R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

data=read.csv("swe_data.csv",header = T)
data$Education.Level[which(data$Education.Level=="Bachelor's Degree")]="Bachelor's"
data$Education.Level=factor(data$Education.Level)

data$Gender=factor(data$Gender)
data$Job.Title=factor(data$Job.Title)
summary(data)
##       Age          Gender       Education.Level                     Job.Title  
##  Min.   :22.0   Female:422   Bachelor's :732    Junior Software Developer: 58  
##  1st Qu.:27.0   Male  :574   High School:  2    Junior Software Engineer : 51  
##  Median :28.0                Master's   :230    Senior Software Architect:  1  
##  Mean   :30.7                PhD        : 32    Senior Software Developer:  3  
##  3rd Qu.:32.0                                   Senior Software Engineer :240  
##  Max.   :58.0                                   Software Developer       :125  
##                                                 Software Engineer        :518  
##  Years.of.Experience     Salary      
##  Min.   : 1.000      Min.   : 35000  
##  1st Qu.: 3.000      1st Qu.: 60000  
##  Median : 4.000      Median : 90000  
##  Mean   : 6.228      Mean   :108589  
##  3rd Qu.: 8.000      3rd Qu.:160000  
##  Max.   :32.000      Max.   :197000  
## 
aov=aov(data$Salary~data$Gender+data$Education.Level+data$Gender:data$Education.Level)
summary(aov)
##                                   Df    Sum Sq   Mean Sq F value   Pr(>F)    
## data$Gender                        1 1.231e+11 1.231e+11  61.130 1.36e-14 ***
## data$Education.Level               3 4.330e+11 1.443e+11  71.665  < 2e-16 ***
## data$Gender:data$Education.Level   2 2.216e+10 1.108e+10   5.502   0.0042 ** 
## Residuals                        989 1.992e+12 2.014e+09                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit1=lm(Salary~Age+Gender+Education.Level,data=data)
summary(fit1)
## 
## Call:
## lm(formula = Salary ~ Age + Gender + Education.Level, data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -79142 -29556 -10067  18946  80346 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                -70003.1     7273.2  -9.625  < 2e-16 ***
## Age                          5655.2      260.1  21.742  < 2e-16 ***
## GenderMale                  12522.7     2455.2   5.100 4.06e-07 ***
## Education.LevelHigh School -19775.9    26542.6  -0.745   0.4564    
## Education.LevelMaster's     -8316.0     3673.0  -2.264   0.0238 *  
## Education.LevelPhD          -9229.2     7607.3  -1.213   0.2253    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 37110 on 990 degrees of freedom
## Multiple R-squared:  0.4696, Adjusted R-squared:  0.467 
## F-statistic: 175.3 on 5 and 990 DF,  p-value: < 2.2e-16
library(asbio)
## 載入需要的套件:tcltk
bonfCI(data$Salary,data$Education.Level)
## 
## 95% Bonferroni confidence intervals 
## 
##                                    Diff         Lower        Upper  Decision
## muBachelor's-muHigh School -69112.19672 -156445.80542  18221.41198    FTR H0
## muBachelor's-muMaster's    -40521.47498  -49844.82506  -31198.1249 Reject H0
## muHigh School-muMaster's    28590.72174  -59002.19558 116183.63906    FTR H0
## muBachelor's-muPhD         -71150.63422  -93425.75482 -48875.51363 Reject H0
## muHigh School-muPhD          -2038.4375  -91937.13218  87860.25718    FTR H0
## muMaster's-muPhD           -30629.15924  -53900.19175  -7358.12673 Reject H0
##                            Adj. p-value
## muBachelor's-muHigh School     0.220152
## muBachelor's-muMaster's               0
## muHigh School-muMaster's              1
## muBachelor's-muPhD                    0
## muHigh School-muPhD                   1
## muMaster's-muPhD               0.003146
bonfCI(data$Salary,data$Gender)
## 
## 95% Bonferroni confidence intervals 
## 
##                         Diff        Lower        Upper  Decision Adj. p-value
## muFemale-muMale -22500.62639 -28744.31733 -16256.93544 Reject H0            0