Find the Equation of the Regression Line

Given the data points: (5.6, 8.8), (6.3, 12.4), (7, 14.8), (7.7, 18.2), and (8.4, 20.8).


1. Equation of the Regression Line

The equation of the regression line is expressed as: \[ y = mx + b \] To generate the equation, we take the following steps:

2. Calculate the Mean of \(x\) and \(y\)
3. Calculate the Slope (\(m\))

The slope (\(m\)) of the regression line \(y = mx + b\) is calculated using the formula: \[ m = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2} \] Where \(n\) is the number of data points, \(\sum xy\) is the sum of the product of \(x\) and \(y\) for all points, \(\sum x\) and \(\sum y\) are the sums of \(x\) and \(y\) values, and \(\sum x^2\) is the sum of squared \(x\) values.

4. Calculate the Intercept (\(b\))

Once the slope (\(m\)) is determined, the intercept (\(b\)) is computed as: \[ b = \frac{\sum y - m(\sum x)}{n} \]

# Data points
points <- data.frame(x = c(5.6, 6.3, 7, 7.7, 8.4),
                     y = c(8.8, 12.4, 14.8, 18.2, 20.8))

# Calculate Means of x and y
mean_x <- mean(points$x)
mean_y <- mean(points$y)

# Compute the Slope (m)
sum_x <- sum(points$x)
sum_y <- sum(points$y)
sum_xy <- sum(points$x * points$y)
sum_x2 <- sum(points$x^2)
n <- nrow(points)
slope <- (n * sum_xy - sum_x * sum_y) / (n * sum_x2 - sum_x^2)

# Calculate the Intercept (b)
intercept <- (sum_y - slope * sum_x) / n

# Display the equation
equation <- paste("The equation of the regression line for the given points is", 
                  paste("y =", format(round(slope, 2)), "x +", format(round(intercept, 2))))
print(equation)
## [1] "The equation of the regression line for the given points is y = 4.26 x + -14.8"


Find Saddle Points, Local Maxima, and Local Minima of \(f(x, y) = 24x - 6xy^2 - 8y^3\)


1. Compute the First Partial Derivatives

The first partial derivatives of \(f\) with respect to \(x\) and \(y\) are:

\[ f_x = \frac{\partial f}{\partial x} = 24 - 6y^2 \]

\[ f_y = \frac{\partial f}{\partial y} = -12xy - 24y^2 \]

2. Set the First Partial Derivatives Equal to Zero

To find the critical points, we set \(f_x\) and \(f_y\) equal to zero:

\[ 24 - 6y^2 = 0 \quad \Rightarrow \quad y^2 = 4 \quad \Rightarrow \quad y = \pm 2 \]

For \(y = 2\):

\[ -12x(2) - 24(2)^2 = 0 \quad \Rightarrow \quad -24x - 96 = 0 \quad \Rightarrow \quad x = -4 \]

For \(y = -2\):

\[ -12x(-2) - 24(-2)^2 = 0 \quad \Rightarrow \quad 24x - 96 = 0 \quad \Rightarrow \quad x = 4 \]

The critical points are \((-4, 2)\) and \((4, -2)\).

3. Compute the Second Partial Derivatives

The second partial derivatives of \(f\) are:

\[ f_{xx} = \frac{\partial^2 f}{\partial x^2} = 0 \]

\[ f_{yy} = \frac{\partial^2 f}{\partial y^2} = -12x - 48y \]

\[ f_{xy} = \frac{\partial^2 f}{\partial x \partial y} = -12y \]

4. Compute the Hessian Determinant

The Hessian determinant \(H\) is given by:

\[ H = f_{xx} f_{yy} - (f_{xy})^2 \]

5. Evaluate the Hessian Determinant at the Critical Points

For the critical point \((-4, 2)\):

\[ f_{xx} = 0, \quad f_{yy} = -12(-4) - 48(2) = 48 - 96 = -48, \quad f_{xy} = -12(2) = -24 \]

\[ H = (0)(-48) - (-24)^2 = -576 \]

For the critical point \((4, -2)\):

\[ f_{xx} = 0, \quad f_{yy} = -12(4) - 48(-2) = -48 + 96 = 48, \quad f_{xy} = -12(-2) = 24 \]

\[ H = (0)(48) - (24)^2 = -576 \]

6. Saddle Points:

Since \(H < 0\) at both critical points, \((-4, 2)\) and \((4, -2)\) are saddle points.

