1 Experiment Overview

1.1 Description


1.1.1

Sections describing experiment purpose, group assignment, and messages shown to respondents.

1.1.2 Purpose

In this experiment, respondents are asked to imagine a hypothetical situation where they are planning to have a non-urgent surgery (e.g., knee replacement or tonsils out) and their urine test during pre-surgery office visit comes back positive for bacteria though they do not have any symptoms of a urinary tract infection. Here we look at the impact of the educational tool we developed alongside a surgeon’s recommendation on respondents’ illness beliefs, antibiotic treatment preferences, and knowledge.

  • Group 1 (NoRecNoTool): No educational too provided and the surgeon DOES NOT give any recommendation.

  • Group 2 (NoRecYesTool): Given the educational too and the surgeon DOES NOT give any recommendation.

  • Group 3 (YesRecNoTool): No educational too provided and the surgeon RECOMMENDS antibiotics.

  • Group 4 (YesRecYesTool): Given the educational too and the surgeon RECOMMENDS antibiotics.


1.1.3 Scenarios



Introductory text (shown to all): “Please read the text below carefully and imagine that the situation described is real.”


Scenario:

  • “Please read the text below carefully and imagine that the situation described is real.

    Imagine you are planning to have a non-urgent surgery, perhaps a knee replacement or getting your tonsils out. You are asked to provide a urine sample during your pre-surgery office visit. The urine test comes back positive for bacteria. You are surprised as you do not have any symptoms of a urinary tract infection.

    The surgeon comes in to see how you are feeling and talk with you about the surgery you have come in for. The surgeon explains the procedure, how long they expect it to take, and reviews your medical report and lab work.

    Based on the positive urine test result the surgeon recommends that you take a course of antibiotics.

    Before leaving the room, the surgeon gives you a handout with some information about urinary tract infections and antibiotics [shown on the next page].


(Note: The text represents the scenario presented to Group 4 (Yes recommendation and Yes Tool). Italics indicate the text that was removed for Groups 1 (NoRecNoTool) and 2 (NoRecYesTool). Bold font indicates the text that was removed for groups 1 (NoRecNoTool) and 3 (YesRecNoTool).


1.1.4 UTI Tool


2 Survey responses

2.1 Sample and Survey Length


2.1.1

  • We aimed for a total sample of N=500 and ended with N=504.

  • Median completion time was 15 minutes with 85% completing between 5 and 25 minutes.

2.1.2 Enrollment

Desired total sample: [N=500]. Below, we first exclude those were not verified, then those who were were not eligible, then those who did not finish, then those who were flagged as overquota:

Term n percent
Verification
success 743 100.0%
Total 743
Quota
QuotaMet 168 22.6%
NA 575 77.4%
Eligibility Flag
NA 575 100.0%
Total 575
Progress
94% or less 64 11.1%
95% or more 511 88.9%
Answer Quality
Low answer quality 7 1.4%
No issues found 504 98.6%
Note. Respondents flagged as ‘likely bot’ reviewed and replaced as necessary by authors.
Speeder: 1 Completed survey in ≤5 minutes
Underage: a Reported age as ≤17 years (did not complete survey)

2.1.3 Time: Descriptives

Variable Mean SD Median Min Max Range
Stream 1 Duration 23M 3 1H 39 15M 7 5M 1S 1d 12 1d 12

2.1.4 Time: Figure

2.1.5 Grouped Timings

df$Duration_Mins n percent
Less than 5 minutes 0 0.0%
5 to 9 minutes 70 13.9%
10 to 14 minutes 178 35.3%
15 to 19 minutes 124 24.6%
20 to 24 minutes 57 11.3%
25 to 29 minutes 31 6.2%
30 to 34 minutes 16 3.2%
35 to 39 minutes 6 1.2%
More than 40 minutes 22 4.4%
Total 504

