2|3 | 0.85 | 0.11 | 0.65 – 1.10 | -1.25 | 0.212 | 0.55 | 0.06 | 0.45 – 0.68 | -5.63 | <0.001 | 0.36 | 0.06 | 0.27 – 0.49 | -6.46 | <0.001 |
| bias.mean.3.20.z | 0.35 | 0.08 | 0.22 – 0.54 | -4.65 | <0.001 | 0.52 | 0.07 | 0.40 – 0.66 | -5.16 | <0.001 | 0.76 | 0.10 | 0.59 – 0.99 | -2.04 | 0.042 |
| low.diversity | 1.53 | 0.16 | 1.26 – 1.88 | 4.19 | <0.001 | ||||||||||
| crt.z | 1.16 | 0.13 | 0.93 – 1.44 | 1.33 | 0.183 | 1.22 | 0.11 | 1.03 – 1.45 | 2.28 | 0.023 | 1.29 | 0.18 | 0.98 – 1.71 | 1.76 | 0.079 |
| ideology.z | 0.70 | 0.08 | 0.56 – 0.87 | -3.14 | 0.002 | 0.77 | 0.07 | 0.65 – 0.91 | -3.03 | 0.003 | 0.85 | 0.10 | 0.66 – 1.08 | -1.35 | 0.178 |
| white_.5 | 1.12 | 0.27 | 0.69 – 1.81 | 0.47 | 0.640 | 0.91 | 0.16 | 0.64 – 1.29 | -0.50 | 0.617 | 0.75 | 0.19 | 0.45 – 1.21 | -1.17 | 0.242 |
| age.z | 1.68 | 0.19 | 1.35 – 2.11 | 4.52 | <0.001 | 1.74 | 0.15 | 1.47 – 2.07 | 6.32 | <0.001 | 1.80 | 0.25 | 1.37 – 2.38 | 4.17 | <0.001 |
| education.z | 1.45 | 0.18 | 1.14 – 1.87 | 2.93 | 0.004 | 1.35 | 0.12 | 1.14 – 1.61 | 3.43 | 0.001 | 1.26 | 0.13 | 1.02 – 1.53 | 2.27 | 0.023 |
| bias.mean.3.20.z:low.diversity | 1.47 | 0.20 | 1.13 – 1.92 | 2.91 | 0.004 | ||||||||||
| bias.mean.3.20.z:crt.z | 1.01 | 0.09 | 0.85 – 1.19 | 0.07 | 0.944 | 1.01 | 0.09 | 0.85 – 1.19 | 0.07 | 0.944 | 1.01 | 0.09 | 0.85 – 1.19 | 0.07 | 0.944 |
| bias.mean.3.20.z:ideology.z | 0.93 | 0.08 | 0.79 – 1.10 | -0.83 | 0.405 | 0.93 | 0.08 | 0.79 – 1.10 | -0.83 | 0.405 | 0.93 | 0.08 | 0.79 – 1.10 | -0.83 | 0.405 |
| bias.mean.3.20.z:white_.5 | 0.82 | 0.17 | 0.55 – 1.22 | -0.99 | 0.325 | 0.82 | 0.17 | 0.55 – 1.22 | -0.99 | 0.325 | 0.82 | 0.17 | 0.55 – 1.22 | -0.99 | 0.325 |
| bias.mean.3.20.z:age.z | 0.92 | 0.09 | 0.76 – 1.12 | -0.79 | 0.427 | 0.92 | 0.09 | 0.76 – 1.12 | -0.79 | 0.427 | 0.92 | 0.09 | 0.76 – 1.12 | -0.79 | 0.427 |
| bias.mean.3.20.z:education.z | 0.95 | 0.10 | 0.78 – 1.16 | -0.54 | 0.586 | 0.95 | 0.10 | 0.78 – 1.16 | -0.54 | 0.586 | 0.95 | 0.10 | 0.78 – 1.16 | -0.54 | 0.586 |
| low.diversity:crt.z | 1.05 | 0.10 | 0.88 – 1.27 | 0.57 | 0.571 | ||||||||||
| low.diversity:ideology.z | 1.10 | 0.09 | 0.94 – 1.29 | 1.15 | 0.249 | ||||||||||
| low.diversity:white_.5 | 0.82 | 0.14 | 0.58 – 1.14 | -1.18 | 0.237 | ||||||||||
| low.diversity:age.z | 1.03 | 0.10 | 0.86 – 1.25 | 0.35 | 0.727 | ||||||||||
| low.diversity:education.z | 0.93 | 0.07 | 0.80 – 1.07 | -0.94 | 0.346 | ||||||||||
| bias.sd.3.20.z | 1.53 | 0.16 | 1.26 – 1.88 | 4.19 | <0.001 | ||||||||||
| bias.mean.3.20.z:bias.sd.3.20.z | 1.47 | 0.20 | 1.13 – 1.92 | 2.91 | 0.004 | ||||||||||
| bias.sd.3.20.z:crt.z | 1.05 | 0.10 | 0.88 – 1.27 | 0.57 | 0.571 | ||||||||||
| bias.sd.3.20.z:ideology.z | 1.10 | 0.09 | 0.94 – 1.29 | 1.15 | 0.249 | ||||||||||
| bias.sd.3.20.z:white_.5 | 0.82 | 0.14 | 0.58 – 1.14 | -1.18 | 0.237 | ||||||||||
| bias.sd.3.20.z:age.z | 1.03 | 0.10 | 0.86 – 1.25 | 0.35 | 0.727 | ||||||||||
| bias.sd.3.20.z:education.z | 0.93 | 0.07 | 0.80 – 1.07 | -0.94 | 0.346 | ||||||||||
| hi.diversity | 1.53 | 0.16 | 1.26 – 1.88 | 4.19 | <0.001 | ||||||||||
| bias.mean.3.20.z:hi.diversity | 1.47 | 0.20 | 1.13 – 1.92 | 2.91 | 0.004 | ||||||||||
| hi.diversity:crt.z | 1.05 | 0.10 | 0.88 – 1.27 | 0.57 | 0.571 | ||||||||||
| hi.diversity:ideology.z | 1.10 | 0.09 | 0.94 – 1.29 | 1.15 | 0.249 | ||||||||||
| hi.diversity:white_.5 | 0.82 | 0.14 | 0.58 – 1.14 | -1.18 | 0.237 | ||||||||||
| hi.diversity:age.z | 1.03 | 0.10 | 0.86 – 1.25 | 0.35 | 0.727 | ||||||||||
| hi.diversity:education.z | 0.93 | 0.07 | 0.80 – 1.07 | -0.94 | 0.346 | ||||||||||
| Observations | 909 | 909 | 909 | ||||||||||||
| R2 Nagelkerke | 0.416 | 0.416 | 0.416 | ||||||||||||
## just a model to help make sense of the CMC x DMC interaction!
d$vaxx.num <- as.numeric(d$vaxxBehavior)
m.test <- lm(vaxx.num ~ (bias.mean.3.20.z * bias.sd.3.20.z) +
(bias.mean.3.20.z + bias.sd.3.20.z) *
(crt.z + ideology.z + white_.5 + age.z + education.z), data = d)
interact_plot(m.test, bias.mean.3.20.z, bias.sd.3.20.z)
(Fig1A <- ggpredict(m.vaxx, terms = "bias.mean.3.20.z[-3, -2.5, -2, -1.5, -1, -.5, 0, .5, 1, 1.5, 2, 2.5, 3]") %>%
ggplot(mapping = aes(x = x, y = predicted, colour = response.level, fill = response.level)) +
geom_line(size = 1) +
scale_x_continuous(limits = c(-2, 2), breaks = c(-3:3)) +
scale_y_continuous(limits = c(0, 1), breaks = c(0, .1,.2,.3,.4,.5, .6, .7, .8, .9, 1)) +
labs(title = "Predicted Probabilities for Vaccination Behaviors",
x = "Standardized Conservative Media Consumption",
y = "Predicted Probability for Vaccination Behavior Choice") +
theme_minimal() +
theme(plot.title = element_text(size = 12)) + labs(colour = "Vaccination Behavior") +
geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = 0.2, colour = NA))
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: Removed 12 rows containing missing values or values outside the scale range