7. Local Maxima and Minima

The function has no local maxima or minima.

# Define the function
f <- function(x, y) {
  24 * x - 6 * x * y^2 - 8 * y^3
}

# Define the partial derivatives
fx <- function(y) {
  24 - 6 * y^2
}

fy <- function(x, y) {
  -12 * x * y - 24 * y^2
}

# Find critical points
critical_points <- function() {
  y <- c(2, -2)
  x <- c(-4, 4)
  data.frame(x = x, y = y)
}

# Evaluate the Hessian determinant at critical points
hessian_determinant <- function(points) {
  fxx <- 0
  fyy <- -12 * points$x - 48 * points$y
  fxy <- -12 * points$y
  
  H <- fxx * fyy - (fxy)^2
  H
}

# Determine saddle points and local extrema
local_extrema <- function() {
  points <- critical_points()
  H <- hessian_determinant(points)
  
  extrema <- ifelse(H < 0, "saddle_point", ifelse(H > 0 & 0 > 0, "local_minimum", "local_maximum"))
  result <- data.frame(points, Hessian = H, Type = extrema)
  
  if (all(result$Type == "saddle_point")) {
    cat("No local maxima or minima found. Only saddle points are present.\n")
  }
  
  for (i in 1:nrow(result)) {
    cat(sprintf("Point (%.2f, %.2f): %s\n", result$x[i], result$y[i], result$Type[i]))
  }
}

# Calculate the local extrema and saddle points
local_extrema()
## No local maxima or minima found. Only saddle points are present.
## Point (-4.00, 2.00): saddle_point
## Point (4.00, -2.00): saddle_point


Revenue Function

The revenue function \(R(x, y)\) given by

\[ R(x, y) = x(81 - 21x + 17y) + y(40 + 11x - 23y) \]

can be simplified by expanding and combining like terms.


1. Expansion

Expand the expressions:

  • \(x(81 - 21x + 17y) = 81x - 21x^2 + 17xy\)
  • \(y(40 + 11x - 23y) = 40y + 11xy - 23y^2\)
2. Combine Like Terms

The simplified revenue function is:

\[ R(x, y) = -21x^2 + 81x + 28xy + 40y - 23y^2 \]

# Simplified revenue function formula
revenue_function <- function(x, y) {
  total_revenue <- -21 * x^2 + 81 * x + 28 * x * y + 40 * y - 23 * y^2
  return(total_revenue)
}

# Prices given in the problem
price_house = 2.30
price_name = 4.10

# Calculate the total revenue for given prices
total_revenue_calculated = revenue_function(price_house, price_name)

# Result
print(paste("The total revenue for the house brand priced at $", price_house, 
            " and the name brand priced at $", price_name, " is $", 
            sprintf("%.2f", total_revenue_calculated), sep=""))
## [1] "The total revenue for the house brand priced at $2.3 and the name brand priced at $4.1 is $116.62"


Minimize the Total Weekly Cost


Function & Constraint

The total weekly cost is given by: \[ C(x, y) = \frac{1}{6}x^2 + \frac{1}{6}y^2 + 7x + 25y + 700 \]

The constraint on production is: \[ x + y = 96 \]

1. Substitute the Constraint:

\[ C(x, 96 - x) = \frac{1}{6}x^2 + \frac{1}{6}(96 - x)^2 + 7x + 25(96 - x) + 700 \]

2. Simplify the Cost Function

\[ C(x) = \frac{1}{6}x^2 + \frac{1}{6}(96^2 - 192x + x^2) + 7x + 2400 - 25x + 700 \] \[ C(x) = \frac{1}{3}x^2 - 18x + 700 + 2400 + \frac{1}{6} \cdot 96^2 \]

3. Take the derivative of \(C(x)\) with respect to \(x\) and set it to zero:

\[ \frac{dC}{dx} = \frac{2}{3}x - 18 = 0 \] \[ \frac{2}{3}x = 18 \] \[ x = 27 \]

4. Solve for \(y\)

Using the constraint \(x + y = 96\): \[ y = 96 - x = 96 - 27 = 69 \]

Results

The number of units that should be produced in Los Angeles is \(x = 27\) and in Denver is \(y = 69\) to minimize the total weekly cost.