2.1.6 Individual timings

Duration (Minutes and Seconds) Duration (Seconds) n percent
5M 1S 301 1 0.2%
5M 24S 324 1 0.2%
6M 4S 364 1 0.2%
6M 17S 377 1 0.2%
6M 19S 379 1 0.2%
6M 41S 401 1 0.2%
6M 43S 403 1 0.2%
6M 45S 405 1 0.2%
6M 47S 407 1 0.2%
6M 48S 408 1 0.2%
7M 0S 420 1 0.2%
7M 2S 422 1 0.2%
7M 16S 436 1 0.2%
7M 22S 442 1 0.2%
7M 31S 451 2 0.4%
7M 39S 459 1 0.2%
7M 42S 462 1 0.2%
7M 59S 479 2 0.4%
8M 0S 480 1 0.2%
8M 2S 482 1 0.2%
8M 3S 483 2 0.4%
8M 8S 488 1 0.2%
8M 10S 490 1 0.2%
8M 12S 492 1 0.2%
8M 15S 495 1 0.2%
8M 19S 499 1 0.2%
8M 25S 505 1 0.2%
8M 26S 506 1 0.2%
8M 27S 507 1 0.2%
8M 30S 510 1 0.2%
8M 31S 511 1 0.2%
8M 32S 512 1 0.2%
8M 37S 517 1 0.2%
8M 39S 519 2 0.4%
8M 40S 520 2 0.4%
8M 41S 521 1 0.2%
8M 48S 528 1 0.2%
8M 49S 529 1 0.2%
8M 50S 530 1 0.2%
8M 52S 532 1 0.2%
8M 53S 533 1 0.2%
9M 0S 540 1 0.2%
9M 7S 547 2 0.4%
9M 9S 549 1 0.2%
9M 10S 550 1 0.2%
9M 13S 553 2 0.4%
9M 19S 559 1 0.2%
9M 22S 562 1 0.2%
9M 27S 567 1 0.2%
9M 30S 570 1 0.2%
9M 35S 575 1 0.2%
9M 38S 578 1 0.2%
9M 40S 580 1 0.2%
9M 44S 584 2 0.4%
9M 45S 585 1 0.2%
9M 46S 586 2 0.4%
9M 47S 587 2 0.4%
9M 48S 588 1 0.2%
9M 53S 593 1 0.2%
9M 55S 595 1 0.2%
10M 3S 603 1 0.2%
10M 4S 604 1 0.2%
10M 5S 605 1 0.2%
10M 6S 606 3 0.6%
10M 7S 607 1 0.2%
10M 11S 611 1 0.2%
10M 12S 612 2 0.4%
10M 14S 614 1 0.2%
10M 15S 615 1 0.2%
10M 18S 618 1 0.2%
10M 19S 619 2 0.4%
10M 20S 620 1 0.2%
10M 24S 624 1 0.2%
10M 25S 625 1 0.2%
10M 26S 626 2 0.4%
10M 27S 627 1 0.2%
10M 28S 628 1 0.2%
10M 29S 629 1 0.2%
10M 32S 632 1 0.2%
10M 37S 637 1 0.2%
10M 39S 639 1 0.2%
10M 41S 641 1 0.2%
10M 42S 642 1 0.2%
10M 43S 643 1 0.2%
10M 45S 645 1 0.2%
10M 50S 650 1 0.2%
10M 52S 652 1 0.2%
10M 53S 653 2 0.4%
10M 58S 658 1 0.2%
11M 0S 660 1 0.2%
11M 4S 664 1 0.2%
11M 10S 670 2 0.4%
11M 11S 671 2 0.4%
11M 13S 673 3 0.6%
11M 15S 675 1 0.2%
11M 18S 678 1 0.2%
11M 19S 679 1 0.2%
11M 21S 681 2 0.4%
11M 22S 682 1 0.2%
11M 28S 688 1 0.2%
11M 30S 690 1 0.2%
11M 31S 691 2 0.4%
11M 33S 693 1 0.2%
11M 35S 695 3 0.6%
11M 37S 697 2 0.4%
11M 41S 701 1 0.2%
11M 43S 703 1 0.2%
11M 45S 705 2 0.4%
11M 48S 708 1 0.2%
11M 49S 709 3 0.6%
11M 50S 710 1 0.2%
11M 51S 711 1 0.2%
11M 52S 712 1 0.2%
11M 57S 717 1 0.2%
11M 59S 719 1 0.2%
12M 0S 720 1 0.2%
12M 1S 721 1 0.2%
12M 2S 722 1 0.2%
12M 3S 723 1 0.2%
12M 4S 724 1 0.2%
12M 5S 725 1 0.2%
12M 8S 728 2 0.4%
12M 10S 730 1 0.2%
12M 12S 732 2 0.4%
12M 13S 733 1 0.2%
12M 15S 735 1 0.2%
12M 16S 736 1 0.2%
12M 17S 737 1 0.2%
12M 23S 743 1 0.2%
12M 24S 744 1 0.2%
12M 30S 750 1 0.2%
12M 35S 755 1 0.2%
12M 36S 756 1 0.2%
12M 37S 757 1 0.2%
12M 38S 758 1 0.2%
12M 39S 759 1 0.2%
12M 45S 765 2 0.4%
12M 46S 766 2 0.4%
12M 48S 768 1 0.2%
12M 51S 771 2 0.4%
12M 52S 772 1 0.2%
12M 55S 775 1 0.2%
12M 58S 778 1 0.2%
13M 5S 785 1 0.2%
13M 6S 786 2 0.4%
13M 9S 789 2 0.4%
13M 15S 795 1 0.2%
13M 16S 796 1 0.2%
13M 20S 800 1 0.2%
13M 23S 803 1 0.2%
13M 25S 805 1 0.2%
13M 26S 806 1 0.2%
13M 27S 807 1 0.2%
13M 28S 808 1 0.2%
13M 30S 810 1 0.2%
13M 32S 812 1 0.2%
13M 33S 813 1 0.2%
13M 34S 814 1 0.2%
13M 35S 815 1 0.2%
13M 36S 816 1 0.2%
13M 38S 818 2 0.4%
13M 41S 821 1 0.2%
13M 45S 825 2 0.4%
13M 50S 830 1 0.2%
13M 53S 833 1 0.2%
13M 55S 835 1 0.2%
13M 56S 836 1 0.2%
13M 57S 837 3 0.6%
13M 59S 839 1 0.2%
14M 0S 840 1 0.2%
14M 2S 842 1 0.2%
14M 3S 843 1 0.2%
14M 4S 844 1 0.2%
14M 7S 847 1 0.2%
14M 8S 848 1 0.2%
14M 10S 850 1 0.2%
14M 15S 855 2 0.4%
14M 18S 858 1 0.2%
14M 20S 860 1 0.2%
14M 21S 861 2 0.4%
14M 23S 863 2 0.4%
14M 25S 865 2 0.4%
14M 27S 867 2 0.4%
14M 31S 871 1 0.2%
14M 32S 872 1 0.2%
14M 33S 873 1 0.2%
14M 34S 874 1 0.2%
14M 36S 876 1 0.2%
14M 37S 877 1 0.2%
14M 39S 879 2 0.4%
14M 41S 881 1 0.2%
14M 42S 882 2 0.4%
14M 43S 883 1 0.2%
14M 44S 884 1 0.2%
14M 45S 885 1 0.2%
14M 48S 888 1 0.2%
14M 53S 893 2 0.4%
14M 55S 895 1 0.2%
14M 56S 896 1 0.2%
14M 57S 897 1 0.2%
14M 59S 899 1 0.2%
15M 0S 900 2 0.4%
15M 2S 902 1 0.2%
15M 5S 905 1 0.2%
15M 10S 910 1 0.2%
15M 11S 911 3 0.6%
15M 14S 914 1 0.2%
15M 17S 917 1 0.2%
15M 18S 918 1 0.2%
15M 19S 919 1 0.2%
15M 20S 920 1 0.2%
15M 23S 923 2 0.4%
15M 24S 924 1 0.2%
15M 29S 929 1 0.2%
15M 30S 930 2 0.4%
15M 32S 932 1 0.2%
15M 36S 936 1 0.2%
15M 38S 938 1 0.2%
15M 42S 942 1 0.2%
15M 43S 943 1 0.2%
15M 44S 944 2 0.4%
15M 45S 945 2 0.4%
15M 47S 947 2 0.4%
15M 49S 949 1 0.2%
15M 51S 951 1 0.2%
15M 52S 952 2 0.4%
15M 53S 953 1 0.2%
15M 55S 955 2 0.4%
15M 57S 957 1 0.2%
15M 59S 959 1 0.2%
16M 7S 967 1 0.2%
16M 8S 968 1 0.2%
16M 11S 971 1 0.2%
16M 12S 972 1 0.2%
16M 20S 980 1 0.2%
16M 24S 984 1 0.2%
16M 25S 985 1 0.2%
16M 26S 986 2 0.4%
16M 27S 987 1 0.2%
16M 33S 993 1 0.2%
16M 35S 995 1 0.2%
16M 42S 1002 2 0.4%
16M 44S 1004 1 0.2%
16M 45S 1005 1 0.2%
16M 49S 1009 2 0.4%
16M 51S 1011 1 0.2%
16M 55S 1015 1 0.2%
16M 57S 1017 1 0.2%
17M 0S 1020 2 0.4%
17M 7S 1027 1 0.2%
17M 11S 1031 1 0.2%
17M 12S 1032 1 0.2%
17M 13S 1033 1 0.2%
17M 17S 1037 1 0.2%
17M 19S 1039 1 0.2%
17M 20S 1040 1 0.2%
17M 36S 1056 1 0.2%
17M 37S 1057 1 0.2%
17M 39S 1059 2 0.4%
17M 44S 1064 1 0.2%
17M 51S 1071 1 0.2%
17M 55S 1075 1 0.2%
17M 57S 1077 4 0.8%
18M 5S 1085 1 0.2%
18M 7S 1087 2 0.4%
18M 13S 1093 1 0.2%
18M 14S 1094 3 0.6%
18M 19S 1099 1 0.2%
18M 20S 1100 1 0.2%
18M 24S 1104 1 0.2%
18M 27S 1107 1 0.2%
18M 28S 1108 1 0.2%
18M 40S 1120 1 0.2%
18M 44S 1124 1 0.2%
18M 45S 1125 1 0.2%
18M 46S 1126 1 0.2%
18M 47S 1127 1 0.2%
18M 52S 1132 1 0.2%
18M 53S 1133 1 0.2%
18M 57S 1137 1 0.2%
19M 0S 1140 1 0.2%
19M 2S 1142 1 0.2%
19M 3S 1143 1 0.2%
19M 7S 1147 1 0.2%
19M 8S 1148 1 0.2%
19M 9S 1149 1 0.2%
19M 16S 1156 1 0.2%
19M 17S 1157 1 0.2%
19M 19S 1159 2 0.4%
19M 20S 1160 1 0.2%
19M 21S 1161 1 0.2%
19M 22S 1162 2 0.4%
19M 30S 1170 1 0.2%
19M 31S 1171 1 0.2%
19M 32S 1172 1 0.2%
19M 39S 1179 1 0.2%
19M 50S 1190 1 0.2%
19M 51S 1191 1 0.2%
19M 53S 1193 1 0.2%
19M 55S 1195 1 0.2%
19M 56S 1196 1 0.2%
19M 58S 1198 1 0.2%
20M 0S 1200 1 0.2%
20M 2S 1202 1 0.2%
20M 7S 1207 2 0.4%
20M 11S 1211 2 0.4%
20M 16S 1216 1 0.2%
20M 18S 1218 1 0.2%
20M 31S 1231 1 0.2%
20M 37S 1237 1 0.2%
20M 43S 1243 1 0.2%
20M 45S 1245 1 0.2%
20M 47S 1247 1 0.2%
20M 50S 1250 1 0.2%
20M 59S 1259 1 0.2%
21M 6S 1266 1 0.2%
21M 18S 1278 1 0.2%
21M 19S 1279 1 0.2%
21M 26S 1286 1 0.2%
21M 30S 1290 1 0.2%
21M 35S 1295 1 0.2%
21M 36S 1296 1 0.2%
21M 37S 1297 1 0.2%
21M 38S 1298 2 0.4%
21M 39S 1299 1 0.2%
21M 58S 1318 1 0.2%
22M 19S 1339 1 0.2%
22M 26S 1346 1 0.2%
22M 31S 1351 1 0.2%
22M 32S 1352 2 0.4%
22M 33S 1353 1 0.2%
22M 35S 1355 2 0.4%
23M 3S 1383 1 0.2%
23M 8S 1388 1 0.2%
23M 21S 1401 1 0.2%
23M 27S 1407 1 0.2%
23M 40S 1420 1 0.2%
23M 42S 1422 1 0.2%
23M 48S 1428 1 0.2%
23M 53S 1433 1 0.2%
23M 58S 1438 1 0.2%
23M 59S 1439 1 0.2%
24M 12S 1452 1 0.2%
24M 15S 1455 1 0.2%
24M 19S 1459 1 0.2%
24M 22S 1462 1 0.2%
24M 25S 1465 1 0.2%
24M 40S 1480 1 0.2%
24M 43S 1483 1 0.2%
24M 51S 1491 1 0.2%
24M 52S 1492 1 0.2%
24M 54S 1494 2 0.4%
24M 56S 1496 1 0.2%
25M 3S 1503 1 0.2%
25M 7S 1507 1 0.2%
25M 15S 1515 1 0.2%
25M 18S 1518 1 0.2%
25M 37S 1537 1 0.2%
25M 40S 1540 1 0.2%
26M 6S 1566 1 0.2%
26M 21S 1581 1 0.2%
26M 40S 1600 1 0.2%
27M 0S 1620 1 0.2%
27M 10S 1630 1 0.2%
27M 20S 1640 1 0.2%
27M 36S 1656 1 0.2%
27M 45S 1665 1 0.2%
27M 51S 1671 1 0.2%
27M 52S 1672 1 0.2%
28M 1S 1681 1 0.2%
28M 5S 1685 1 0.2%
28M 15S 1695 1 0.2%
28M 24S 1704 1 0.2%
28M 31S 1711 2 0.4%
28M 49S 1729 1 0.2%
28M 58S 1738 1 0.2%
29M 1S 1741 1 0.2%
29M 31S 1771 1 0.2%
29M 32S 1772 1 0.2%
29M 38S 1778 2 0.4%
29M 48S 1788 1 0.2%
29M 52S 1792 1 0.2%
30M 10S 1810 1 0.2%
30M 20S 1820 1 0.2%
30M 22S 1822 1 0.2%
30M 25S 1825 1 0.2%
30M 30S 1830 1 0.2%
30M 31S 1831 1 0.2%
31M 10S 1870 1 0.2%
31M 18S 1878 2 0.4%
31M 43S 1903 1 0.2%
31M 53S 1913 1 0.2%
31M 54S 1914 1 0.2%
32M 33S 1953 1 0.2%
32M 50S 1970 1 0.2%
33M 12S 1992 1 0.2%
34M 6S 2046 1 0.2%
35M 42S 2142 1 0.2%
36M 16S 2176 1 0.2%
37M 22S 2242 1 0.2%
38M 4S 2284 1 0.2%
38M 43S 2323 1 0.2%
38M 51S 2331 1 0.2%
40M 7S 2407 1 0.2%
43M 7S 2587 1 0.2%
46M 54S 2814 1 0.2%
49M 40S 2980 1 0.2%
50M 18S 3018 1 0.2%
51M 17S 3077 1 0.2%
52M 20S 3140 1 0.2%
53M 54S 3234 1 0.2%
54M 29S 3269 1 0.2%
55M 8S 3308 1 0.2%
56M 45S 3405 1 0.2%
1H 0M 2S 3602 1 0.2%
1H 8M 0S 4080 1 0.2%
1H 13M 42S 4422 1 0.2%
1H 25M 0S 5100 1 0.2%
1H 35M 13S 5713 1 0.2%
1H 47M 58S 6478 1 0.2%
2H 28M 10S 8890 1 0.2%
3H 13M 58S 11638 1 0.2%
4H 4M 32S 14672 1 0.2%
4H 28M 9S 16089 1 0.2%
1d 12H 32M 5S 131525 1 0.2%


