1. load libraries
2. Load Seurat Object
All_samples_Merged
An object of class Seurat
62625 features across 46976 samples within 6 assays
Active assay: SCT (25901 features, 3000 variable features)
3 layers present: counts, data, scale.data
5 other assays present: RNA, ADT, prediction.score.celltype.l1, prediction.score.celltype.l2, prediction.score.celltype.l3
4 dimensional reductions calculated: pca, umap, integrated_dr, ref.umap
3. Data PREPERATION
ElbowPlot(All_samples_Merged)

# plot
before <- DimPlot(All_samples_Merged, reduction = "umap", group.by = "cell_line", label = TRUE, label.box = TRUE, repel = TRUE)
DimPlot(All_samples_Merged, reduction = "umap", group.by = "cell_line", label = TRUE, label.box = TRUE, repel = TRUE)

NA
NA
NA
4. Harmony-integration


after <- DimPlot(All_samples_Merged_Harmony_Integrated, reduction = "umap", group.by = "cell_line", label = TRUE, label.box = TRUE, repel = TRUE)
before|after
DimPlot(All_samples_Merged_Harmony_Integrated,reduction = "umap", group.by = "cell_line", label = TRUE, label.box = TRUE, repel = TRUE)
DimPlot(All_samples_Merged_Harmony_Integrated,reduction = "umap", group.by = "SCT_snn_res.0.5", label = TRUE, label.box = TRUE, repel = TRUE)

DimPlot(All_samples_Merged_Harmony_Integrated, reduction = "umap", group.by = "predicted.celltype.l2", label = TRUE, label.box = TRUE, repel = TRUE)

FeaturePlot
myfeatures <- c("CD3E", "CD4", "CD8A", "NKG7", "GNLY", "MS4A1", "CD14", "LYZ", "MS4A7", "FCGR3A", "CST3", "FCER1A")
FeaturePlot(All_samples_Merged_Harmony_Integrated, reduction = "umap", dims = 1:2, features = myfeatures, ncol = 4, order = T) + NoLegend() + NoAxes() + NoGrid()
Warning: All cells have the same value (0) of "FCER1A"

