Analyses

Composition of women

Full Data

summary(glm(s_whonum~S_women, data = field_analyze_full, family = "binomial"))
## 
## Call:
## glm(formula = s_whonum ~ S_women, family = "binomial", data = field_analyze_full)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -1.36301    0.77346  -1.762   0.0780 .
## S_women      0.04010    0.01605   2.498   0.0125 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 50.982  on 37  degrees of freedom
## Residual deviance: 42.788  on 36  degrees of freedom
##   (172 observations deleted due to missingness)
## AIC: 46.788
## 
## Number of Fisher Scoring iterations: 4

Mixed Gender

summary(glm(s_whonum~S_women, data = field_analyze_mixedgend, family = "binomial"))
## 
## Call:
## glm(formula = s_whonum ~ S_women, family = "binomial", data = field_analyze_mixedgend)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.338580   1.096291   0.309    0.757
## S_women     0.006544   0.026998   0.242    0.808
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 14.421  on 10  degrees of freedom
## Residual deviance: 14.361  on  9  degrees of freedom
##   (4 observations deleted due to missingness)
## AIC: 18.361
## 
## Number of Fisher Scoring iterations: 4

Gender

Full data

summary(lm(qualifications~S_women, data = field_analyze_full))
## 
## Call:
## lm(formula = qualifications ~ S_women, data = field_analyze_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0477 -0.1236  0.0281  0.9289  1.0595 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 5.931131   0.300513  19.737   <2e-16 ***
## S_women     0.002332   0.005274   0.442     0.66    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.182 on 62 degrees of freedom
##   (146 observations deleted due to missingness)
## Multiple R-squared:  0.003145,   Adjusted R-squared:  -0.01293 
## F-statistic: 0.1956 on 1 and 62 DF,  p-value: 0.6598
summary(lm(skills~S_women, data = field_analyze_full))
## 
## Call:
## lm(formula = skills ~ S_women, data = field_analyze_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.2423 -0.2932 -0.2307  0.7347  0.7731 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.3037947  0.2426547  25.978   <2e-16 ***
## S_women     -0.0007692  0.0042582  -0.181    0.857    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9542 on 62 degrees of freedom
##   (146 observations deleted due to missingness)
## Multiple R-squared:  0.000526,   Adjusted R-squared:  -0.01559 
## F-statistic: 0.03263 on 1 and 62 DF,  p-value: 0.8572
summary(lm(workload~S_women, data = field_analyze_full))
## 
## Call:
## lm(formula = workload ~ S_women, data = field_analyze_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3362 -0.3594 -0.2444  0.7162  1.7595 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 5.235914   0.319103  16.408   <2e-16 ***
## S_women     0.001543   0.005600   0.276    0.784    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.255 on 62 degrees of freedom
##   (146 observations deleted due to missingness)
## Multiple R-squared:  0.001224,   Adjusted R-squared:  -0.01489 
## F-statistic: 0.07596 on 1 and 62 DF,  p-value: 0.7838
summary(lm(fitneeds~S_women, data = field_analyze_full))