2.2 Quotas and group assingment


2.2.1

  • We had sample Quotas for: Age | Gender | Race | Region

  • Respondents were randomly assigned to one of four experimental groups.

2.2.2 Age

All respondents were ≥65 years old and most (72%) were between 65 and 74 years.

label levels Control Tool Only Recom. Only Recom. & Tool Total
Total N (%) 126 (25.0) 118 (23.4) 132 (26.2) 128 (25.4) 504
age_cat 65 to 69 56 (44.4) 58 (49.2) 52 (39.4) 45 (35.2) 211 (41.9)
70 to 74 36 (28.6) 30 (25.4) 44 (33.3) 39 (30.5) 149 (29.6)
75 to 79 21 (16.7) 26 (22.0) 20 (15.2) 30 (23.4) 97 (19.2)
80 to 85 9 (7.1) 3 (2.5) 12 (9.1) 13 (10.2) 37 (7.3)
85 and older 4 (3.2) 1 (0.8) 4 (3.0) 1 (0.8) 10 (2.0)
label levels Control Tool Only Recom. Only Recom. & Tool Total
Total N (%) 126 (25.0) 118 (23.4) 132 (26.2) 128 (25.4) 504
Age Mean (SD) 71.5 (5.3) 71.2 (4.5) 72.0 (5.4) 72.5 (5.0) 71.8 (5.1)
median trimmed mad min max range skew kurtosis se
Overall 71 71.33 5.93 65 88 23 0.70 -0.17 0.23
No Tool 71 71.25 5.93 65 86 21 0.72 -0.24 0.33
Yes Tool 71 71.45 5.93 65 88 23 0.67 -0.14 0.31
Control 71 70.93 5.93 65 86 21 0.78 -0.09 0.47
Tool Only 70 70.77 4.45 65 87 22 0.85 0.39 0.42
Recom. Only 71 71.55 5.93 65 86 21 0.66 -0.41 0.47
Recom. & Tool 72 72.18 5.93 65 88 23 0.50 -0.50 0.44

2.2.3 Gender

Most respondents identified as male (64.7%).

label levels Control Tool Only Recom. Only Recom. & Tool Total
Total N (%) 126 (25.0) 118 (23.4) 132 (26.2) 128 (25.4) 504
Gender_QuotaChr Male 79 (62.7) 77 (65.3) 86 (65.2) 83 (64.8) 325 (64.5)
Female 47 (37.3) 41 (34.7) 46 (34.8) 45 (35.2) 179 (35.5)
AnyOtherGender 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

2.2.4 Race

Around half of respondents identified as non-Hispanic White (53.4%).