## (`geom_line()`).
(Fig1B <- ggpredict(m.vaxx, terms = "bias.sd.3.20.z[-3, -2.5, -2, -1.5, -1, -.5, 0, .5, 1, 1.5, 2, 2.5, 3]") %>%
ggplot(mapping = aes(x = x, y = predicted, colour = response.level, fill = response.level)) +
geom_line(size = 1) +
scale_x_continuous(limits = c(-2, 2), breaks = c(-3:3)) +
scale_y_continuous(limits = c(0, 1), breaks = c(0, .1,.2,.3,.4,.5, .6, .7, .8, .9, 1)) +
labs(title = "Predicted Probabilities for Vaccination Behaviors",
x = "Standardized Diversity of Media Consumption",
y = "Predicted Probability for Vaccination Behavior Choice") +
theme_minimal() +
theme(plot.title = element_text(size = 12)) + labs(colour = "Vaccination Behavior") +
geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = 0.2, colour = NA))
## Warning: Removed 12 rows containing missing values or values outside the scale range
## (`geom_line()`).
m2.med <- lm(trustSci.z ~ (bias.mean.3.20.z * bias.sd.3.20.z) +
(bias.mean.3.20.z + bias.sd.3.20.z) *
(crt.z + ideology.z + white_.5 + age.z + education.z), data = d)
tab_model(m2.med,
string.est = "Est",
dv.labels = "Standardized Trust in Science",
pred.labels = c("Intercept",
"Conservative Media Consumption (CMC)",
"Diversity of Media Consumption (DMC)",
"Cognitive Reflection (CRT)",
"Ideology",
"Ethnicity",
"Age",
"Education",
"CMC x DMC",
"CMC x CRT",
"CMC x Ideology",
"CMC x Ethnicity",
"CMC x Age",
"CMC x Education",
"DMC x CRT",
"DMC x Ideology",
"DMC x Ethnicity",
"DMC x Age",
"DMC x Education"),
show.stat = T,
show.se = T,
string.se = "SE",
string.stat = "t",
digits = 2)
| Standardized Trust in Science | |||||
|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p |
| Intercept | 0.02 | 0.04 | -0.05 – 0.09 | 0.64 | 0.521 |
| Conservative Media Consumption (CMC) | -0.53 | 0.04 | -0.62 – -0.44 | -11.94 | <0.001 |
| Diversity of Media Consumption (DMC) | -0.07 | 0.03 | -0.14 – -0.01 | -2.15 | 0.032 |
| Cognitive Reflection (CRT) | 0.10 | 0.03 | 0.04 – 0.16 | 3.40 | 0.001 |
| Ideology | -0.23 | 0.03 | -0.28 – -0.17 | -7.49 | <0.001 |
| Ethnicity | 0.19 | 0.06 | 0.07 – 0.32 | 3.05 | 0.002 |
| Age | 0.07 | 0.03 | 0.01 – 0.13 | 2.33 | 0.020 |
| Education | 0.06 | 0.03 | -0.00 – 0.12 | 1.89 | 0.059 |
| CMC x DMC | 0.21 | 0.04 | 0.12 – 0.30 | 4.76 | <0.001 |
| CMC x CRT | -0.01 | 0.03 | -0.07 – 0.04 | -0.46 | 0.646 |
| CMC x Ideology | -0.01 | 0.03 | -0.06 – 0.04 | -0.43 | 0.668 |
| CMC x Ethnicity | -0.08 | 0.06 | -0.20 – 0.05 | -1.23 | 0.218 |
| CMC x Age | 0.06 | 0.03 | -0.00 – 0.12 | 1.93 | 0.054 |
| CMC x Education | 0.02 | 0.04 | -0.05 – 0.09 | 0.66 | 0.508 |
| DMC x CRT | 0.03 | 0.03 | -0.04 – 0.09 | 0.85 | 0.396 |
| DMC x Ideology | 0.05 | 0.03 | -0.00 – 0.11 | 1.81 | 0.070 |
| DMC x Ethnicity | -0.08 | 0.06 | -0.20 – 0.04 | -1.33 | 0.182 |
| DMC x Age | 0.10 | 0.03 | 0.04 – 0.16 | 3.17 | 0.002 |
| DMC x Education | -0.04 | 0.02 | -0.09 – 0.00 | -1.77 | 0.077 |
| Observations | 908 | ||||
| R2 / R2 adjusted | 0.396 / 0.383 | ||||
round(etaSquared(m2.med),3)
## eta.sq eta.sq.part
## bias.mean.3.20.z 0.112 0.156
## bias.sd.3.20.z 0.003 0.005
## crt.z 0.007 0.012
## ideology.z 0.038 0.060
## white_.5 0.007 0.011
## age.z 0.003 0.005
## education.z 0.002 0.003
## bias.mean.3.20.z:bias.sd.3.20.z 0.015 0.025
## bias.mean.3.20.z:crt.z 0.000 0.000
## bias.mean.3.20.z:ideology.z 0.000 0.000
## bias.mean.3.20.z:white_.5 0.001 0.002
## bias.mean.3.20.z:age.z 0.003 0.004
## bias.mean.3.20.z:education.z 0.000 0.000
## bias.sd.3.20.z:crt.z 0.000 0.001
## bias.sd.3.20.z:ideology.z 0.002 0.004
## bias.sd.3.20.z:white_.5 0.001 0.002
## bias.sd.3.20.z:age.z 0.007 0.011
## bias.sd.3.20.z:education.z 0.002 0.004
m2.low <- lm(trustSci.z ~ (bias.mean.3.20.z * low.diversity) +
(bias.mean.3.20.z + low.diversity) *
(crt.z + ideology.z + white_.5 + age.z + education.z), data = d)
m2.hi <- lm(trustSci.z ~ (bias.mean.3.20.z * hi.diversity) +
(bias.mean.3.20.z + hi.diversity) *
(crt.z + ideology.z + white_.5 + age.z + education.z), data = d)
tab_model(m2.low, m2.hi,
string.est = "Est",
dv.labels = "Standardized Trust in Science",
pred.labels = c("Intercept",
"Conservative Media Consumption (CMC)",
"Diversity of Media Consumption (DMC)",
"Cognitive Reflection (CRT)",
"Ideology",
"Ethnicity",
"Age",
"Education",
"CMC x DMC",
"CMC x CRT",
"CMC x Ideology",
"CMC x Ethnicity",
"CMC x Age",
"CMC x Education",
"DMC x CRT",
"DMC x Ideology",
"DMC x Ethnicity",
"DMC x Age",
"DMC x Education"),
show.stat = T,
show.se = T,
string.se = "SE",
string.stat = "t",
digits = 2)
