Source: Psi Chi APS 2024

Load packages and import data

library(tidyverse)

dataset=read.csv('https://osf.io/download/pr4ws/')

Check the data

head(dataset)
#skimr::skim(dataset)

Preparing the data

  1. Remove participants who are missing ‘Age’
dataset1=dataset %>% 
  filter(!is.na(Age))

#sum(!complete.cases(dataset$Age))
  1. Remove participants who are missing ‘Gender’
dataset2=dataset1 %>% 
  filter(!is.na(Gender))

#sum(!complete.cases(dataset1$Gender))
  1. Create the following variable ‘FACEenmesh’ which measures the extent to which a family is enmeshed, by summing the following items: FACES4, FACES10, FACES16, FACES22, FACES28, FACES34, FACES40
dataset3=dataset2 %>% 
  mutate(FACEenmesh = FACES4 + FACES10 + FACES16 + FACES22 + FACES28 + FACES34 + FACES40) %>% 
  select(FACEenmesh,everything())
  1. Identify participants with values considered outliers for ‘FACEenmesh’
dataset3 %>% 
  ggplot(aes(x=FACEenmesh))+
  geom_boxplot()

dataset3 %>% 
  filter(!is.na(FACEenmesh)) %>% 
  summarise(mean(FACEenmesh),
            median(FACEenmesh),
            min(FACEenmesh),
            max(FACEenmesh),
            sd(FACEenmesh))
dataset3.5 = dataset3 %>% 
  filter(!is.na(FACEenmesh),
         FACEenmesh > 25)

dataset3.5
  1. Remove participants with values considered outliers on ‘FACEenmesh’
dataset4 = dataset3 %>% 
  filter(!is.na(FACEenmesh),
         FACEenmesh < 25)

dataset4 %>% 
  ggplot(aes(x=FACEenmesh))+
  geom_boxplot()

dataset4 %>% 
  ggplot(aes(x=FACEenmesh))+
  geom_density()

Descriptives

  1. Find the mean of ‘FACEenmesh’
  2. Find the standard deviation of ‘FACEenmesh’
  3. Find the median of ‘FACEenmesh’
  4. Find the range of ‘FACEenmesh’
dataset4 %>% 
  summarise(mean(FACEenmesh),
            sd(FACEenmesh),
            median(FACEenmesh),
            min(FACEenmesh),
            max(FACEenmesh),
            range(FACEenmesh))