label levels Control Tool Only Recom. Only Recom. & Tool Total
Total N (%) 126 (25.0) 118 (23.4) 132 (26.2) 128 (25.4) 504
Race_QuotaChr NHanyother 16 (12.7) 8 (6.8) 10 (7.6) 8 (6.2) 42 (8.3)
NHwhite 59 (46.8) 72 (61.5) 66 (50.0) 72 (56.2) 269 (53.5)
NHblack 26 (20.6) 17 (14.5) 23 (17.4) 22 (17.2) 88 (17.5)
Hisp 25 (19.8) 20 (17.1) 33 (25.0) 26 (20.3) 104 (20.7)

2.2.5 Region

Respondents were distributed by US region as follows:

label levels Control Tool Only Recom. Only Recom. & Tool Total
Total N (%) 126 (25.0) 118 (23.4) 132 (26.2) 128 (25.4) 504
Region_QuotaFct northeast 20 (15.9) 24 (20.5) 25 (18.9) 21 (16.4) 90 (17.9)
midwest 32 (25.4) 31 (26.5) 35 (26.5) 38 (29.7) 136 (27.0)
south 39 (31.0) 31 (26.5) 29 (22.0) 35 (27.3) 134 (26.6)
west 35 (27.8) 31 (26.5) 43 (32.6) 34 (26.6) 143 (28.4)

2.2.6 Group tables

We expected a total (N=500), to be split equally between four groups.
label levels No Tool Yes Tool Total
Total N (%) 258 (51.2) 246 (48.8) 504
UTI_GrpFct Control 126 (48.8) 0 (0.0) 126 (25.0)
Tool Only 0 (0.0) 118 (48.0) 118 (23.4)
Recom. Only 132 (51.2) 0 (0.0) 132 (26.2)
Recom. & Tool 0 (0.0) 128 (52.0) 128 (25.4)


3 Preregistered Results: DV1

3.1 Comfort with NOT taking antibiotics


3.1.1

Hypothesis 1 [H1]: Main effect of surgeon’s recommendation

  • We expect that a surgeon’s recommendation to take antibiotics will decrease respondents’ comfort with not taking antibiotics. H1 supported

Hypothesis 2 [H2]: Main effect of educational tool provision

  • We expect that providing educational information will increase respondents’ comfort with not taking antibiotics. H2 supported

Preregistered hypothesis available at: https://aspredicted.org/JXK_PHN


3.1.2 DV1: Figure


3.1.3 DV1: Descriptives


Responses and percentages


Grp Very uncomfortable Uncomfortable Comfortable Very comfortable NA Total
Total N (%) 111 (22.0) 177 (35.1) 160 (31.7) 56 (11.1) 0 (0.0) 504
Original groupings
UTI_GrpFct Control 29 (23.0) 48 (38.1) 34 (27.0) 15 (11.9) 0 (0.0) 126 (100)
Tool Only 15 (12.7) 37 (31.4) 48 (40.7) 18 (15.3) 0 (0.0) 118 (100)
Recom. Only 44 (33.3) 50 (37.9) 33 (25.0) 5 (3.8) 0 (0.0) 132 (100)
Recom. & Tool 23 (18.0) 42 (32.8) 45 (35.2) 18 (14.1) 0 (0.0) 128 (100)
No Tool vs Tool
ToolFct No Tool 73 (28.3) 98 (38.0) 67 (26.0) 20 (7.8) 0 (0.0) 258 (100)
Yes Tool 38 (15.4) 79 (32.1) 93 (37.8) 36 (14.6) 0 (0.0) 246 (100)
No Recom. vs Recom.
RecomFct No Recom. 44 (18.0) 85 (34.8) 82 (33.6) 33 (13.5) 0 (0.0) 244 (100)
Yes Recom. 67 (25.8) 92 (35.4) 78 (30.0) 23 (8.8) 0 (0.0) 260 (100)

Distribution and central tendency


n mean sd median trimmed mad min max range skew kurtosis se
Overall 504 2.32 0.94 2 2.27 1.48 1 4 3 0.13 -0.91 0.04
Original groupings
Control 126 2.28 0.95 2 2.23 1.48 1 4 3 0.26 -0.89 0.08
Tool Only 118 2.58 0.90 3 2.60 1.48 1 4 3 -0.15 -0.77 0.08
Recom. Only 132 1.99 0.86 2 1.94 1.48 1 4 3 0.37 -0.82 0.07
Recom. & Tool 128 2.45 0.95 2 2.44 1.48 1 4 3 0.00 -0.94 0.08
No Tool vs Tool
No Tool 258 2.13 0.92 2 2.07 1.48 1 4 3 0.34 -0.79 0.06
Yes Tool 246 2.52 0.92 3 2.52 1.48 1 4 3 -0.08 -0.85 0.06
No Recom. vs Recom.
No Recom. 244 2.43 0.94 2 2.41 1.48 1 4 3 0.05 -0.90 0.06
Recom. 260 2.22 0.93 2 2.16 1.48 1 4 3 0.21 -0.91 0.06

Least squares means (unadjusted) and CIs around means


## NOTE: Results may be misleading due to involvement in interactions
## NOTE: Results may be misleading due to involvement in interactions
RecomFct ToolFct lsmean SE df lower.CL upper.CL
No Recom. No Tool 2.28 0.082 500 2.118 2.44
Yes Recom. No Tool 1.99 0.080 500 1.836 2.15
No Recom. Yes Tool 2.58 0.084 500 2.419 2.75
Yes Recom. Yes Tool 2.45 0.081 500 2.294 2.61
RecomFct lsmean SE df lower.CL upper.CL
No Recom. 2.431 0.06 500 2.32 2.546
Yes Recom. 2.223 0.06 500 2.11 2.334
ToolFct lsmean SE df lower.CL upper.CL
No Tool 2.135 0.06 500 2.02 2.247
Yes Tool 2.519 0.06 500 2.40 2.634

3.1.4 DV1: Analyses

Checking for assumptions before running ANOVA


  • Plots are slightly skewed, but do not look too extreme

  • Levene test is not significant ∴ we do not reject null hypothesis of equal population variances


Levene Test
df1 df2 statistic p
3 500 1.27 0.283

  • The one-way omnibus ANOVA found statistically significant (\(\alpha\)=.05, two sided) main effects of surgeon recommendation and tool provision, but no interaction.
Comfort NOT taking antibiotics (Omnibus one-way ANOVA test)
Sum.Sq Df F.value Pr..F.
RecomFct 5.57 1 6.65 0.010
ToolFct 18.79 1 22.44 0.000
RecomFct:ToolFct 0.74 1 0.89 0.347
Sum.Sq Df F.value Pr..F.
Residuals 418.64 500 NA NA

Comfort NOT taking antibiotics (Omnibus ANOVA with additional effect sizes and power)
term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
RecomFct 1 5.39 5.39 6.44 0.011 0.01 0.01 0.01 0.01 0.01 0.11 0.72
ToolFct 1 18.79 18.79 22.44 0.000 0.04 0.04 0.04 0.04 0.04 0.21 1.00
RecomFct:ToolFct 1 0.74 0.74 0.89 0.347 0.00 0.00 0.00 0.00 0.00 0.04 0.16
term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
4 Residuals 500 418.64 0.84 NA NA NA NA NA NA NA NA NA

Follow-up tests revealed that…

  • the presence of a surgeon recommendation to take antibiotics decreased comfort with NOT taking antibiotics.

  • the presence of the educational tool increased comfort with NOT taking antibiotics.