## Length of `pred.labels` does not equal number of predictors, no labelling applied.
| Standardized Trust in Science | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | Est | SE | CI | t | p |
| (Intercept) | 0.09 | 0.05 | 0.00 – 0.19 | 1.99 | 0.047 | -0.05 | 0.05 | -0.15 – 0.05 | -0.96 | 0.339 |
| bias.mean.3.20.z | -0.74 | 0.08 | -0.89 – -0.59 | -9.63 | <0.001 | -0.32 | 0.04 | -0.41 – -0.23 | -7.27 | <0.001 |
| low.diversity | -0.07 | 0.03 | -0.14 – -0.01 | -2.15 | 0.032 | |||||
| crt.z | 0.07 | 0.04 | -0.01 – 0.15 | 1.80 | 0.073 | 0.13 | 0.05 | 0.04 – 0.22 | 2.73 | 0.006 |
| ideology.z | -0.28 | 0.04 | -0.36 – -0.20 | -6.76 | <0.001 | -0.17 | 0.04 | -0.26 – -0.09 | -4.24 | <0.001 |
| white_.5 | 0.27 | 0.09 | 0.10 – 0.45 | 3.05 | 0.002 | 0.11 | 0.08 | -0.05 – 0.28 | 1.35 | 0.176 |
| age.z | -0.03 | 0.04 | -0.11 – 0.05 | -0.71 | 0.478 | 0.17 | 0.04 | 0.08 – 0.26 | 3.74 | <0.001 |
| education.z | 0.10 | 0.04 | 0.02 – 0.19 | 2.33 | 0.020 | 0.02 | 0.04 | -0.05 – 0.08 | 0.44 | 0.658 |
| bias.mean.3.20.z:low.diversity | 0.21 | 0.04 | 0.12 – 0.30 | 4.76 | <0.001 | |||||
| bias.mean.3.20.z:crt.z | -0.01 | 0.03 | -0.07 – 0.04 | -0.46 | 0.646 | -0.01 | 0.03 | -0.07 – 0.04 | -0.46 | 0.646 |
| bias.mean.3.20.z:ideology.z | -0.01 | 0.03 | -0.06 – 0.04 | -0.43 | 0.668 | -0.01 | 0.03 | -0.06 – 0.04 | -0.43 | 0.668 |
| bias.mean.3.20.z:white_.5 | -0.08 | 0.06 | -0.20 – 0.05 | -1.23 | 0.218 | -0.08 | 0.06 | -0.20 – 0.05 | -1.23 | 0.218 |
| bias.mean.3.20.z:age.z | 0.06 | 0.03 | -0.00 – 0.12 | 1.93 | 0.054 | 0.06 | 0.03 | -0.00 – 0.12 | 1.93 | 0.054 |
| bias.mean.3.20.z:education.z | 0.02 | 0.04 | -0.05 – 0.09 | 0.66 | 0.508 | 0.02 | 0.04 | -0.05 – 0.09 | 0.66 | 0.508 |
| low.diversity:crt.z | 0.03 | 0.03 | -0.04 – 0.09 | 0.85 | 0.396 | |||||
| low.diversity:ideology.z | 0.05 | 0.03 | -0.00 – 0.11 | 1.81 | 0.070 | |||||
| low.diversity:white_.5 | -0.08 | 0.06 | -0.20 – 0.04 | -1.33 | 0.182 | |||||
| low.diversity:age.z | 0.10 | 0.03 | 0.04 – 0.16 | 3.17 | 0.002 | |||||
| low.diversity:education.z | -0.04 | 0.02 | -0.09 – 0.00 | -1.77 | 0.077 | |||||
| hi.diversity | -0.07 | 0.03 | -0.14 – -0.01 | -2.15 | 0.032 | |||||
| bias.mean.3.20.z:hi.diversity | 0.21 | 0.04 | 0.12 – 0.30 | 4.76 | <0.001 | |||||
| hi.diversity:crt.z | 0.03 | 0.03 | -0.04 – 0.09 | 0.85 | 0.396 | |||||
| hi.diversity:ideology.z | 0.05 | 0.03 | -0.00 – 0.11 | 1.81 | 0.070 | |||||
| hi.diversity:white_.5 | -0.08 | 0.06 | -0.20 – 0.04 | -1.33 | 0.182 | |||||
| hi.diversity:age.z | 0.10 | 0.03 | 0.04 – 0.16 | 3.17 | 0.002 | |||||
| hi.diversity:education.z | -0.04 | 0.02 | -0.09 – 0.00 | -1.77 | 0.077 | |||||
| Observations | 908 | 908 | ||||||||
| R2 / R2 adjusted | 0.396 / 0.383 | 0.396 / 0.383 | ||||||||
#create plot
(p2 <- plot_model(m2.med, type = "pred", terms = c("bias.mean.3.20.z", "bias.sd.3.20.z [-1, 0, 1]")) +
ggtitle("") +
ylab("") +
xlab("Conservative Media Consumption") +
xlim(-2, 2) +
ylim(-3, 2) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
legend.position = c(0.8, 0.8),
legend.background = element_rect(fill = "white", color = "white"),
legend.title = element_blank()) +
scale_color_manual( labels = c("Low (-1 SD)", "Mean", "High (+1 SD)"),
values = c("blue", "purple", "red")) +
scale_fill_manual(values = c("blue", "purple", "red")) +
scale_y_continuous(breaks = c(-2.993, -1.775, -0.558, 0.660, 1.878),
limits = c(-3.193, 2.2),
labels = c("Strongly distrust",
"Moderately distrust",
"Neither trust nor distrust",
"Moderately trust",
"Strongly trust"))
)
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## Warning: A numeric `legend.position` argument in `theme()` was deprecated in ggplot2
## 3.5.0.
## ℹ Please use the `legend.position.inside` argument of `theme()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_line()`).