## 
## Call:
## lm(formula = fitneeds ~ S_women, data = field_analyze_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2811 -0.2811 -0.1399  0.7702  0.9140 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 6.075769   0.219105  27.730   <2e-16 ***
## S_women     0.002566   0.003845   0.667    0.507    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8616 on 62 degrees of freedom
##   (146 observations deleted due to missingness)
## Multiple R-squared:  0.007134,   Adjusted R-squared:  -0.00888 
## F-statistic: 0.4455 on 1 and 62 DF,  p-value: 0.507
summary(lm(candgend~S_women, data = field_analyze_full))
## 
## Call:
## lm(formula = candgend ~ S_women, data = field_analyze_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4389 -1.0493  0.2969  1.1443  2.0224 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 4.772568   0.362025  13.183   <2e-16 ***
## S_women     0.010251   0.006353   1.613    0.112    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.424 on 62 degrees of freedom
##   (146 observations deleted due to missingness)
## Multiple R-squared:  0.0403, Adjusted R-squared:  0.02482 
## F-statistic: 2.603 on 1 and 62 DF,  p-value: 0.1117
summary(lm(compdg~S_women, data = field_analyze_full))
## 
## Call:
## lm(formula = compdg ~ S_women, data = field_analyze_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4368 -1.4331  0.1152  1.1766  3.3996 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.32160    0.49692   6.684 7.54e-09 ***
## S_women      0.01115    0.00872   1.279    0.206    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.954 on 62 degrees of freedom
##   (146 observations deleted due to missingness)
## Multiple R-squared:  0.0257, Adjusted R-squared:  0.009985 
## F-statistic: 1.635 on 1 and 62 DF,  p-value: 0.2057
summary(lm(supcand~S_women, data = field_analyze_full))
## 
## Call:
## lm(formula = supcand ~ S_women, data = field_analyze_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5397 -0.5918  0.2909  0.5646  1.6688 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.852414   0.281679  20.777   <2e-16 ***
## S_women     -0.005212   0.004943  -1.054    0.296    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.108 on 62 degrees of freedom
##   (146 observations deleted due to missingness)
## Multiple R-squared:  0.01762,    Adjusted R-squared:  0.001774 
## F-statistic: 1.112 on 1 and 62 DF,  p-value: 0.2958
summary(lm(timewrksched~S_women, data = field_analyze_full))
## 
## Call:
## lm(formula = timewrksched ~ S_women, data = field_analyze_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6221 -0.6664  0.3927  0.6438  1.6143 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 5.237998   0.289189  18.113   <2e-16 ***
## S_women     0.005909   0.005075   1.164    0.249    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.137 on 62 degrees of freedom
##   (146 observations deleted due to missingness)
## Multiple R-squared:  0.0214, Adjusted R-squared:  0.005618 
## F-statistic: 1.356 on 1 and 62 DF,  p-value: 0.2487