Group1 n1 Group2 n2 df M1 M2 Mdiff t CIlow CIhigh p
No Recom. vs Recom.
No Recom. 244 Yes Recom. 260 499.5 2.43 2.22 0.21 2.49 0.04 0.37 0.013
Group1 n1 Group2 n2 df M1 M2 Mdiff t CIlow CIhigh p
No Tool vs Tool
No Tool 258 Yes Tool 246 500.36 2.13 2.52 -0.38 -4.69 -0.55 -0.22 0.000
Group1 n1 Group2 n2 df M1 M2 Mdiff t CIlow CIhigh p pAdj PAdj*
Original groupings
Control 126 Tool Only 118 241.98 2.28 2.58 -0.31 -2.59 -0.54 -0.07 0.010 0.041
Control 126 Recom. Only 132 250.57 2.28 1.99 0.29 2.52 0.06 0.51 0.012 0.041
Control 126 Recom. & Tool 128 251.88 2.28 2.45 -0.18 -1.47 -0.41 0.06 0.142 0.284 ns
Tool Only 118 Recom. Only 132 242.05 2.58 1.99 0.59 5.31 0.37 0.81 0.000 0.000 ****
Tool Only 118 Recom. & Tool 128 243.77 2.58 2.45 0.13 1.12 -0.10 0.36 0.265 0.284 ns
Recom. Only 132 Recom. & Tool 128 254.00 1.99 2.45 -0.46 -4.10 -0.68 -0.24 0.000 0.000 ***

3.1.5 Text



4 Key Results: DV2

4.1 Belief in presence of UTI


4.1.1

Hypothesis 1 [H1]: Main effect of surgeon’s recommendation

  • We expect that a surgeon’s recommendation to take antibiotics will increase respondents’ belief that they have a UTI based on the described scenario. H1 supported

Hypothesis 2 [H2]: Main effect of educational tool provision

  • We expect that providing educational information will decrease respondents’ belief that they have a UTI based on the described scenario. H2 supported

These hypotheses were not preregistered, but implied as listed as primary DVs.



4.1.2 DV2: Figure (Recoded)

Chi-Squared Test of Independence with Yates’ Continuity Correction are reported in the figures below which (from left to right) show…

  • Omnibus test of statistically significant difference (\(\alpha\)=.05, two sided) across groups on reported belief of UTI

  • 2X2 test showing statistically significant difference, with educational tool provision associated with lower likelihood of belief in UTI

  • 2X2 test showing statistically significant difference, with surgeon recommendation to take antibiotics associated with higher likelihood of belief in UTI

4.1.3 DV2: Figure (Original)


5 Key Results: DV3

5.1 Knowledge of UTI, ASB, and Antibiotics


5.1.1

Hypothesis 1 [H1]: Main effect of surgeon’s recommendation

  • We expect that a surgeon’s recommendation to take antibiotics will decrease the proportion of correct answers by respondents to the four knowledge questions. H1 partially supported

Hypothesis 2 [H2]: Main effect of educational tool provision

  • We expect that providing educational information will increase the proportion of correct answers by respondents to the four knowledge questions. H2 supported

These hypotheses were not preregistered, but implied as listed as primary DVs.

5.1.2 DV3: Items & Table

Please indicate whether you agree or disagree with each statement.

  • If someone has bacteria in their urine that means that they have a urinary tract infection.
    • Correct response: disagree Overall, 71% of respondents did not answer correctly
  • Bacteria in the urine does not always need to be treated with antibiotics.
    • Correct response: agree Overall, 48% of respondents did not answer correctly
  • To confirm a bacterial urinary tract infection, you need to have both specific symptoms and a positive test for bacteria in the urine.
    • Correct response: agree Overall, 36% of respondents did not answer correctly
  • Symptoms like fever, confusion, feeling tired or dizzy, a change in color or smell of urine, or a fall could have many other causes and might not be a UTI.
    • Correct response: agree Overall, 31% of respondents did not answer correctly

label levels No Tool Yes Tool Total
Total N (%) 258 (51.2) 246 (48.8) 504
Bacteria in urine means that you have a UTI Incorrect 223 (86.4) 134 (54.7) 357 (71.0)
Correct 35 (13.6) 111 (45.3) 146 (29.0)
Bacteria in urine does not always need ABXs Incorrect 167 (64.7) 78 (31.7) 245 (48.6)
Correct 91 (35.3) 168 (68.3) 259 (51.4)
Need specific symptoms & clinical test for UTI Incorrect 134 (51.9) 48 (19.6) 182 (36.2)
Correct 124 (48.1) 197 (80.4) 321 (63.8)
Nonspecific symptoms could have other causes than UTI Incorrect 106 (41.1) 50 (20.3) 156 (31.0)
Correct 152 (58.9) 196 (79.7) 348 (69.0)

Click to see the raw coding of knowledge items (1,2,3).
label levels No Tool Yes Tool Total
Total N (%) 258 (51.2) 246 (48.8) 504
Exp3_UTIKnow_1 1 35 (13.6) 111 (45.3) 146 (29.0)
2 88 (34.1) 91 (37.1) 179 (35.6)
3 135 (52.3) 43 (17.6) 178 (35.4)
Exp3_UTIKnow_2 1 52 (20.2) 37 (15.0) 89 (17.7)
2 91 (35.3) 168 (68.3) 259 (51.4)
3 115 (44.6) 41 (16.7) 156 (31.0)
Exp3_UTIKnow_3 1 40 (15.5) 24 (9.8) 64 (12.7)
2 124 (48.1) 197 (80.4) 321 (63.8)
3 94 (36.4) 24 (9.8) 118 (23.5)
Exp3_UTIKnow_4 1 22 (8.5) 17 (6.9) 39 (7.7)
2 152 (58.9) 196 (79.7) 348 (69.0)
3 84 (32.6) 33 (13.4) 117 (23.2)
Click to see recoding of knowledge items (disagree/agree/not sure).
label levels No Tool Yes Tool Total
Total N (%) 258 (51.2) 246 (48.8) 504
Bacteria in urine means that you have a UTI Disagree 35 (13.6) 111 (45.3) 146 (29.0)
Agree 88 (34.1) 91 (37.1) 179 (35.6)
Not sure 135 (52.3) 43 (17.6) 178 (35.4)
Bacteria in urine does not always need ABXs Disagree 52 (20.2) 37 (15.0) 89 (17.7)
Agree 91 (35.3) 168 (68.3) 259 (51.4)
Not sure 115 (44.6) 41 (16.7) 156 (31.0)
Need specific symptoms & clinical test for UTI Disagree 40 (15.5) 24 (9.8) 64 (12.7)
Agree 124 (48.1) 197 (80.4) 321 (63.8)
Not sure 94 (36.4) 24 (9.8) 118 (23.5)
Nonspecific symptoms could have other causes than UTI Disagree 22 (8.5) 17 (6.9) 39 (7.7)
Agree 152 (58.9) 196 (79.7) 348 (69.0)
Not sure 84 (32.6) 33 (13.4) 117 (23.2)

5.1.3 DV3: Figure (Recoded)

Chi-Squared Test of Independence with Yates’ Continuity Correction are reported in the figures below which (from left to right) show…

  • 2X2 tests showing statistically significant difference, with educational tool provision associated with greater likelihood of correct response to all four questions


Chi-Squared Test of Independence with Yates’ Continuity Correction are reported in the figures below which (from left to right) show…

  • 2X2 test showing only one statistically significant difference, with surgeon recommendation to take antibiotics associated with lower likelihood of correct response only for the question about requirements for confirming a bacterial UTI. No other significant differences found.


5.1.4 Figure (Original)

5.2 Knowledge as a scale

5.2.1

Same as above: With knowledge coded as number of correct answers/4.

