# if you haven't run this code before, you'll need to download the below packages first
# instructions on how to do this are included in the video
# but as a reminder, you use the packages tab to the right
library(psych) # for the describe() command
library(expss) # for the cross_cases() command
## Loading required package: maditr
##
## To modify variables or add new variables:
## let(mtcars, new_var = 42, new_var2 = new_var*hp) %>% head()
##
## Attaching package: 'maditr'
## The following object is masked from 'package:base':
##
## sort_by
##
## Use 'expss_output_rnotebook()' to display tables inside R Notebooks.
## To return to the console output, use 'expss_output_default()'.
d2 <- read.csv(file="data/eammi2_data_final.csv", header = T)
table(d2$gender)
##
## f m nb
## 2332 792 54
table(d2$race_rc)
##
## asian black hispanic multiracial nativeamer other
## 210 249 286 293 12 97
## white
## 2026
hist(d2$moa_maturity)
hist(d2$idea)
hist(d2$belong)
hist(d2$socmeduse)
We analyzed the skew and kurtosis of our continuous variables and all were within the accepted range (-2/+2).
We analyzed the skew and kurtosis of our … and most were within the accepted range (-2/+2). However, some variables (list them in parentheses) were outside of the accepted range. For this analysis, we will use them anyway, but outside of this class this is bad practice.
describe(d2)
## vars n mean sd median trimmed mad min max
## ResponseId* 1 3182 1591.50 918.71 1591.50 1591.50 1179.41 1.00 3182.0
## gender* 2 3178 1.28 0.49 1.00 1.21 0.00 1.00 3.0
## race_rc* 3 3173 5.53 2.13 7.00 5.88 0.00 1.00 7.0
## age* 4 2169 1.11 0.43 1.00 1.00 0.00 1.00 4.0
## income* 5 3157 2.44 1.16 2.00 2.42 1.48 1.00 4.0
## edu* 6 3174 2.51 1.25 2.00 2.18 0.00 1.00 7.0
## sibling* 7 3182 1.10 0.29 1.00 1.00 0.00 1.00 2.0
## party_rc* 8 3165 2.46 1.01 2.00 2.45 0.00 1.00 4.0
## disability* 9 864 3.71 1.70 5.00 3.78 1.48 1.00 6.0
## marriage5* 10 3172 1.88 0.60 2.00 1.83 0.00 1.00 4.0
## phys_sym* 11 3174 2.26 0.86 3.00 2.32 0.00 1.00 3.0
## pipwd 12 1624 2.93 0.56 3.00 2.93 0.40 1.13 5.0
## moa_independence 13 3107 3.54 0.47 3.67 3.61 0.49 1.00 4.0
## moa_role 14 3111 2.97 0.72 3.00 3.00 0.74 1.00 4.0
## moa_safety 15 3123 3.20 0.64 3.25 3.26 0.74 1.00 4.0
## moa_maturity 16 3146 3.59 0.43 3.67 3.65 0.49 1.00 4.0
## idea 17 3177 3.57 0.38 3.62 3.62 0.37 1.00 4.0
## swb 18 3178 4.47 1.32 4.67 4.53 1.48 1.00 7.0
## mindful 19 3173 3.71 0.84 3.73 3.71 0.79 1.13 6.0
## belong 20 3175 3.23 0.60 3.30 3.25 0.59 1.30 5.0
## efficacy 21 3176 3.13 0.45 3.10 3.13 0.44 1.00 4.0
## support 22 3182 5.53 1.14 5.75 5.65 0.99 0.00 7.0
## socmeduse 23 3175 34.45 8.58 35.00 34.72 7.41 11.00 55.0
## usdream* 24 3171 2.39 1.55 2.00 2.24 1.48 1.00 5.0
## npi 25 3167 0.28 0.31 0.15 0.24 0.23 0.00 1.0
## exploit 26 3177 2.39 1.37 2.00 2.21 1.48 1.00 7.0
## stress 27 3176 3.05 0.60 3.00 3.05 0.59 1.30 4.7
## range skew kurtosis se
## ResponseId* 3181.00 0.00 -1.20 16.29
## gender* 2.00 1.40 0.88 0.01
## race_rc* 6.00 -0.98 -0.68 0.04
## age* 3.00 4.42 21.17 0.01
## income* 3.00 0.14 -1.44 0.02
## edu* 6.00 2.18 3.66 0.02
## sibling* 1.00 2.74 5.53 0.01
## party_rc* 3.00 0.42 -1.04 0.02
## disability* 5.00 -0.44 -1.35 0.06
## marriage5* 3.00 0.47 1.48 0.01
## phys_sym* 2.00 -0.52 -1.46 0.02
## pipwd 3.87 0.12 1.34 0.01
## moa_independence 3.00 -1.44 2.53 0.01
## moa_role 3.00 -0.33 -0.84 0.01
## moa_safety 3.00 -0.71 0.03 0.01
## moa_maturity 3.00 -1.20 1.87 0.01
## idea 3.00 -1.54 4.42 0.01
## swb 6.00 -0.36 -0.46 0.02
## mindful 4.87 -0.06 -0.13 0.01
## belong 3.70 -0.26 -0.12 0.01
## efficacy 3.00 -0.29 0.63 0.01
## support 7.00 -1.14 1.61 0.02
## socmeduse 44.00 -0.31 0.26 0.15
## usdream* 4.00 0.62 -1.13 0.03
## npi 1.00 0.94 -0.69 0.01
## exploit 6.00 0.95 0.37 0.02
## stress 3.40 0.04 -0.17 0.01
cross_cases(d2, gender, race_rc)
|  race_rc | |||||||
|---|---|---|---|---|---|---|---|
|  asian |  black |  hispanic |  multiracial |  nativeamer |  other |  white | |
|  gender | |||||||
|    f | 152 | 184 | 207 | 222 | 11 | 72 | 1480 |
|    m | 57 | 63 | 77 | 61 | 1 | 24 | 508 |
|    nb | 1 | 2 | 2 | 10 | 1 | 38 | |
|    #Total cases | 210 | 249 | 286 | 293 | 12 | 97 | 2026 |
plot(d2$moa_maturity, d2$idea,
main="Scatterplot of moa_maturity and idea",
xlab = "moa_maturity",
ylab = "idea")
plot(d2$belong, d2$socmeduse,
main="Scatterplot of belong and socmeduse",
xlab = "belong",
ylab = "socmeduse")
boxplot(data=d2, moa_maturity~gender,
main="Boxplot of gender and moa_maturity",
xlab = "gender",
ylab = "moa_maturity")
boxplot(data=d2, socmeduse~race_rc,
main="Boxplot of race_rc and socmeduse",
xlab = "race_rc",
ylab = "socmeduse")