5. Save the Seurat object as an Robj file
# save(All_samples_Merged_Harmony_Integrated, file = "All_samples_Merged_Harmony_Integrated.Robj")
LS0tCnRpdGxlOiAiSW50ZWdyYXRpb24gYnkgSGFybW9ueV9vbl9TQ1RyYW5zZm9ybV9EQVRBIgphdXRob3I6IE5hc2lyIE1haG1vb2QgQWJiYXNpCmRhdGU6ICIyMDI0LTA1LTE3IgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazogCiAgICB0b2M6IHRydWUKICAgIHRvY19mbG9hdDogdHJ1ZQogICAgdG9jX2NvbGxhcHNlZDogdHJ1ZQogICAgdGhlbWU6IGRhcmtseQotLS0KIyAxLiBsb2FkIGxpYnJhcmllcwpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0KbGlicmFyeShTZXVyYXQpCmxpYnJhcnkoU2V1cmF0T2JqZWN0KQpsaWJyYXJ5KFNldXJhdERhdGEpCmxpYnJhcnkocGF0Y2h3b3JrKQpsaWJyYXJ5KGhhcm1vbnkpCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShyZXRpY3VsYXRlKQpsaWJyYXJ5KEF6aW11dGgpCmxpYnJhcnkoZHBseXIpCmxpYnJhcnkoUnRzbmUpCmxpYnJhcnkoaGFybW9ueSkKbGlicmFyeShncmlkRXh0cmEpCmBgYAoKIyAyLiBMb2FkIFNldXJhdCBPYmplY3QgCmBgYHtyIGxvYWRfc2V1cmF0fQoKIGxvYWQoIi9ob21lL2Jpb2luZm8vQ2x1c3Rlcl90b19Db21wdXRlcl9UcmFuc2Zlcl9maWxlc19mb2xkZXIvQWxsX05vcm1hbC1QQk1DX0Fibm9ybWFsLWNlbGxMaW5lc19UX2NlbGxzX01lcmdlZF9Bbm5vdGF0ZWRfVU1BUF9vbl9DbHVzdGVyc190b19VU0UuUm9iaiIpCiAKICBBbGxfc2FtcGxlc19NZXJnZWQKCgpgYGAKCgojIDMuIERhdGEgUFJFUEVSQVRJT04KYGBge3IgZGF0YSwgZmlnLmhlaWdodD02LCBmaWcud2lkdGg9MTB9CgoKRWxib3dQbG90KEFsbF9zYW1wbGVzX01lcmdlZCkKCiMgcGxvdApiZWZvcmUgPC0gRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIHJlZHVjdGlvbiA9ICJ1bWFwIiwgZ3JvdXAuYnkgPSAiY2VsbF9saW5lIiwgbGFiZWwgPSBUUlVFLCBsYWJlbC5ib3ggPSBUUlVFLCByZXBlbCA9IFRSVUUpCgoKCkRpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCByZWR1Y3Rpb24gPSAidW1hcCIsIGdyb3VwLmJ5ID0gImNlbGxfbGluZSIsIGxhYmVsID0gVFJVRSwgbGFiZWwuYm94ID0gVFJVRSwgcmVwZWwgPSBUUlVFKQoKCgpgYGAKCgojIDQuIEhhcm1vbnktaW50ZWdyYXRpb24KYGBge3IgaW50ZWdyYXRpb24taGFybW9ueSwgZmlnLmhlaWdodD02LCBmaWcud2lkdGg9MTB9CgojIHJ1biBIYXJtb255IC0tLS0tLS0tLS0tCkFsbF9zYW1wbGVzX01lcmdlZF9IYXJtb255X0ludGVncmF0ZWQgPC0gQWxsX3NhbXBsZXNfTWVyZ2VkICU+JQogIFJ1bkhhcm1vbnkoZ3JvdXAuYnkudmFycyA9ICdvcmlnLmlkZW50JywgcGxvdF9jb252ZXJnZW5jZSA9IEZBTFNFKQoKQWxsX3NhbXBsZXNfTWVyZ2VkX0hhcm1vbnlfSW50ZWdyYXRlZEByZWR1Y3Rpb25zCgpBbGxfc2FtcGxlc19NZXJnZWRfSGFybW9ueV9JbnRlZ3JhdGVkLmVtYmVkIDwtIEVtYmVkZGluZ3MoQWxsX3NhbXBsZXNfTWVyZ2VkX0hhcm1vbnlfSW50ZWdyYXRlZCwgImhhcm1vbnkiKQpBbGxfc2FtcGxlc19NZXJnZWRfSGFybW9ueV9JbnRlZ3JhdGVkLmVtYmVkWzE6MTAsMToxMF0KCgoKIyBEbyBVTUFQIGFuZCBjbHVzdGVyaW5nIHVzaW5nICoqIEhhcm1vbnkgZW1iZWRkaW5ncyBpbnN0ZWFkIG9mIFBDQSAqKgpBbGxfc2FtcGxlc19NZXJnZWRfSGFybW9ueV9JbnRlZ3JhdGVkIDwtIEFsbF9zYW1wbGVzX01lcmdlZF9IYXJtb255X0ludGVncmF0ZWQgJT4lCiAgIFJ1blVNQVAocmVkdWN0aW9uID0gJ2hhcm1vbnknLCBkaW1zID0gMToxMykgJT4lCiAgIEZpbmROZWlnaGJvcnMocmVkdWN0aW9uID0gImhhcm1vbnkiLCBkaW1zID0gMToxMykgJT4lCiAgIEZpbmRDbHVzdGVycyhyZXNvbHV0aW9uID0gMC41KQoKIyB2aXN1YWxpemUgCgoKYWZ0ZXIgPC0gRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWRfSGFybW9ueV9JbnRlZ3JhdGVkLCByZWR1Y3Rpb24gPSAidW1hcCIsIGdyb3VwLmJ5ID0gImNlbGxfbGluZSIsIGxhYmVsID0gVFJVRSwgbGFiZWwuYm94ID0gVFJVRSwgcmVwZWwgPSBUUlVFKQoKYmVmb3JlfGFmdGVyCgpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZF9IYXJtb255X0ludGVncmF0ZWQscmVkdWN0aW9uID0gInVtYXAiLCBncm91cC5ieSA9ICJjZWxsX2xpbmUiLCBsYWJlbCA9IFRSVUUsIGxhYmVsLmJveCA9IFRSVUUsIHJlcGVsID0gVFJVRSkKCgpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZF9IYXJtb255X0ludGVncmF0ZWQscmVkdWN0aW9uID0gInVtYXAiLCBncm91cC5ieSA9ICJTQ1Rfc25uX3Jlcy4wLjUiLCBsYWJlbCA9IFRSVUUsIGxhYmVsLmJveCA9IFRSVUUsIHJlcGVsID0gVFJVRSkKCkRpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkX0hhcm1vbnlfSW50ZWdyYXRlZCwgcmVkdWN0aW9uID0gInVtYXAiLCBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDIiLCBsYWJlbCA9IFRSVUUsIGxhYmVsLmJveCA9IFRSVUUsIHJlcGVsID0gVFJVRSkKCmBgYAoKCiMgRmVhdHVyZVBsb3QKYGBge3IgZmVhdHVyZXBsb3QtaGFybW9ueSwgZmlnLmhlaWdodD02LCBmaWcud2lkdGg9MTB9CgoKbXlmZWF0dXJlcyA8LSBjKCJDRDNFIiwgIkNENCIsICJDRDhBIiwgIk5LRzciLCAiR05MWSIsICJNUzRBMSIsICJDRDE0IiwgIkxZWiIsICJNUzRBNyIsICJGQ0dSM0EiLCAiQ1NUMyIsICJGQ0VSMUEiKQoKRmVhdHVyZVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkX0hhcm1vbnlfSW50ZWdyYXRlZCwgcmVkdWN0aW9uID0gInVtYXAiLCBkaW1zID0gMToyLCBmZWF0dXJlcyA9IG15ZmVhdHVyZXMsIG5jb2wgPSA0LCBvcmRlciA9IFQpICsgTm9MZWdlbmQoKSArIE5vQXhlcygpICsgTm9HcmlkKCkKCmBgYAoKCiMgNS4gU2F2ZSB0aGUgU2V1cmF0IG9iamVjdCBhcyBhbiBSb2JqIGZpbGUKYGBge3Igc2F2ZVJPQkp9CgojIHNhdmUoQWxsX3NhbXBsZXNfTWVyZ2VkX0hhcm1vbnlfSW50ZWdyYXRlZCwgZmlsZSA9ICJBbGxfc2FtcGxlc19NZXJnZWRfSGFybW9ueV9JbnRlZ3JhdGVkLlJvYmoiKQoKCmBgYAoKCgoK