m.vaxx.long <- polr(vaxxBehavior ~ (bias.mean.3.20.z * bias.sd.3.20.z) +
(bias.mean.w1w2.15.z * bias.sd.w1w2.15.z) +
(bias.mean.3.20.z + bias.sd.3.20.z + bias.mean.w1w2.15.z + bias.sd.w1w2.15.z) *
(crt.z + ideology.z + white_.5 + age.z + education.z) +
vaxxIntent.w1w2.z,
data = d, Hess = TRUE)
tab_model(m.vaxx.long,
string.est = "OR",
dv.labels = "Standardized Vaccination Behavior",
pred.labels = c("1|2",
"2|3",
"Conservative Media Consumption 2022 (CMC 2022)",
"Diversity of Media Consumption 2022 (DMC 2022)",
"Conservative Media Consumption 2020 (CMC 2020)",
"Diversity of Media Consumption 2020 (DMC 2020)",
"Cognitive Reflection (CRT)",
"Ideology",
"Ethnicity",
"Age",
"Education",
"Vaccination Intention 2020",
"CMC 2022 x DMC22",
"CMC 2020 x DMC20",
"CMC 2022 x CRT",
"CMC 2022 x Ideology",
"CMC 2022 x Ethnicity",
"CMC 2022 x Age",
"CMC 2022 x Education",
"DMC 2022 x CRT",
"DMC 2022 x Ideology",
"DMC 2022 x Ethnicity",
"DMC 2022 x Age",
"DMC 2022 x Education",
"CMC 2020 x CRT",
"CMC 2020 x Ideology",
"CMC 2020 x Ethnicity",
"CMC 2020 x Age",
"CMC 2020 x Education",
"DMC 2020 x CRT",
"DMC 2020 x Ideology",
"DMC 2020 x Ethnicity",
"DMC 2020 x Age",
"DMC 2020 x Education"),
show.stat = T,
show.se = T,
string.se = "SE",
string.stat = "t",
digits = 2)
| Standardized Vaccination Behavior | |||||
|---|---|---|---|---|---|
| Predictors | OR | SE | CI | t | p |
| 1|2 | 0.11 | 0.02 | 0.08 – 0.15 | -14.28 | <0.001 |
| 2|3 | 0.44 | 0.06 | 0.34 – 0.56 | -6.38 | <0.001 |
| Conservative Media Consumption 2022 (CMC 2022) | 0.56 | 0.10 | 0.39 – 0.78 | -3.34 | 0.001 |
| Diversity of Media Consumption 2022 (DMC 2022) | 1.52 | 0.21 | 1.16 – 2.00 | 3.01 | 0.003 |
| Conservative Media Consumption 2020 (CMC 2020) | 0.89 | 0.18 | 0.60 – 1.32 | -0.59 | 0.552 |
| Diversity of Media Consumption 2020 (DMC 2020) | 0.78 | 0.11 | 0.59 – 1.02 | -1.78 | 0.076 |
| Cognitive Reflection (CRT) | 1.07 | 0.10 | 0.89 – 1.30 | 0.74 | 0.460 |
| Ideology | 0.83 | 0.08 | 0.68 – 1.00 | -1.97 | 0.049 |
| Ethnicity | 0.79 | 0.16 | 0.54 – 1.16 | -1.19 | 0.234 |
| Age | 1.55 | 0.15 | 1.28 – 1.87 | 4.50 | <0.001 |
| Education | 1.35 | 0.13 | 1.12 – 1.62 | 3.14 | 0.002 |
| Vaccination Intention 2020 | 3.02 | 0.27 | 2.53 – 3.62 | 12.13 | <0.001 |
| CMC 2022 x DMC22 | 1.29 | 0.20 | 0.94 – 1.75 | 1.60 | 0.111 |
| CMC 2020 x DMC20 | 1.39 | 0.15 | 1.13 – 1.71 | 3.14 | 0.002 |
| CMC 2022 x CRT | 0.85 | 0.11 | 0.65 – 1.10 | -1.27 | 0.206 |
| CMC 2022 x Ideology | 0.97 | 0.12 | 0.75 – 1.25 | -0.27 | 0.785 |
| CMC 2022 x Ethnicity | 1.60 | 0.48 | 0.89 – 2.88 | 1.58 | 0.115 |
| CMC 2022 x Age | 0.67 | 0.10 | 0.50 – 0.89 | -2.76 | 0.006 |
| CMC 2022 x Education | 0.99 | 0.15 | 0.75 – 1.33 | -0.05 | 0.957 |
| DMC 2022 x CRT | 1.06 | 0.13 | 0.83 – 1.36 | 0.46 | 0.647 |
| DMC 2022 x Ideology | 0.83 | 0.10 | 0.64 – 1.06 | -1.51 | 0.130 |
| DMC 2022 x Ethnicity | 0.84 | 0.20 | 0.52 – 1.34 | -0.74 | 0.462 |
| DMC 2022 x Age | 1.04 | 0.13 | 0.81 – 1.35 | 0.34 | 0.736 |
| DMC 2022 x Education | 0.88 | 0.11 | 0.69 – 1.11 | -1.03 | 0.305 |
| CMC 2020 x CRT | 1.35 | 0.21 | 1.00 – 1.82 | 1.97 | 0.049 |
| CMC 2020 x Ideology | 1.02 | 0.15 | 0.77 – 1.35 | 0.12 | 0.902 |
| CMC 2020 x Ethnicity | 0.44 | 0.15 | 0.22 – 0.86 | -2.39 | 0.017 |
| CMC 2020 x Age | 1.20 | 0.18 | 0.89 – 1.63 | 1.22 | 0.225 |
| CMC 2020 x Education | 0.90 | 0.14 | 0.66 – 1.23 | -0.64 | 0.524 |
| DMC 2020 x CRT | 1.12 | 0.13 | 0.90 – 1.41 | 1.02 | 0.310 |
| DMC 2020 x Ideology | 1.35 | 0.16 | 1.08 – 1.71 | 2.57 | 0.010 |
| DMC 2020 x Ethnicity | 0.54 | 0.15 | 0.31 – 0.91 | -2.30 | 0.022 |
| DMC 2020 x Age | 1.09 | 0.13 | 0.87 – 1.39 | 0.75 | 0.454 |
| DMC 2020 x Education | 0.99 | 0.12 | 0.79 – 1.25 | -0.04 | 0.966 |
| Observations | 909 | ||||
| R2 Nagelkerke | 0.570 | ||||
m.analytic <- polr(vaxxBehavior ~ (bias.mean.3.20.z * bias.sd.3.20.z) +
(bias.mean.3.20.z * analytic.mean.3.12.z) +
(bias.sd.3.20.z * analytic.mean.3.12.z) +
(bias.mean.3.20.z + bias.sd.3.20.z + analytic.mean.3.12.z) *
(crt.z + ideology.z + white_.5 + age.z + education.z),
data = d, Hess = TRUE)
m.threat <- polr(vaxxBehavior ~ (bias.mean.3.20.z * bias.sd.3.20.z) +
(bias.mean.3.20.z * threat.mean.3.12.z) +
(threat.mean.3.12.z * bias.sd.3.20.z) +
(bias.mean.3.20.z + bias.sd.3.20.z + threat.mean.3.12.z) *
(crt.z + ideology.z + white_.5 + age.z + education.z),