Hypothesis 1 [H1]: Main effect of surgeon’s recommendation

  • We expect that a surgeon’s recommendation to take antibiotics will decrease the proportion of correct answers by respondents to the four knowledge questions. H1 partially supported

Hypothesis 2 [H2]: Main effect of educational tool provision

  • We expect that providing educational information will increase the proportion of correct answers by respondents to the four knowledge questions. H2 supported

These hypotheses were not preregistered, but implied as listed as primary DVs.

5.2.2 DV3: Figure (scale)

##  df$UTIknowVars   n percent
##               0  78   15.5%
##               1  89   17.7%
##               2 127   25.2%
##               3 109   21.6%
##               4 101   20.0%

Click to see reliability statistics for the knowledge scale (Cronbach’s alpha).
## 
## Reliability analysis   
## Call: psych::alpha(x = df[, c(UTIknowVars)])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.67      0.66    0.61      0.33   2 0.024 0.53 0.34     0.33
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.62  0.67  0.71
## Duhachek  0.62  0.67  0.71
## 
##  Reliability if an item is dropped:
##         raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## UTIKnw1      0.60      0.61    0.51      0.34 1.5    0.031 0.00062  0.34
## UTIKnw2      0.54      0.54    0.44      0.28 1.2    0.035 0.00356  0.28
## UTIKnw3      0.62      0.62    0.54      0.35 1.6    0.029 0.01617  0.36
## UTIKnw4      0.62      0.62    0.54      0.36 1.7    0.029 0.01087  0.31
## 
##  Item statistics 
##           n raw.r std.r r.cor r.drop mean   sd
## UTIKnw1 503  0.69  0.70  0.55   0.44 0.29 0.45
## UTIKnw2 504  0.77  0.76  0.66   0.53 0.51 0.50
## UTIKnw3 503  0.69  0.68  0.50   0.41 0.64 0.48
## UTIKnw4 504  0.68  0.68  0.50   0.41 0.69 0.46
## 
## Non missing response frequency for each item
##            0    1 miss
## UTIKnw1 0.71 0.29    0
## UTIKnw2 0.49 0.51    0
## UTIKnw3 0.36 0.64    0
## UTIKnw4 0.31 0.69    0

5.2.3 DV3: Descriptives

n mean sd median trimmed mad min max range skew kurtosis se
Overall 504 2.13 1.34 2.0 2.16 1.48 0 4 4 -0.13 -1.13 0.06
Original groupings
Control 126 1.68 1.24 2.0 1.63 1.48 0 4 4 0.19 -1.01 0.11
Tool Only 118 2.82 1.14 3.0 2.94 1.48 0 4 4 -0.59 -0.60 0.10
Recom. Only 132 1.44 1.15 1.0 1.37 1.48 0 4 4 0.37 -0.77 0.10
Recom. & Tool 128 2.65 1.28 3.0 2.80 1.48 0 4 4 -0.71 -0.54 0.11
No Tool vs Tool
No Tool 258 1.56 1.20 1.5 1.50 0.74 0 4 4 0.29 -0.89 0.07
Yes Tool 246 2.73 1.22 3.0 2.87 1.48 0 4 4 -0.69 -0.45 0.08
No Recom. vs Recom.
No Recom. 244 2.23 1.32 2.0 2.29 1.48 0 4 4 -0.19 -1.08 0.08
Recom. 260 2.03 1.36 2.0 2.04 1.48 0 4 4 -0.06 -1.19 0.08

Least squares means (unadjusted) and CIs around means


## NOTE: Results may be misleading due to involvement in interactions
## NOTE: Results may be misleading due to involvement in interactions
RecomFct ToolFct lsmean SE df lower.CL upper.CL
No Recom. No Tool 1.68 0.107 500 1.472 1.89
Yes Recom. No Tool 1.44 0.105 500 1.233 1.65
No Recom. Yes Tool 2.82 0.111 500 2.604 3.04
Yes Recom. Yes Tool 2.65 0.107 500 2.439 2.86
RecomFct lsmean SE df lower.CL upper.CL
No Recom. 2.252 0.08 500 2.1 2.404
Yes Recom. 2.044 0.07 500 1.9 2.191
ToolFct lsmean SE df lower.CL upper.CL
No Tool 1.561 0.08 500 1.41 1.708
Yes Tool 2.735 0.08 500 2.58 2.886

5.2.4 DV4: Analyses

Checking for assumptions before running ANOVA


  • Plots are slightly skewed, but do not look too extreme

  • Levene test is not significant ∴ we do not reject null hypothesis of equal population variances


Levene Test
df1 df2 statistic p
3 500 0.44 0.721

  • The one-way omnibus ANOVA found statistically significant (\(\alpha\)=.05, two sided) main effect of tool provision, but no effect of surgeon recommendation and no interaction.
Correct answers (Omnibus one-way ANOVA test)
Sum.Sq Df F.value Pr..F.
RecomFct 5.51 1 3.79 0.052
ToolFct 173.96 1 119.77 0.000
RecomFct:ToolFct 0.15 1 0.10 0.746
Sum.Sq Df F.value Pr..F.
Residuals 418.64 500 NA NA

Correct answers (Omnibus ANOVA with additional effect sizes and power)
term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
RecomFct 1 4.98 4.98 3.43 0.065 0.01 0.01 0.00 0.00 0.00 0.08 0.46
ToolFct 1 173.96 173.96 119.77 0.000 0.19 0.19 0.19 0.19 0.19 0.49 1.00
RecomFct:ToolFct 1 0.15 0.15 0.10 0.746 0.00 0.00 0.00 0.00 0.00 0.01 0.06
term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
4 Residuals 500 726.26 1.45 NA NA NA NA NA NA NA NA NA

Follow-up tests revealed that…

  • the presence of a surgeon recommendation to take antibiotics did not influnce correct responses.

  • the presence of the educational tool increased the average number of correct responses.

Group1 n1 Group2 n2 df M1 M2 Mdiff t CIlow CIhigh p
No Recom. vs Recom.
No Recom. 244 Yes Recom. 260 501.48 2.23 2.03 0.2 1.67 -0.04 0.43 0.096
Group1 n1 Group2 n2 df M1 M2 Mdiff t CIlow CIhigh p
No Tool vs Tool
No Tool 258 Yes Tool 246 500.1 1.56 2.73 -1.17 -10.9 -1.39 -0.96 0.000
Group1 n1 Group2 n2 df M1 M2 Mdiff t CIlow CIhigh p pAdj PAdj*
Original groupings
Control 126 Tool Only 118 241.92 1.68 2.82 -1.14 -7.50 -1.44 -0.84 0.000 0.000 ****
Control 126 Recom. Only 132 252.61 1.68 1.44 0.24 1.63 -0.05 0.54 0.104 0.208 ns
Control 126 Recom. & Tool 128 251.89 1.68 2.65 -0.97 -6.11 -1.28 -0.65 0.000 0.000 ****
Tool Only 118 Recom. Only 132 245.66 2.82 1.44 1.38 9.53 1.10 1.67 0.000 0.000 ****
Tool Only 118 Recom. & Tool 128 243.62 2.82 2.65 0.17 1.12 -0.13 0.48 0.262 0.262 ns
Recom. Only 132 Recom. & Tool 128 253.29 1.44 2.65 -1.21 -7.98 -1.51 -0.91 0.000 0.000 ****


6 Additional variables

6.1 Secondary variables

6.1.1

We had 2 secondary variables for Experiment 3.

  • Feedback on the tool (shown only to those who saw it)
  • Prior antibiotic prescription for UTI

6.1.2 Exp3_ToolFeedback:

How would you describe the information you saw? + Shown only to those who saw the tool

Response scale:

  • Not at all useful (1), — (2), — (3), — (4), — (5), Very useful (6).
  • Very difficult to understand (1), — (2), — (3), — (4), — (5), Very easy to understand (6).
  • Very inaccurate (1), — (2), — (3), — (4), — (5), Very accurate (6).
  • Not at all relevant to me (1), — (2), — (3), — (4), — (5), Very relevant to me (6).
  • Not at all interesting to me (1), — (2), — (3), — (4), — (5), Very interesting to me (6).
  • Very badly designed (1), — (2), — (3), — (4), — (5), Very well designed (6).

