Basic Statistics

Load Libraries

# if you haven't run this code before, you'll need to download the below packages first
# instructions on how to do this are included in the video
# but as a reminder, you use the packages tab to the right

library(psych) # for the describe() command
library(expss) # for the cross_cases() command
## Loading required package: maditr
## 
## To modify variables or add new variables:
##              let(mtcars, new_var = 42, new_var2 = new_var*hp) %>% head()
## 
## Attaching package: 'maditr'
## The following object is masked from 'package:base':
## 
##     sort_by
## 
## Use 'expss_output_rnotebook()' to display tables inside R Notebooks.
##  To return to the console output, use 'expss_output_default()'.

Import DAta

d2 <- read.csv(file="data/eammi2_data_final.csv", header = T)

Univariate Plots: Histograms & Tables

table(d2$gender)
## 
##    f    m   nb 
## 2332  792   54
table(d2$race_rc)
## 
##       asian       black    hispanic multiracial  nativeamer       other 
##         210         249         286         293          12          97 
##       white 
##        2026
hist(d2$moa_maturity)

hist(d2$idea)

hist(d2$belong)

hist(d2$socmeduse)

Univariate Normality

We analyzed the skew and kurtosis of our continuous variables and all were within the accepted range (-2/+2).

We analyzed the skew and kurtosis of our … and most were within the accepted range (-2/+2). However, some variables (list them in parentheses) were outside of the accepted range. For this analysis, we will use them anyway, but outside of this class this is bad practice.

describe(d2)
##                  vars    n    mean     sd  median trimmed     mad   min    max
## ResponseId*         1 3182 1591.50 918.71 1591.50 1591.50 1179.41  1.00 3182.0
## gender*             2 3178    1.28   0.49    1.00    1.21    0.00  1.00    3.0
## race_rc*            3 3173    5.53   2.13    7.00    5.88    0.00  1.00    7.0
## age*                4 2169    1.11   0.43    1.00    1.00    0.00  1.00    4.0
## income*             5 3157    2.44   1.16    2.00    2.42    1.48  1.00    4.0
## edu*                6 3174    2.51   1.25    2.00    2.18    0.00  1.00    7.0
## sibling*            7 3182    1.10   0.29    1.00    1.00    0.00  1.00    2.0
## party_rc*           8 3165    2.46   1.01    2.00    2.45    0.00  1.00    4.0
## disability*         9  864    3.71   1.70    5.00    3.78    1.48  1.00    6.0
## marriage5*         10 3172    1.88   0.60    2.00    1.83    0.00  1.00    4.0
## phys_sym*          11 3174    2.26   0.86    3.00    2.32    0.00  1.00    3.0
## pipwd              12 1624    2.93   0.56    3.00    2.93    0.40  1.13    5.0
## moa_independence   13 3107    3.54   0.47    3.67    3.61    0.49  1.00    4.0
## moa_role           14 3111    2.97   0.72    3.00    3.00    0.74  1.00    4.0
## moa_safety         15 3123    3.20   0.64    3.25    3.26    0.74  1.00    4.0
## moa_maturity       16 3146    3.59   0.43    3.67    3.65    0.49  1.00    4.0
## idea               17 3177    3.57   0.38    3.62    3.62    0.37  1.00    4.0
## swb                18 3178    4.47   1.32    4.67    4.53    1.48  1.00    7.0
## mindful            19 3173    3.71   0.84    3.73    3.71    0.79  1.13    6.0
## belong             20 3175    3.23   0.60    3.30    3.25    0.59  1.30    5.0
## efficacy           21 3176    3.13   0.45    3.10    3.13    0.44  1.00    4.0
## support            22 3182    5.53   1.14    5.75    5.65    0.99  0.00    7.0
## socmeduse          23 3175   34.45   8.58   35.00   34.72    7.41 11.00   55.0
## usdream*           24 3171    2.39   1.55    2.00    2.24    1.48  1.00    5.0
## npi                25 3167    0.28   0.31    0.15    0.24    0.23  0.00    1.0
## exploit            26 3177    2.39   1.37    2.00    2.21    1.48  1.00    7.0
## stress             27 3176    3.05   0.60    3.00    3.05    0.59  1.30    4.7
##                    range  skew kurtosis    se
## ResponseId*      3181.00  0.00    -1.20 16.29
## gender*             2.00  1.40     0.88  0.01
## race_rc*            6.00 -0.98    -0.68  0.04
## age*                3.00  4.42    21.17  0.01
## income*             3.00  0.14    -1.44  0.02
## edu*                6.00  2.18     3.66  0.02
## sibling*            1.00  2.74     5.53  0.01
## party_rc*           3.00  0.42    -1.04  0.02
## disability*         5.00 -0.44    -1.35  0.06
## marriage5*          3.00  0.47     1.48  0.01
## phys_sym*           2.00 -0.52    -1.46  0.02
## pipwd               3.87  0.12     1.34  0.01
## moa_independence    3.00 -1.44     2.53  0.01
## moa_role            3.00 -0.33    -0.84  0.01
## moa_safety          3.00 -0.71     0.03  0.01
## moa_maturity        3.00 -1.20     1.87  0.01
## idea                3.00 -1.54     4.42  0.01
## swb                 6.00 -0.36    -0.46  0.02
## mindful             4.87 -0.06    -0.13  0.01
## belong              3.70 -0.26    -0.12  0.01
## efficacy            3.00 -0.29     0.63  0.01
## support             7.00 -1.14     1.61  0.02
## socmeduse          44.00 -0.31     0.26  0.15
## usdream*            4.00  0.62    -1.13  0.03
## npi                 1.00  0.94    -0.69  0.01
## exploit             6.00  0.95     0.37  0.02
## stress              3.40  0.04    -0.17  0.01

Bivariate Plots

Crosstabs

cross_cases(d2, gender, race_rc)
 race_rc 
 asian   black   hispanic   multiracial   nativeamer   other   white 
 gender 
   f  152 184 207 222 11 72 1480
   m  57 63 77 61 1 24 508
   nb  1 2 2 10 1 38
   #Total cases  210 249 286 293 12 97 2026

Scatterplots

plot(d2$moa_maturity, d2$idea,
     main="Scatterplot of moa_maturity and idea",
     xlab = "moa_maturity",
     ylab = "idea")

plot(d2$belong, d2$socmeduse,
     main="Scatterplot of belong and socmeduse",
     xlab = "belong",
     ylab = "socmeduse")

Boxplots

boxplot(data=d2, moa_maturity~gender,
        main="Boxplot of gender and moa_maturity",
        xlab = "gender",
        ylab = "moa_maturity")

boxplot(data=d2, socmeduse~race_rc,
        main="Boxplot of race_rc and socmeduse",
        xlab = "race_rc",
        ylab = "socmeduse")