data = d, Hess = TRUE)
m.posEmo <- polr(vaxxBehavior ~ (bias.mean.3.20.z * bias.sd.3.20.z) +
(bias.mean.3.20.z * posEmo.mean.3.12.z) +
(posEmo.mean.3.12.z * bias.sd.3.20.z) +
(bias.mean.3.20.z + bias.sd.3.20.z + posEmo.mean.3.12.z) *
(crt.z + ideology.z + white_.5 + age.z + education.z),
data = d, Hess = TRUE)
m.negEmo <- polr(vaxxBehavior ~ (bias.mean.3.20.z * bias.sd.3.20.z) +
(bias.mean.3.20.z * negEmo.mean.3.12.z) +
(negEmo.mean.3.12.z * bias.sd.3.20.z) +
(bias.mean.3.20.z + bias.sd.3.20.z + negEmo.mean.3.12.z) *
(crt.z + ideology.z + white_.5 + age.z + education.z),
data = d, Hess = TRUE)
m.affect <- polr(vaxxBehavior ~ (bias.mean.3.20.z * bias.sd.3.20.z) +
(bias.mean.3.20.z * affect.mean.3.12.z) +
(affect.mean.3.12.z * bias.sd.3.20.z) +
(bias.mean.3.20.z + bias.sd.3.20.z + affect.mean.3.12.z) *
(crt.z + ideology.z + white_.5 + age.z + education.z),
data = d, Hess = TRUE)
m.clout <- polr(vaxxBehavior ~ (bias.mean.3.20.z * bias.sd.3.20.z) +
(bias.mean.3.20.z * clout.mean.3.12.z) +
(clout.mean.3.12.z * bias.sd.3.20.z) +
(bias.mean.3.20.z + bias.sd.3.20.z + clout.mean.3.12.z) *
(crt.z + ideology.z + white_.5 + age.z + education.z),
data = d, Hess = TRUE)
m.authentic <- polr(vaxxBehavior ~ (bias.mean.3.20.z * bias.sd.3.20.z) +
(bias.mean.3.20.z * authentic.mean.3.12.z) +
(authentic.mean.3.12.z * bias.sd.3.20.z) +
(bias.mean.3.20.z + bias.sd.3.20.z + authentic.mean.3.12.z) *
(crt.z + ideology.z + white_.5 + age.z + education.z),
data = d, Hess = TRUE)
m.reliability <- polr(vaxxBehavior ~ (bias.mean.3.20.z * bias.sd.3.20.z) +
(bias.mean.3.20.z * rel.mean.3.19.z) +
(rel.mean.3.19.z * bias.sd.3.20.z) +
(bias.mean.3.20.z + bias.sd.3.20.z + rel.mean.3.19.z) *
(crt.z + ideology.z + white_.5 + age.z + education.z),
data = d, Hess = TRUE)
tab_model(m.reliability,
show.se = T,
show.stat = T)
| vaxxBehavior | |||||
|---|---|---|---|---|---|
| Predictors | Odds Ratios | std. Error | CI | Statistic | p |
| 1|2 | 0.19 | 0.02 | 0.15 – 0.24 | -13.21 | <0.001 |
| 2|3 | 0.54 | 0.06 | 0.43 – 0.67 | -5.47 | <0.001 |
| bias mean 3 20 z | 0.73 | 0.15 | 0.48 – 1.09 | -1.55 | 0.122 |
| bias sd 3 20 z | 1.63 | 0.18 | 1.32 – 2.02 | 4.48 | <0.001 |
| rel mean 3 19 z | 1.50 | 0.29 | 1.03 – 2.20 | 2.10 | 0.036 |
| crt z | 1.23 | 0.11 | 1.04 – 1.47 | 2.34 | 0.019 |
| ideology z | 0.76 | 0.07 | 0.64 – 0.91 | -3.10 | 0.002 |
| white 5 | 0.91 | 0.16 | 0.64 – 1.29 | -0.54 | 0.590 |
| age z | 1.75 | 0.16 | 1.47 – 2.09 | 6.27 | <0.001 |
| education z | 1.35 | 0.12 | 1.14 – 1.61 | 3.44 | 0.001 |
|
bias mean 3 20 z × bias sd 3 20 z |
1.93 | 0.48 | 1.19 – 3.14 | 2.66 | 0.008 |
|
bias mean 3 20 z × rel mean 3 19 z |
1.03 | 0.08 | 0.88 – 1.19 | 0.37 | 0.711 |
|
bias sd 3 20 z × rel mean 3 19 z |
1.38 | 0.32 | 0.88 – 2.19 | 1.39 | 0.164 |
| bias mean 3 20 z × crt z | 1.07 | 0.19 | 0.75 – 1.50 | 0.37 | 0.714 |
|
bias mean 3 20 z × ideology z |
1.06 | 0.17 | 0.77 – 1.46 | 0.34 | 0.736 |
|
bias mean 3 20 z × white 5 |
0.80 | 0.29 | 0.39 – 1.64 | -0.61 | 0.540 |
| bias mean 3 20 z × age z | 1.03 | 0.19 | 0.71 – 1.49 | 0.18 | 0.859 |
|
bias mean 3 20 z × education z |
1.05 | 0.19 | 0.73 – 1.51 | 0.27 | 0.789 |
| bias sd 3 20 z × crt z | 1.05 | 0.10 | 0.87 – 1.26 | 0.52 | 0.604 |
|
bias sd 3 20 z × ideology z |
1.10 | 0.09 | 0.93 – 1.29 | 1.12 | 0.265 |
| bias sd 3 20 z × white 5 | 0.80 | 0.14 | 0.57 – 1.13 | -1.24 | 0.215 |
| bias sd 3 20 z × age z | 1.06 | 0.10 | 0.88 – 1.28 | 0.60 | 0.546 |
|
bias sd 3 20 z × education z |
0.95 | 0.07 | 0.81 – 1.10 | -0.67 | 0.506 |
| rel mean 3 19 z × crt z | 1.09 | 0.19 | 0.76 – 1.54 | 0.47 | 0.640 |
|
rel mean 3 19 z × ideology z |
1.12 | 0.19 | 0.80 – 1.56 | 0.65 | 0.518 |
| rel mean 3 19 z × white 5 | 0.90 | 0.34 | 0.43 – 1.86 | -0.29 | 0.771 |
| rel mean 3 19 z × age z | 1.12 | 0.21 | 0.78 – 1.61 | 0.63 | 0.529 |
|
rel mean 3 19 z × education z |
1.12 | 0.20 | 0.78 – 1.61 | 0.65 | 0.518 |
| Observations | 909 | ||||
| R2 Nagelkerke | 0.425 | ||||
tab_model(m.affect, m.analytic, m.authentic, m.clout, m.posEmo, m.negEmo, m.threat, m.reliability,
dv.labels = c("affect", "analytic", "authentic", "clout",
"positive emotion", "negative emotion", "threat", "reliability"),
title = "Outcome: Vaccination Behavior",
pred.labels = c("Intercept"),
string.est = "Est",
show.stat = F,
show.se = F,
show.ci = F,
string.stat = "t",
digits = 2)