# Define the cost function
cost_function <- function(x) {
  y <- 96 - x
  (1/6)*x^2 + (1/6)*y^2 + 7*x + 25*y + 700
}

# Define the derivative of the cost function with respect to x
cost_derivative_x <- function(x) {
  (2/3)*x - 18
}

# Solve for the critical point
solve_critical_point <- function() {
  x <- 18 / (2/3)
  y <- 96 - x
  
  cat(sprintf("Number of units produced in Los Angeles (x): %.2f\n", x))
  cat(sprintf("Number of units produced in Denver (y): %.2f\n", y))
  
  # Return the solution
  list(x = x, y = y)
}

# Calculate the optimal production to minimize cost
solve_critical_point()
## Number of units produced in Los Angeles (x): 27.00
## Number of units produced in Denver (y): 69.00
## $x
## [1] 27
## 
## $y
## [1] 69


Evaluate the Double Integral

\[ \int_{2}^{4} \int_{2}^{4} e^{8x + 3y} \, dx \, dy \]


1. Inner Integral over \(x\):
  • The integral with respect to \(x\) is:

\[ \int_{2}^{4} e^{8x + 3y} \, dx \]

\(y\) acts as a constant during the integration over \(x\), we can treat \(e^{3y}\) as a constant multiplier.

  • The integral becomes:

\[ \int_{2}^{4} e^{8x + 3y} \, dx = e^{3y} \int_{2}^{4} e^{8x} \, dx \]

  • Integrating \(e^{8x}\) with respect to \(x\):

\[ \int e^{8x} \, dx = \frac{1}{8} e^{8x} \]

  • The inner integral evaluated from \(x = 2\) to \(x = 4\) is:

\[ \left[ \frac{1}{8} e^{8x} \right]_{2}^{4} = \frac{1}{8} \left( e^{32} - e^{16} \right) e^{3y} \]

2. Outer Integral over \(y\):
  • Taking the result from the inner integral, we integrate it over \(y\) from 2 to 4:

\[ \int_{2}^{4} \frac{1}{8} \left( e^{32} - e^{16} \right) e^{3y} \, dy \]

  • Since \(\frac{1}{8} \left( e^{32} - e^{16} \right)\) is a constant with respect to \(y\), we can factor it out:

\[ \frac{1}{8} \left( e^{32} - e^{16} \right) \int_{2}^{4} e^{3y} \, dy \]

  • Integrate \(e^{3y}\) with respect to \(y\):

\[ \int e^{3y} \, dy = \frac{1}{3} e^{3y} \]

  • The outer integral evaluated from \(y = 2\) to \(y = 4\) is:

\[ \frac{1}{8} \left( e^{32} - e^{16} \right) \left[ \frac{1}{3} e^{3y} \right]_{2}^{4} = \frac{1}{8} \left( e^{32} - e^{16} \right) \left( \frac{1}{3} \left( e^{12} - e^{6} \right) \right) \]

3. Combine Results:
  • Combine the results from the inner and outer integrals:

\[ \frac{1}{8} \left( e^{32} - e^{16} \right) \left( \frac{1}{3} \left( e^{12} - e^{6} \right) \right) \]

  • This simplifies to:

\[ \frac{1}{24} \left( e^{32} - e^{16} \right) \left( e^{12} - e^{6} \right) \]

# Define the inner integral function
inner_integral <- function(y) {
  # Integrate e^(8x + 3y) with respect to x from 2 to 4
  integrand <- Vectorize(function(x) {
    exp(8 * x + 3 * y)
  })
  
  result <- integrate(integrand, lower = 2, upper = 4)
  return(result$value)
}

# Define the outer integral function
outer_integral <- function() {
  # Integrate the result of the inner integral with respect to y from 2 to 4
  integrand <- Vectorize(function(y) {
    inner_integral(y)
  })
  
  result <- integrate(integrand, lower = 2, upper = 4)
  return(result$value)
}

# Perform the double integral calculation
result <- outer_integral()
cat("The value of the double integral is:", result, "\n")
## The value of the double integral is: 5.341559e+17