Source: Psi Chi APS
2024
Load packages and import data
library(tidyverse)
dataset=read.csv('https://osf.io/download/pr4ws/')
Check the data
head(dataset)
#skimr::skim(dataset)
Preparing the data
- Remove participants who are missing ‘Age’
dataset1=dataset %>%
filter(!is.na(Age))
#sum(!complete.cases(dataset$Age))
- Remove participants who are missing ‘Gender’
dataset2=dataset1 %>%
filter(!is.na(Gender))
#sum(!complete.cases(dataset1$Gender))
- Create the following variable ‘FACEenmesh’ which measures the extent
to which a family is enmeshed, by summing the following items: FACES4,
FACES10, FACES16, FACES22, FACES28, FACES34, FACES40
dataset3=dataset2 %>%
mutate(FACEenmesh = FACES4 + FACES10 + FACES16 + FACES22 + FACES28 + FACES34 + FACES40) %>%
select(FACEenmesh,everything())
- Identify participants with values considered outliers for
‘FACEenmesh’
dataset3 %>%
ggplot(aes(x=FACEenmesh))+
geom_boxplot()

dataset3 %>%
filter(!is.na(FACEenmesh)) %>%
summarise(mean(FACEenmesh),
median(FACEenmesh),
min(FACEenmesh),
max(FACEenmesh),
sd(FACEenmesh))
dataset3.5 = dataset3 %>%
filter(!is.na(FACEenmesh),
FACEenmesh > 25)
dataset3.5
- Remove participants with values considered outliers on
‘FACEenmesh’
dataset4 = dataset3 %>%
filter(!is.na(FACEenmesh),
FACEenmesh < 25)
dataset4 %>%
ggplot(aes(x=FACEenmesh))+
geom_boxplot()

dataset4 %>%
ggplot(aes(x=FACEenmesh))+
geom_density()

Descriptives
- Find the mean of ‘FACEenmesh’
- Find the standard deviation of ‘FACEenmesh’
- Find the median of ‘FACEenmesh’
- Find the range of ‘FACEenmesh’
dataset4 %>%
summarise(mean(FACEenmesh),
sd(FACEenmesh),
median(FACEenmesh),
min(FACEenmesh),
max(FACEenmesh),
range(FACEenmesh))