## Length of `pred.labels` does not equal number of predictors, no labelling applied.
| affect | analytic | authentic | clout | positive emotion | negative emotion | threat | reliability | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | p | Est | p | Est | p | Est | p | Est | p | Est | p | Est | p | Est | p |
| 1|2 | 0.19 | <0.001 | 0.20 | <0.001 | 0.19 | <0.001 | 0.20 | <0.001 | 0.19 | <0.001 | 0.19 | <0.001 | 0.20 | <0.001 | 0.19 | <0.001 |
| 2|3 | 0.55 | <0.001 | 0.57 | <0.001 | 0.55 | <0.001 | 0.57 | <0.001 | 0.56 | <0.001 | 0.55 | <0.001 | 0.57 | <0.001 | 0.54 | <0.001 |
| bias.mean.3.20.z | 0.50 | <0.001 | 0.51 | <0.001 | 0.52 | <0.001 | 0.52 | <0.001 | 0.51 | <0.001 | 0.50 | <0.001 | 0.50 | <0.001 | 0.73 | 0.122 |
| bias.sd.3.20.z | 1.56 | <0.001 | 1.47 | 0.001 | 1.53 | <0.001 | 1.54 | <0.001 | 1.50 | <0.001 | 1.57 | <0.001 | 1.55 | <0.001 | 1.63 | <0.001 |
| affect.mean.3.12.z | 0.92 | 0.427 | ||||||||||||||
| crt.z | 1.24 | 0.016 | 1.24 | 0.014 | 1.23 | 0.020 | 1.24 | 0.014 | 1.24 | 0.013 | 1.23 | 0.020 | 1.23 | 0.017 | 1.23 | 0.019 |
| ideology.z | 0.77 | 0.003 | 0.76 | 0.002 | 0.76 | 0.001 | 0.76 | 0.002 | 0.77 | 0.003 | 0.76 | 0.002 | 0.77 | 0.002 | 0.76 | 0.002 |
| white_.5 | 0.94 | 0.728 | 0.90 | 0.565 | 0.93 | 0.701 | 0.92 | 0.655 | 0.93 | 0.663 | 0.94 | 0.710 | 0.94 | 0.722 | 0.91 | 0.590 |
| age.z | 1.77 | <0.001 | 1.77 | <0.001 | 1.76 | <0.001 | 1.77 | <0.001 | 1.78 | <0.001 | 1.77 | <0.001 | 1.75 | <0.001 | 1.75 | <0.001 |
| education.z | 1.35 | 0.001 | 1.36 | 0.001 | 1.36 | 0.001 | 1.36 | 0.001 | 1.36 | 0.001 | 1.35 | 0.001 | 1.35 | 0.001 | 1.35 | 0.001 |
| bias.mean.3.20.z:bias.sd.3.20.z | 1.53 | 0.002 | 1.48 | 0.005 | 1.45 | 0.010 | 1.48 | 0.006 | 1.53 | 0.002 | 1.53 | 0.002 | 1.45 | 0.008 | 1.93 | 0.008 |
| bias.mean.3.20.z:affect.mean.3.12.z | 1.14 | 0.170 | ||||||||||||||
| bias.sd.3.20.z:affect.mean.3.12.z | 1.03 | 0.798 | ||||||||||||||
| bias.mean.3.20.z:crt.z | 1.04 | 0.703 | 1.03 | 0.721 | 1.02 | 0.822 | 1.03 | 0.779 | 1.05 | 0.596 | 1.01 | 0.890 | 1.02 | 0.804 | 1.07 | 0.714 |
| bias.mean.3.20.z:ideology.z | 0.90 | 0.253 | 0.90 | 0.249 | 0.88 | 0.187 | 0.93 | 0.416 | 0.90 | 0.221 | 0.91 | 0.311 | 0.92 | 0.324 | 1.06 | 0.736 |
| bias.mean.3.20.z:white_.5 | 0.84 | 0.418 | 0.80 | 0.288 | 0.94 | 0.796 | 0.81 | 0.343 | 0.80 | 0.284 | 0.87 | 0.516 | 0.82 | 0.331 | 0.80 | 0.540 |
| bias.mean.3.20.z:age.z | 0.98 | 0.833 | 0.87 | 0.186 | 0.95 | 0.652 | 0.99 | 0.919 | 0.95 | 0.619 | 0.97 | 0.787 | 0.90 | 0.291 | 1.03 | 0.859 |
| bias.mean.3.20.z:education.z | 0.94 | 0.561 | 0.94 | 0.544 | 0.91 | 0.403 | 0.94 | 0.573 | 0.95 | 0.648 | 0.93 | 0.549 | 0.92 | 0.423 | 1.05 | 0.789 |
| bias.sd.3.20.z:crt.z | 1.07 | 0.490 | 1.05 | 0.593 | 1.05 | 0.577 | 1.05 | 0.574 | 1.07 | 0.489 | 1.06 | 0.520 | 1.07 | 0.478 | 1.05 | 0.604 |
| bias.sd.3.20.z:ideology.z | 1.08 | 0.339 | 1.08 | 0.328 | 1.07 | 0.389 | 1.08 | 0.323 | 1.08 | 0.342 | 1.09 | 0.316 | 1.08 | 0.365 | 1.10 | 0.265 |
| bias.sd.3.20.z:white_.5 | 0.82 | 0.261 | 0.82 | 0.245 | 0.85 | 0.350 | 0.81 | 0.239 | 0.82 | 0.251 | 0.82 | 0.244 | 0.81 | 0.233 | 0.80 | 0.215 |
| bias.sd.3.20.z:age.z | 1.06 | 0.525 | 0.97 | 0.782 | 1.06 | 0.538 | 1.03 | 0.747 | 1.06 | 0.556 | 1.06 | 0.565 | 0.98 | 0.807 | 1.06 | 0.546 |
| bias.sd.3.20.z:education.z | 0.93 | 0.313 | 0.93 | 0.331 | 0.92 | 0.287 | 0.93 | 0.339 | 0.93 | 0.305 | 0.93 | 0.310 | 0.92 | 0.294 | 0.95 | 0.506 |
| affect.mean.3.12.z:crt.z | 0.99 | 0.872 | ||||||||||||||
| affect.mean.3.12.z:ideology.z | 0.89 | 0.177 | ||||||||||||||
| affect.mean.3.12.z:white_.5 | 1.20 | 0.348 | ||||||||||||||
| affect.mean.3.12.z:age.z | 1.25 | 0.019 | ||||||||||||||
| affect.mean.3.12.z:education.z | 0.94 | 0.552 | ||||||||||||||
| analytic.mean.3.12.z | 1.03 | 0.780 | ||||||||||||||
| bias.mean.3.20.z:analytic.mean.3.12.z | 0.88 | 0.162 | ||||||||||||||
| bias.sd.3.20.z:analytic.mean.3.12.z | 0.98 | 0.868 | ||||||||||||||
| analytic.mean.3.12.z:crt.z | 1.00 | 0.972 | ||||||||||||||
| analytic.mean.3.12.z:ideology.z | 1.03 | 0.736 | ||||||||||||||
| analytic.mean.3.12.z:white_.5 | 1.03 | 0.869 | ||||||||||||||
| analytic.mean.3.12.z:age.z | 0.76 | 0.005 | ||||||||||||||
| analytic.mean.3.12.z:education.z | 1.04 | 0.677 | ||||||||||||||
| authentic.mean.3.12.z | 0.99 | 0.942 | ||||||||||||||
| bias.mean.3.20.z:authentic.mean.3.12.z | 0.96 | 0.569 | ||||||||||||||
| bias.sd.3.20.z:authentic.mean.3.12.z | 1.07 | 0.564 | ||||||||||||||
| authentic.mean.3.12.z:crt.z | 0.98 | 0.830 | ||||||||||||||
| authentic.mean.3.12.z:ideology.z | 1.13 | 0.195 | ||||||||||||||
| authentic.mean.3.12.z:white_.5 | 0.83 | 0.390 | ||||||||||||||
| authentic.mean.3.12.z:age.z | 0.94 | 0.581 | ||||||||||||||
| authentic.mean.3.12.z:education.z | 1.12 | 0.374 | ||||||||||||||
| clout.mean.3.12.z | 1.00 | 0.967 | ||||||||||||||
| bias.mean.3.20.z:clout.mean.3.12.z | 1.09 | 0.343 | ||||||||||||||
| bias.sd.3.20.z:clout.mean.3.12.z | 1.03 | 0.814 | ||||||||||||||
| clout.mean.3.12.z:crt.z | 0.99 | 0.937 | ||||||||||||||
| clout.mean.3.12.z:ideology.z | 0.96 | 0.663 | ||||||||||||||
| clout.mean.3.12.z:white_.5 | 1.03 | 0.888 | ||||||||||||||