Click to check that ratings only came from those in groups who saw the tool.
We should see that the “NoTool” groups have NAs for the six items equal to the group Ns
UTIGrp NA_ NA_ NA_ NA_ NA_ NA_
Exp3_NoRecNoTool 126 126 126 126 126 126
Exp3_NoRecYesTool 4 1 1 3 1 2
Exp3_YesRecNoTool 132 132 132 132 132 132
Exp3_YesRecYesTool 1 1 2 5 2 0
label levels No Tool Yes Tool Total
Total N (%) 258 (51.2) 246 (48.8) 504
Exp3_ToolFeedback_1 1 2 (0.8) 2 (0.8)
2 7 (2.9) 7 (2.9)
3 12 (5.0) 12 (5.0)
4 33 (13.7) 33 (13.7)
5 69 (28.6) 69 (28.6)
6 118 (49.0) 118 (49.0)

vars n mean sd median trimmed mad min max range skew kurtosis se
Useful 1 241 5.13 1.1 5 5.33 1.5 1 6 5 -1.39 1.63 0.1
Understand 1 244 4.92 1.3 5 5.12 1.5 1 6 5 -1.09 0.26 0.1
Accuracy 1 243 5.02 1.1 5 5.18 1.5 1 6 5 -1.20 1.40 0.1
Relevance 1 238 4.09 1.6 4 4.22 1.5 1 6 5 -0.43 -0.86 0.1
Interest 1 243 4.67 1.4 5 4.89 1.5 1 6 5 -0.97 0.08 0.1
Design 1 244 4.88 1.2 5 5.07 1.5 1 6 5 -1.11 0.98 0.1


6.1.3 Exp3_PrescABxUTI:

Have you ever been prescribed antibiotics for a urinary tract infection?


Response scale (categorical): No (1), Yes (2), I don’t know (3).


Exp3_UTIpriorAbx n percent Exp3_UTIpriorAbxFct n percent
1 302 59.9% No 302 59.9%
2 180 35.7% Yes 180 35.7%
3 22 4.4% I don’t know 22 4.4%
Total 504
Total 504
label levels Control Tool Only Recom. Only Recom. & Tool Total
Total N (%) 126 (25.0) 118 (23.4) 132 (26.2) 128 (25.4) 504
Exp3_UTIpriorAbxFct No 76 (60.3) 67 (56.8) 82 (62.1) 77 (60.2) 302 (59.9)
Yes 41 (32.5) 44 (37.3) 47 (35.6) 48 (37.5) 180 (35.7)
I don’t know 9 (7.1) 7 (5.9) 3 (2.3) 3 (2.3) 22 (4.4)


6.2 Exploratory variables

6.2.1

We then asked about side effect concerns. This is completely exploratory and there is not even a strong signal here but I just thought worth noting that for concerns about both short and long-term side effects from taking antibiotics, the mean was descriptively lower for the group who received only the surgeons recommendation.


6.2.2 CL_SideEffectWorry:

These exploratory ANOVAs are not statistically significant.

## Anova Table (Type II tests)
## 
## Response: CL_SideEffectWorryNum
##                  Sum Sq  Df F value  Pr(>F)  
## RecomFct           1.69   1  1.0355 0.30938  
## ToolFct            1.35   1  0.8268 0.36365  
## RecomFct:ToolFct   6.03   1  3.7013 0.05495 .
## Residuals        793.68 487                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                   df   sumsq meansq statistic p.value etasq partial.etasq
## RecomFct           1   1.668  1.668     1.024   0.312 0.002         0.002
## ToolFct            1   1.347  1.347     0.827   0.364 0.002         0.002
## RecomFct:ToolFct   1   6.032  6.032     3.701   0.055 0.008         0.008
## ...4             487 793.677  1.630        NA      NA    NA            NA
##                  omegasq partial.omegasq epsilonsq cohens.f power
## RecomFct           0.000           0.000     0.000    0.046 0.173
## ToolFct            0.000           0.000     0.000    0.041 0.149
## RecomFct:ToolFct   0.005           0.005     0.005    0.087 0.486
## ...4                  NA              NA        NA       NA    NA

Descriptives

n mean sd median trimmed mad min max range skew kurtosis se
Overall 491 2.51 1.28 2 2.40 1.48 1 5 4 0.43 -0.95 0.06
Control 121 2.63 1.39 2 2.54 1.48 1 5 4 0.34 -1.19 0.13
Tool Only 117 2.50 1.22 2 2.43 1.48 1 5 4 0.38 -0.95 0.11
Recom. Only 127 2.29 1.22 2 2.18 1.48 1 5 4 0.57 -0.80 0.11
Recom. & Tool 126 2.61 1.27 2 2.52 1.48 1 5 4 0.38 -0.97 0.11
label levels Control Tool Only Recom. Only Recom. & Tool Total
Total N (%) 126 (25.0) 118 (23.4) 132 (26.2) 128 (25.4) 504
CL_SideEffectWorryFct Not at all concerned 34 (27.0) 29 (24.6) 43 (32.6) 28 (21.9) 134 (26.6)
Slightly concerned 29 (23.0) 36 (30.5) 35 (26.5) 39 (30.5) 139 (27.6)
Somewhat concerned 22 (17.5) 23 (19.5) 24 (18.2) 25 (19.5) 94 (18.7)
Moderately concerned 20 (15.9) 22 (18.6) 19 (14.4) 22 (17.2) 83 (16.5)
Extremely concerned 16 (12.7) 7 (5.9) 6 (4.5) 12 (9.4) 41 (8.1)
Not sure 5 (4.0) 1 (0.8) 5 (3.8) 2 (1.6) 13 (2.6)

6.2.3 CL_LongEffectWorry:

## Anova Table (Type II tests)
## 
## Response: CL_LongEffectWorryNum
##                  Sum Sq  Df F value  Pr(>F)  
## RecomFct           2.48   1  1.2696 0.26040  
## ToolFct            6.76   1  3.4652 0.06328 .
## RecomFct:ToolFct   2.49   1  1.2754 0.25931  
## Residuals        944.52 484                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                   df   sumsq meansq statistic p.value etasq partial.etasq
## RecomFct           1   2.475  2.475     1.268   0.261 0.003         0.003
## ToolFct            1   6.762  6.762     3.465   0.063 0.007         0.007
## RecomFct:ToolFct   1   2.489  2.489     1.275   0.259 0.003         0.003
## ...4             484 944.517  1.951        NA      NA    NA            NA
##                  omegasq partial.omegasq epsilonsq cohens.f power
## RecomFct           0.001           0.001     0.001    0.051 0.203
## ToolFct            0.005           0.005     0.005    0.085 0.461
## RecomFct:ToolFct   0.001           0.001     0.001    0.051 0.204
## ...4                  NA              NA        NA       NA    NA
n mean sd median trimmed mad min max range skew kurtosis se
Overall 488 2.61 1.40 2 2.51 1.48 1 5 4 0.43 -1.15 0.06
Control 119 2.64 1.44 2 2.56 1.48 1 5 4 0.35 -1.28 0.13
Tool Only 117 2.73 1.39 2 2.66 1.48 1 5 4 0.36 -1.22 0.13
Recom. Only 127 2.35 1.37 2 2.20 1.48 1 5 4 0.59 -0.98 0.12
Recom. & Tool 125 2.73 1.39 2 2.66 1.48 1 5 4 0.43 -1.16 0.12
label levels Control Tool Only Recom. Only Recom. & Tool Total
Total N (%) 126 (25.0) 118 (23.4) 132 (26.2) 128 (25.4) 504
CL_LongEffectWorryFct Not at all concerned 35 (27.8) 25 (21.2) 48 (36.4) 25 (19.5) 133 (26.4)
Slightly concerned 29 (23.0) 39 (33.1) 29 (22.0) 45 (35.2) 142 (28.2)
Somewhat concerned 17 (13.5) 14 (11.9) 19 (14.4) 16 (12.5) 66 (13.1)
Moderately concerned 20 (15.9) 21 (17.8) 19 (14.4) 17 (13.3) 77 (15.3)
Extremely concerned 18 (14.3) 18 (15.3) 12 (9.1) 22 (17.2) 70 (13.9)
Not sure 7 (5.6) 1 (0.8) 5 (3.8) 3 (2.3) 16 (3.2)