Mixed gender

summary(lm(qualifications~S_women, data = field_analyze_mixedgend))
## 
## Call:
## lm(formula = qualifications ~ S_women, data = field_analyze_mixedgend)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.0531 -0.4091  0.1924  0.8037  0.9469 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.462295   0.540589  11.954 7.95e-07 ***
## S_women     -0.008184   0.013016  -0.629    0.545    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.013 on 9 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.04208,    Adjusted R-squared:  -0.06436 
## F-statistic: 0.3953 on 1 and 9 DF,  p-value: 0.5451
summary(lm(skills~S_women, data = field_analyze_mixedgend))
## 
## Call:
## lm(formula = skills ~ S_women, data = field_analyze_mixedgend)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.92135 -0.39034  0.07865  0.69591  1.07865 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.46042    0.50968  12.676 4.82e-07 ***
## S_women     -0.01078    0.01227  -0.879    0.402    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9548 on 9 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.07899,    Adjusted R-squared:  -0.02334 
## F-statistic: 0.7719 on 1 and 9 DF,  p-value: 0.4025
summary(lm(workload~S_women, data = field_analyze_mixedgend))
## 
## Call:
## lm(formula = workload ~ S_women, data = field_analyze_mixedgend)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0021 -0.7513  0.5496  0.9979  1.7772 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.25287    0.84023   6.252 0.000149 ***
## S_women     -0.01003    0.02023  -0.496 0.631902    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.574 on 9 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.02659,    Adjusted R-squared:  -0.08157 
## F-statistic: 0.2458 on 1 and 9 DF,  p-value: 0.6319
summary(lm(fitneeds~S_women, data = field_analyze_mixedgend))
## 
## Call:
## lm(formula = fitneeds ~ S_women, data = field_analyze_mixedgend)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.08053 -0.46020  0.04748  0.44507  1.15501 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.82451    0.43003  13.544 2.73e-07 ***
## S_women      0.00512    0.01035   0.495    0.633    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8056 on 9 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.02646,    Adjusted R-squared:  -0.08172 
## F-statistic: 0.2446 on 1 and 9 DF,  p-value: 0.6328
summary(lm(candgend~S_women, data = field_analyze_mixedgend))
## 
## Call:
## lm(formula = candgend ~ S_women, data = field_analyze_mixedgend)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2000 -0.8689  0.7343  0.7558  1.7343 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  4.13199    0.86797   4.761  0.00103 **
## S_women      0.02267    0.02090   1.085  0.30614   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.626 on 9 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.1157, Adjusted R-squared:  0.01741 
## F-statistic: 1.177 on 1 and 9 DF,  p-value: 0.3061
summary(lm(compdg~S_women, data = field_analyze_mixedgend))
## 
## Call:
## lm(formula = compdg ~ S_women, data = field_analyze_mixedgend)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.10244 -1.33702  0.08121  0.93845  2.43845 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  3.64333    0.87421   4.168  0.00242 **
## S_women      0.01836    0.02105   0.872  0.40562   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.638 on 9 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.07799,    Adjusted R-squared:  -0.02446 
## F-statistic: 0.7612 on 1 and 9 DF,  p-value: 0.4056
summary(lm(supcand~S_women, data = field_analyze_mixedgend))
## 
## Call:
## lm(formula = supcand ~ S_women, data = field_analyze_mixedgend)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.85573 -0.28662  0.08736  0.48573  1.54265 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.02646    0.55590   10.84 1.82e-06 ***
## S_women     -0.01138    0.01338   -0.85    0.417    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.041 on 9 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.07438,    Adjusted R-squared:  -0.02847 
## F-statistic: 0.7232 on 1 and 9 DF,  p-value: 0.4172
summary(lm(timewrksched~S_women, data = field_analyze_mixedgend))
## 
## Call:
## lm(formula = timewrksched ~ S_women, data = field_analyze_mixedgend)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.3289 -0.3920  0.6080  0.6396  0.6927 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 5.301880   0.519533  10.205 3.02e-06 ***
## S_women     0.001802   0.012509   0.144    0.889    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9733 on 9 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.0023, Adjusted R-squared:  -0.1086 
## F-statistic: 0.02075 on 1 and 9 DF,  p-value: 0.8886

