Berikut Data Analisis yang akan di gunakan
library(readr)
Eviews<-read.csv("Eviews.csv",header = TRUE)
summary(Eviews)
## Code Year Y.SRDI X1.TINV
## Length:85 Min. :2018 Min. :0.0900 Min. :0.0000
## Class :character 1st Qu.:2019 1st Qu.:0.2700 1st Qu.:0.5100
## Mode :character Median :2020 Median :0.3600 Median :0.5900
## Mean :2020 Mean :0.4074 Mean :0.5599
## 3rd Qu.:2021 3rd Qu.:0.5200 3rd Qu.:0.6500
## Max. :2022 Max. :0.9000 Max. :0.8500
## X2.TKAR X3.TKON X4.TLIN X5.TKRE
## Min. : 7.150 Min. :0.0000 Min. :0.0000 Min. :0.1100
## 1st Qu.: 7.980 1st Qu.:0.0000 1st Qu.:0.2300 1st Qu.:0.3600
## Median : 8.940 Median :0.3300 Median :0.3700 Median :0.5600
## Mean : 9.091 Mean :0.3406 Mean :0.4054 Mean :0.5534
## 3rd Qu.:10.140 3rd Qu.:0.6700 3rd Qu.:0.6000 3rd Qu.:0.7800
## Max. :12.030 Max. :1.0000 Max. :0.9300 Max. :0.8900
## X6.TMED X7.TAUD X8.TPEM
## Min. :2.200 Min. :20.62 Min. :0.0000
## 1st Qu.:5.900 1st Qu.:22.08 1st Qu.:0.0000
## Median :6.920 Median :22.61 Median :0.0000
## Mean :6.652 Mean :22.59 Mean :0.2053
## 3rd Qu.:7.530 3rd Qu.:23.19 3rd Qu.:0.5700
## Max. :9.010 Max. :24.51 Max. :0.6500
CEM adalah metode yang mengasumsikan efek tetap (fixed effects) pada variabel individu. Pooling adalah metode yang mengabaikan efek tetap dan menganggap semua individu sebagai satu kelompok.
# Analisis CEM
library("plm")
cem_model <- plm(Eviews$Y.SRDI ~ Eviews$X1, data = Eviews, model = "within")
plot(cem_model)
pooling_model <- plm(Eviews$Y.SRDI ~ Eviews$X1, data = Eviews, model = "pooling")
plot(pooling_model)
## Analisis Fixed Effects (FEM) atau Within: FEM adalah metode yang
memperhitungkan efek tetap pada variabel individu. Anda dapat
menggunakan perintah berikut untuk melakukan analisis FEM
fem_model <- plm(Eviews$Y.SRDI ~ Eviews$X1, data = Eviews, model = "fd")
plot(fem_model)
```