| clout.mean.3.12.z:age.z | 1.28 | 0.023 | ||||||||||||||
| clout.mean.3.12.z:education.z | 0.98 | 0.845 | ||||||||||||||
| posEmo.mean.3.12.z | 0.94 | 0.552 | ||||||||||||||
| bias.mean.3.20.z:posEmo.mean.3.12.z | 1.17 | 0.080 | ||||||||||||||
| bias.sd.3.20.z:posEmo.mean.3.12.z | 0.95 | 0.618 | ||||||||||||||
| posEmo.mean.3.12.z:crt.z | 1.01 | 0.896 | ||||||||||||||
| posEmo.mean.3.12.z:ideology.z | 0.90 | 0.191 | ||||||||||||||
| posEmo.mean.3.12.z:white_.5 | 1.08 | 0.667 | ||||||||||||||
| posEmo.mean.3.12.z:age.z | 1.28 | 0.010 | ||||||||||||||
| posEmo.mean.3.12.z:education.z | 0.93 | 0.407 | ||||||||||||||
| negEmo.mean.3.12.z | 0.93 | 0.455 | ||||||||||||||
| bias.mean.3.20.z:negEmo.mean.3.12.z | 1.09 | 0.389 | ||||||||||||||
| bias.sd.3.20.z:negEmo.mean.3.12.z | 1.10 | 0.413 | ||||||||||||||
| negEmo.mean.3.12.z:crt.z | 0.96 | 0.659 | ||||||||||||||
| negEmo.mean.3.12.z:ideology.z | 0.89 | 0.207 | ||||||||||||||
| negEmo.mean.3.12.z:white_.5 | 1.26 | 0.239 | ||||||||||||||
| negEmo.mean.3.12.z:age.z | 1.20 | 0.053 | ||||||||||||||
| negEmo.mean.3.12.z:education.z | 0.97 | 0.795 | ||||||||||||||
| threat.mean.3.12.z | 1.06 | 0.571 | ||||||||||||||
| bias.mean.3.20.z:threat.mean.3.12.z | 0.89 | 0.220 | ||||||||||||||
| bias.sd.3.20.z:threat.mean.3.12.z | 0.88 | 0.246 | ||||||||||||||
| threat.mean.3.12.z:crt.z | 1.07 | 0.433 | ||||||||||||||
| threat.mean.3.12.z:ideology.z | 1.02 | 0.834 | ||||||||||||||
| threat.mean.3.12.z:white_.5 | 0.97 | 0.872 | ||||||||||||||
| threat.mean.3.12.z:age.z | 0.76 | 0.003 | ||||||||||||||
| threat.mean.3.12.z:education.z | 0.99 | 0.884 | ||||||||||||||
| rel.mean.3.19.z | 1.50 | 0.036 | ||||||||||||||
| bias.mean.3.20.z:rel.mean.3.19.z | 1.03 | 0.711 | ||||||||||||||
| bias.sd.3.20.z:rel.mean.3.19.z | 1.38 | 0.164 | ||||||||||||||
| rel.mean.3.19.z:crt.z | 1.09 | 0.640 | ||||||||||||||
| rel.mean.3.19.z:ideology.z | 1.12 | 0.518 | ||||||||||||||
| rel.mean.3.19.z:white_.5 | 0.90 | 0.771 | ||||||||||||||
| rel.mean.3.19.z:age.z | 1.12 | 0.529 | ||||||||||||||
| rel.mean.3.19.z:education.z | 1.12 | 0.518 | ||||||||||||||
| Observations | 909 | 909 | 909 | 909 | 909 | 909 | 909 | 909 | ||||||||
| R2 Nagelkerke | 0.424 | 0.424 | 0.420 | 0.421 | 0.426 | 0.421 | 0.425 | 0.425 | ||||||||
cor.test(dUK$ideology.z, dUK$bias.sd.z)
##
## Pearson's product-moment correlation
##
## data: dUK$ideology.z and dUK$bias.sd.z
## t = 0.67006, df = 1500, p-value = 0.5029
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.03331049 0.06781878
## sample estimates:
## cor
## 0.01729839
cor.test(dUK$vaxxIntentions.z, dUK$bias.sd.z)
##
## Pearson's product-moment correlation
##
## data: dUK$vaxxIntentions.z and dUK$bias.sd.z
## t = 2.0983, df = 1500, p-value = 0.03605
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.003527728 0.104391894
## sample estimates:
## cor
## 0.05409781
cor.test(dUK$vaxxIntentions.z, dUK$bias.mean.z)
##
## Pearson's product-moment correlation
##
## data: dUK$vaxxIntentions.z and dUK$bias.mean.z
## t = -4.7414, df = 1500, p-value = 2.324e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.17104469 -0.07137521
## sample estimates:
## cor
## -0.1215162
mean(as.numeric(dUK$age), na.rm = T) #35.35
## Warning in mean(as.numeric(dUK$age), na.rm = T): NAs introduced by coercion
## [1] 35.35425
sd(as.numeric(dUK$age), na.rm = T) #13.35
## Warning in is.data.frame(x): NAs introduced by coercion
## [1] 13.34589
mean(as.numeric(dUS$age), na.rm = T) #48.23
## [1] 48.22771
sd(as.numeric(dUS$age), na.rm = T) #15.55
## [1] 15.55155
m1 <- lm(vaxxIntentions.z ~
(bias.mean.z * bias.sd.z * USvUK) +
(bias.mean.z + bias.sd.z + USvUK) *
(ideology.z + age.z + education.z), data = d2)
m1.us <- lm(vaxxIntentions.z ~
(bias.mean.z * bias.sd.z * US_0) +
(bias.mean.z + bias.sd.z + US_0) *
(ideology.z + age.z + education.z), data = d2)
m1.uk <- lm(vaxxIntentions.z ~
(bias.mean.z * bias.sd.z * UK_0) +
(bias.mean.z + bias.sd.z + UK_0) *
(ideology.z + age.z + education.z), data = d2)
tab_model(m1, m1.us, m1.uk,
dv.labels = c("Country (US = -.5, UK = .5)", "United States (US = 0, UK = 1)", "United Kingdom (US = 1, UK = 0)"),
title = "Outcome: Vaccine Intention",
pred.labels = c("Intercept",
"Conservative Media Consumption (CMC)",
"Diversity ofMedia Consumption (DMC)",
"Country",
"Ideology",
"Age",
"Education",
"CMC x DMC",
"CMC x Country",
"DMC x Country",
"CMC x Ideology",
"CMC x Age",
"CMC x Education",
"DMC x Ideology",
"DMC x Age",
"DMC x Education",
"Country x Ideology",
"Country x Age",
"Country x Education",
"CMC x DMC x Country",
"US",
"CMC x US",
"DMC x US",
"US x Ideology",
"US x Age",
"US x Education",
"CMC x DMC x US",
"UK",
"CMC x UK",
"DMC x UK",
"UK x Ideology",
"UK x Age",
"UK x Education",
"CMC x DMC x UK"
),
string.est = "Est",
show.stat = T,
show.se = T,
show.ci = F,
string.se = "SE",
string.stat = "t",
digits = 2)
| Country (US = -.5, UK = .5) | United States (US = 0, UK = 1) | United Kingdom (US = 1, UK = 0) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | t | p | Est | SE | t | p | Est | SE | t | p |