Gender Representation

Full data

summary(glm(s_whonum~S_val, data = field_analyze_full, family = "binomial"))
## 
## Call:
## glm(formula = s_whonum ~ S_val, family = "binomial", data = field_analyze_full)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -0.3000     0.9348  -0.321    0.748
## S_val         0.1415     0.1729   0.818    0.413
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 57.713  on 42  degrees of freedom
## Residual deviance: 57.038  on 41  degrees of freedom
##   (167 observations deleted due to missingness)
## AIC: 61.038
## 
## Number of Fisher Scoring iterations: 4
summary(lm(qualifications~S_val, data = field_analyze_full))
## 
## Call:
## lm(formula = qualifications ~ S_val, data = field_analyze_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8566 -0.2700  0.1434  0.8678  1.5567 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.30546    0.48647  10.906   <2e-16 ***
## S_val        0.13779    0.08602   1.602    0.114    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.141 on 71 degrees of freedom
##   (137 observations deleted due to missingness)
## Multiple R-squared:  0.03488,    Adjusted R-squared:  0.02129 
## F-statistic: 2.566 on 1 and 71 DF,  p-value: 0.1136
summary(lm(skills~S_val, data = field_analyze_full))
## 
## Call:
## lm(formula = skills ~ S_val, data = field_analyze_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1950 -0.4000  0.4974  0.6000  1.1126 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.78491    0.38729  14.937   <2e-16 ***
## S_val        0.10252    0.06848   1.497    0.139    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9084 on 71 degrees of freedom
##   (137 observations deleted due to missingness)
## Multiple R-squared:  0.0306, Adjusted R-squared:  0.01695 
## F-statistic: 2.241 on 1 and 71 DF,  p-value: 0.1388
summary(lm(workload~S_val, data = field_analyze_full))
## 
## Call:
## lm(formula = workload ~ S_val, data = field_analyze_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.2795 -0.4965  0.5035  0.6481  1.9374 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.99027    0.53629   9.305 6.42e-14 ***
## S_val        0.07232    0.09482   0.763    0.448    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.258 on 71 degrees of freedom
##   (137 observations deleted due to missingness)
## Multiple R-squared:  0.008126,   Adjusted R-squared:  -0.005844 
## F-statistic: 0.5817 on 1 and 71 DF,  p-value: 0.4482
summary(lm(fitneeds~S_val, data = field_analyze_full))
## 
## Call:
## lm(formula = fitneeds ~ S_val, data = field_analyze_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1558 -0.3452 -0.1558  0.7180  1.0336 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.90324    0.35368   16.69   <2e-16 ***
## S_val        0.06313    0.06254    1.01    0.316    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8296 on 71 degrees of freedom
##   (137 observations deleted due to missingness)
## Multiple R-squared:  0.01415,    Adjusted R-squared:  0.0002664 
## F-statistic: 1.019 on 1 and 71 DF,  p-value: 0.3161
summary(lm(candgend~S_val, data = field_analyze_full))
## 
## Call:
## lm(formula = candgend ~ S_val, data = field_analyze_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0269 -1.1987  0.4577  0.9731  2.4886 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   4.3396     0.6141   7.066 8.88e-10 ***
## S_val         0.1718     0.1086   1.582    0.118    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.44 on 71 degrees of freedom
##   (137 observations deleted due to missingness)
## Multiple R-squared:  0.03406,    Adjusted R-squared:  0.02045 
## F-statistic: 2.503 on 1 and 71 DF,  p-value: 0.1181
summary(lm(compdg~S_val, data = field_analyze_full))
## 
## Call:
## lm(formula = compdg ~ S_val, data = field_analyze_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8266 -1.7123  0.2305  1.2305  3.5163 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.42651    0.81715   4.193 7.92e-05 ***
## S_val        0.05716    0.14502   0.394    0.695    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.91 on 70 degrees of freedom
##   (138 observations deleted due to missingness)
## Multiple R-squared:  0.002214,   Adjusted R-squared:  -0.01204 
## F-statistic: 0.1553 on 1 and 70 DF,  p-value: 0.6947
summary(lm(supcand~S_val, data = field_analyze_full))
## 
## Call:
## lm(formula = supcand ~ S_val, data = field_analyze_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6740 -0.6547  0.3453  0.3839  1.4418 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.53884    0.45446   12.19   <2e-16 ***
## S_val        0.01931    0.08036    0.24    0.811    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.066 on 71 degrees of freedom
##   (137 observations deleted due to missingness)
## Multiple R-squared:  0.0008123,  Adjusted R-squared:  -0.01326 
## F-statistic: 0.05772 on 1 and 71 DF,  p-value: 0.8108
summary(lm(timewrksched~S_val, data = field_analyze_full))
## 
## Call:
## lm(formula = timewrksched ~ S_val, data = field_analyze_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5599 -0.5599  0.3699  0.5803  1.7908 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.13911    0.50434  10.190 1.55e-15 ***
## S_val        0.07014    0.08917   0.787    0.434    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.183 on 71 degrees of freedom
##   (137 observations deleted due to missingness)
## Multiple R-squared:  0.008638,   Adjusted R-squared:  -0.005325 
## F-statistic: 0.6186 on 1 and 71 DF,  p-value: 0.4342