| Intercept | 0.02 | 0.02 | 1.06 | 0.291 | 0.03 | 0.02 | 1.44 | 0.151 | 0.01 | 0.03 | 0.24 | 0.807 |
| Conservative Media Consumption (CMC) | -0.16 | 0.03 | -6.00 | <0.001 | -0.21 | 0.03 | -7.33 | <0.001 | -0.11 | 0.04 | -2.45 | 0.014 |
| Diversity ofMedia Consumption (DMC) | 0.06 | 0.02 | 3.14 | 0.002 | 0.04 | 0.02 | 1.96 | 0.050 | 0.07 | 0.03 | 2.49 | 0.013 |
| Country | -0.02 | 0.03 | -0.73 | 0.465 | ||||||||
| Ideology | -0.13 | 0.02 | -7.84 | <0.001 | -0.15 | 0.02 | -7.50 | <0.001 | -0.12 | 0.03 | -4.25 | <0.001 |
| Age | 0.10 | 0.02 | 6.16 | <0.001 | 0.17 | 0.02 | 9.72 | <0.001 | 0.02 | 0.03 | 0.75 | 0.454 |
| Education | 0.04 | 0.02 | 2.33 | 0.020 | 0.09 | 0.02 | 4.93 | <0.001 | -0.02 | 0.03 | -0.69 | 0.489 |
| CMC x DMC | 0.02 | 0.02 | 0.76 | 0.445 | 0.06 | 0.02 | 3.10 | 0.002 | -0.03 | 0.04 | -0.67 | 0.504 |
| CMC x Country | 0.10 | 0.05 | 1.89 | 0.059 | ||||||||
| DMC x Country | 0.03 | 0.04 | 0.78 | 0.437 | ||||||||
| CMC x Ideology | 0.01 | 0.01 | 0.69 | 0.489 | 0.01 | 0.01 | 0.69 | 0.489 | 0.01 | 0.01 | 0.69 | 0.489 |
| CMC x Age | 0.05 | 0.02 | 3.40 | 0.001 | 0.05 | 0.02 | 3.40 | 0.001 | 0.05 | 0.02 | 3.40 | 0.001 |
| CMC x Education | 0.01 | 0.01 | 0.87 | 0.386 | 0.01 | 0.01 | 0.87 | 0.386 | 0.01 | 0.01 | 0.87 | 0.386 |
| DMC x Ideology | 0.08 | 0.02 | 4.96 | <0.001 | 0.08 | 0.02 | 4.96 | <0.001 | 0.08 | 0.02 | 4.96 | <0.001 |
| DMC x Age | -0.00 | 0.02 | -0.20 | 0.839 | -0.00 | 0.02 | -0.20 | 0.839 | -0.00 | 0.02 | -0.20 | 0.839 |
| DMC x Education | -0.03 | 0.01 | -2.21 | 0.027 | -0.03 | 0.01 | -2.21 | 0.027 | -0.03 | 0.01 | -2.21 | 0.027 |
| Country x Ideology | 0.03 | 0.03 | 1.01 | 0.311 | ||||||||
| Country x Age | -0.16 | 0.03 | -4.98 | <0.001 | ||||||||
| Country x Education | -0.11 | 0.03 | -3.44 | 0.001 | ||||||||
| CMC x DMC x Country | -0.08 | 0.04 | -1.98 | 0.048 | ||||||||
| US | -0.02 | 0.03 | -0.73 | 0.465 | ||||||||
| CMC x US | 0.10 | 0.05 | 1.89 | 0.059 | ||||||||
| DMC x US | 0.03 | 0.04 | 0.78 | 0.437 | ||||||||
| US x Ideology | 0.03 | 0.03 | 1.01 | 0.311 | ||||||||
| US x Age | -0.16 | 0.03 | -4.98 | <0.001 | ||||||||
| US x Education | -0.11 | 0.03 | -3.44 | 0.001 | ||||||||
| CMC x DMC x US | -0.08 | 0.04 | -1.98 | 0.048 | ||||||||
| UK | 0.02 | 0.03 | 0.73 | 0.465 | ||||||||
| CMC x UK | -0.10 | 0.05 | -1.89 | 0.059 | ||||||||
| DMC x UK | -0.03 | 0.04 | -0.78 | 0.437 | ||||||||
| UK x Ideology | -0.03 | 0.03 | -1.01 | 0.311 | ||||||||
| UK x Age | 0.16 | 0.03 | 4.98 | <0.001 | ||||||||
| UK x Education | 0.11 | 0.03 | 3.44 | 0.001 | ||||||||
| CMC x DMC x UK | 0.08 | 0.04 | 1.98 | 0.048 | ||||||||
| Observations | 4460 | 4460 | 4460 | |||||||||
| R2 / R2 adjusted | 0.100 / 0.097 | 0.100 / 0.097 | 0.100 / 0.097 | |||||||||
round(etaSquared(m1),3)
## eta.sq eta.sq.part
## bias.mean.z 0.012 0.013
## bias.sd.z 0.004 0.005
## USvUK 0.000 0.000
## ideology.z 0.014 0.016
## age.z 0.015 0.016
## education.z 0.002 0.002
## bias.mean.z:bias.sd.z 0.001 0.001
## bias.mean.z:USvUK 0.000 0.000
## bias.sd.z:USvUK 0.000 0.000
## bias.mean.z:ideology.z 0.000 0.000
## bias.mean.z:age.z 0.002 0.003
## bias.mean.z:education.z 0.000 0.000
## bias.sd.z:ideology.z 0.005 0.006
## bias.sd.z:age.z 0.000 0.000
## bias.sd.z:education.z 0.001 0.001
## USvUK:ideology.z 0.000 0.000
## USvUK:age.z 0.005 0.006
## USvUK:education.z 0.002 0.003
## bias.mean.z:bias.sd.z:USvUK 0.001 0.001
# vaccine intentions
mean(dUS$vaxxIntentions, na.rm = T); sd(dUS$vaxxIntentions, na.rm = T)
## [1] 0.5844539
## [1] 2.156637
mean(dUK$vaxxIntentions, na.rm = T); sd(dUK$vaxxIntentions, na.rm = T)
## [1] 1.368842
## [1] 1.812618
cor.test(af$bias.af, af$bias.as)
##
## Pearson's product-moment correlation
##
## data: af$bias.af and af$bias.as
## t = 11.454, df = 21, p-value = 1.711e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.8363048 0.9695822
## sample estimates:
## cor
## 0.9284467
# conservative media consumption
mean(d$bias.mean.1.15, na.rm = T); sd(d$bias.mean.1.15, na.rm = T)
## [1] -0.4205296
## [1] 0.531026
mean(d$bias.mean.2.15, na.rm = T); sd(d$bias.mean.2.15, na.rm = T)
## [1] -0.4084528
## [1] 0.526748
mean(d$bias.mean.3.20, na.rm = T); sd(d$bias.mean.3.20, na.rm = T)
## [1] -0.2308115
## [1] 0.4403217
mean(dUK$bias.mean, na.rm = T); sd(dUK$bias.mean, na.rm = T)
## [1] -0.01259991
## [1] 0.3303387
# ideological diversity of media consumption
mean(d$bias.sd.1.15, na.rm = T); sd(d$bias.sd.1.15, na.rm = T)
## [1] 1.094834
## [1] 0.6386927
mean(d$bias.sd.2.15, na.rm = T); sd(d$bias.sd.2.15, na.rm = T)
## [1] 1.053586
## [1] 0.6232238
mean(d$bias.sd.3.20, na.rm = T); sd(d$bias.sd.3.20, na.rm = T)
## [1] 1.415245
## [1] 1.155824
mean(dUK$bias.mean, na.rm = T); sd(dUK$bias.sd, na.rm = T)
## [1] -0.01259991
## [1] 0.7730456
# reliability
cor.test(as.numeric(b$bias.trust), b$trust)
## Warning in cor.test(as.numeric(b$bias.trust), b$trust): NAs introduced by
## coercion
##
## Pearson's product-moment correlation
##
## data: as.numeric(b$bias.trust) and b$trust
## t = -2.4344, df = 37, p-value = 0.01986
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.61498231 -0.06348817
## sample estimates:
## cor
## -0.3715622