Mixed gender

summary(glm(s_whonum~S_val, data = field_analyze_mixedgend, family = "binomial"))
## 
## Call:
## glm(formula = s_whonum ~ S_val, family = "binomial", data = field_analyze_mixedgend)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -3.0976     2.5042  -1.237    0.216
## S_val         0.6741     0.4608   1.463    0.143
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 16.301  on 11  degrees of freedom
## Residual deviance: 13.097  on 10  degrees of freedom
##   (3 observations deleted due to missingness)
## AIC: 17.097
## 
## Number of Fisher Scoring iterations: 4
summary(lm(qualifications~S_val, data = field_analyze_mixedgend))
## 
## Call:
## lm(formula = qualifications ~ S_val, data = field_analyze_mixedgend)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.4257 -0.4471  0.2332  0.6634  0.8534 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   4.9450     0.7226   6.844 4.49e-05 ***
## S_val         0.2403     0.1336   1.799    0.102    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8546 on 10 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.2445, Adjusted R-squared:  0.1689 
## F-statistic: 3.236 on 1 and 10 DF,  p-value: 0.1022
summary(lm(skills~S_val, data = field_analyze_mixedgend))
## 
## Call:
## lm(formula = skills ~ S_val, data = field_analyze_mixedgend)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.4257 -0.4471  0.2332  0.6634  0.8534 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   4.9450     0.7226   6.844 4.49e-05 ***
## S_val         0.2403     0.1336   1.799    0.102    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8546 on 10 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.2445, Adjusted R-squared:  0.1689 
## F-statistic: 3.236 on 1 and 10 DF,  p-value: 0.1022
summary(lm(workload~S_val, data = field_analyze_mixedgend))
## 
## Call:
## lm(formula = workload ~ S_val, data = field_analyze_mixedgend)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.78004 -0.91090  0.08045  0.94959  1.94094 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   6.5825     1.2233   5.381  0.00031 ***
## S_val        -0.3605     0.2262  -1.594  0.14207    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.447 on 10 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.2026, Adjusted R-squared:  0.1228 
## F-statistic:  2.54 on 1 and 10 DF,  p-value: 0.1421
summary(lm(fitneeds~S_val, data = field_analyze_mixedgend))
## 
## Call:
## lm(formula = fitneeds ~ S_val, data = field_analyze_mixedgend)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.12627 -0.35285 -0.07943  0.83859  1.06110 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.84521    0.69859   8.367 7.93e-06 ***
## S_val        0.04684    0.12917   0.363    0.724    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8262 on 10 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.01298,    Adjusted R-squared:  -0.08572 
## F-statistic: 0.1315 on 1 and 10 DF,  p-value: 0.7244
summary(lm(candgend~S_val, data = field_analyze_mixedgend))
## 
## Call:
## lm(formula = candgend ~ S_val, data = field_analyze_mixedgend)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.6029 -0.9715 -0.1558  0.6864  3.0550 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   3.2607     1.2881   2.531   0.0298 *
## S_val         0.3422     0.2382   1.437   0.1814  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.523 on 10 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.1711, Adjusted R-squared:  0.08819 
## F-statistic: 2.064 on 1 and 10 DF,  p-value: 0.1814
summary(lm(compdg~S_val, data = field_analyze_mixedgend))
## 
## Call:
## lm(formula = compdg ~ S_val, data = field_analyze_mixedgend)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.29124 -1.28666 -0.03666  1.22607  2.75967 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  4.34216    1.48410   2.926   0.0151 *
## S_val       -0.05092    0.27441  -0.186   0.8565  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.755 on 10 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.003431,   Adjusted R-squared:  -0.09623 
## F-statistic: 0.03443 on 1 and 10 DF,  p-value: 0.8565
summary(lm(supcand~S_val, data = field_analyze_mixedgend))
## 
## Call:
## lm(formula = supcand ~ S_val, data = field_analyze_mixedgend)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7291 -0.5906  0.3198  0.3931  1.2709 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.50102    0.87145   6.313 8.77e-05 ***
## S_val        0.03259    0.16113   0.202    0.844    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.031 on 10 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.004073,   Adjusted R-squared:  -0.09552 
## F-statistic: 0.0409 on 1 and 10 DF,  p-value: 0.8438
summary(lm(timewrksched~S_val, data = field_analyze_mixedgend))
## 
## Call:
## lm(formula = timewrksched ~ S_val, data = field_analyze_mixedgend)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8493 -0.1726 -0.1018  0.4562  1.1507 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   6.6171     0.6580  10.056 1.51e-06 ***
## S_val        -0.2525     0.1217  -2.076   0.0647 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7783 on 10 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.3011, Adjusted R-squared:  0.2312 
## F-statistic: 4.308 on 1 and 10 DF,  p-value: 0.06466