7 Respondent Characteristics

7.1 Individual differences

7.1.1

We asked respondents about…

  • Maximizing | Lack of belief in science | Political leaning | Political affiliation

7.1.2 ID_MinMax:

Sometimes, medical action is clearly necessary, and sometimes it is clearly NOT necessary. Other times, people differ in their beliefs about whether medical action is needed. In medical situations where it’s not clear, do you tend to lean towards taking action or do you lean towards waiting and seeing if action is needed? Importantly, there is no “right” way to be. Please answer on the 1-6 scale below:


Response scale (likert):

I lean toward waiting and seeing (1), — (2), — (3), — (4), — (5), I lean toward taking action (6).


ID_MinMax n percent valid_percent
1 56 11.1% 11.1%
2 59 11.7% 11.7%
3 112 22.2% 22.3%
4 112 22.2% 22.3%
5 90 17.9% 17.9%
6 74 14.7% 14.7%
NA 1 0.2%
Total 504
Minimizer/Maximizer
n mean sd median trimmed mad min max range skew kurtosis se
503 3.68 1.54 4 3.73 1.48 1 6 5 -0.14 -0.94 0.07


7.1.3 ID_BeliefInScience:

Please indicate howmuch you agree or disagree with each statement.


Response scale (likert):

Strongly disagree (1), Disagree (2), Somewhat disagree (3), Neither agree nor disagree (4), Somewhat agree (5), Agree (6), Strongly agree (7).


Use button to check reliability statistics for the lack of belief in science scale (Cronbach’s alpha).

## 
## Reliability analysis   
## Call: psych::alpha(x = df[, c(BISSvars)])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.93      0.93    0.93      0.68  13 0.005  3.6 1.4     0.67
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.92  0.93  0.94
## Duhachek  0.92  0.93  0.94
## 
##  Reliability if an item is dropped:
##                      raw_alpha std.alpha G6(smc) average_r  S/N alpha se  var.r
## ID_BeliefinScience_1      0.93      0.93    0.92      0.71 12.5   0.0052 0.0072
## ID_BeliefinScience_2      0.92      0.91    0.91      0.68 10.6   0.0059 0.0124
## ID_BeliefinScience_3      0.93      0.92    0.92      0.71 12.3   0.0053 0.0068
## ID_BeliefinScience_4      0.90      0.90    0.90      0.65  9.5   0.0067 0.0072
## ID_BeliefinScience_5      0.91      0.91    0.89      0.66  9.6   0.0066 0.0054
## ID_BeliefinScience_6      0.91      0.91    0.90      0.67 10.0   0.0064 0.0082
##                      med.r
## ID_BeliefinScience_1  0.70
## ID_BeliefinScience_2  0.65
## ID_BeliefinScience_3  0.68
## ID_BeliefinScience_4  0.64
## ID_BeliefinScience_5  0.67
## ID_BeliefinScience_6  0.66
## 
##  Item statistics 
##                        n raw.r std.r r.cor r.drop mean  sd
## ID_BeliefinScience_1 503  0.79  0.79  0.73   0.70  3.6 1.6
## ID_BeliefinScience_2 504  0.85  0.86  0.82   0.79  3.9 1.5
## ID_BeliefinScience_3 504  0.79  0.80  0.74   0.71  3.6 1.5
## ID_BeliefinScience_4 504  0.91  0.91  0.90   0.86  3.5 1.6
## ID_BeliefinScience_5 504  0.90  0.90  0.90   0.85  3.3 1.6
## ID_BeliefinScience_6 504  0.89  0.89  0.87   0.83  3.4 1.7
## 
## Non missing response frequency for each item
##                         1    2    3    4    5    6    7 miss
## ID_BeliefinScience_1 0.09 0.21 0.17 0.23 0.19 0.09 0.03    0
## ID_BeliefinScience_2 0.07 0.15 0.14 0.28 0.23 0.10 0.03    0
## ID_BeliefinScience_3 0.08 0.19 0.15 0.29 0.18 0.07 0.03    0
## ID_BeliefinScience_4 0.11 0.23 0.16 0.17 0.21 0.08 0.03    0
## ID_BeliefinScience_5 0.14 0.23 0.17 0.20 0.16 0.07 0.03    0
## ID_BeliefinScience_6 0.14 0.23 0.15 0.23 0.14 0.07 0.05    0

Lack of belief in science
n mean sd median trimmed mad min max range skew kurtosis se
504 3.56 1.35 3.67 3.53 1.48 1 7 6 0.1 -0.58 0.06


7.1.4 ID_PoliticalSocial:

How would you describe your political outlook with regard to social issues?


Response scale (categorical):

Very liberal (1), Liberal (2), Slightly liberal (3), Moderate (4), Slightly conservative (5), Conservative (6), Very conservative (7), Prefer not to say (8).


ID_PolSocial n percent valid_percent ID_PolSocialFct n percent valid_percent
1 26 5.2% 5.2% Very liberal 26 5.2% 5.2%
2 72 14.3% 14.3% Liberal 72 14.3% 14.3%
3 49 9.7% 9.8% Slightly liberal 49 9.7% 9.8%
4 177 35.1% 35.3% Moderate 177 35.1% 35.3%
5 42 8.3% 8.4% Slightly conservative 42 8.3% 8.4%
6 86 17.1% 17.1% Conservative 86 17.1% 17.1%
7 44 8.7% 8.8% Very conservative 44 8.7% 8.8%
8 6 1.2% 1.2% Prefer not to say 6 1.2% 1.2%
NA 2 0.4%
NA 2 0.4%
Total 504
Total 504
Political Outlook
n mean sd median trimmed mad min max range skew kurtosis se
496 4.15 1.65 4 4.14 1.48 1 7 6 -0.01 -0.77 0.07


7.1.5 ID_PoliticalAffiliation:

Which political party are you affiliated with?


Response scale (categorical):

Democrat (1), Republican (2), Independent (3), Liberal third party (4), Conservative third party (5), No political party affiliation (6), Prefer not to say (7).


ID_PolAffiliation n percent
1 229 45.4%
2 129 25.6%
3 117 23.2%
6 23 4.6%
7 6 1.2%
Total 504
ID_PolAffiliationFct n percent
Democrat 229 45.4%
Republican 129 25.6%
Independent 117 23.2%
Liberal third party 0 0.0%
Conservative third party 0 0.0%
No political party affiliation 23 4.6%
Prefer not to say 6 1.2%
Total 504



7.2 Medical history

7.2.1

We asked respondents about their medical history regarding…

  • Prior antibiotic use | Preexisting comorbidities | COVID-19 infection and vaccination history

7.2.2 D_AbxUse:

In the past 12 months, I have taken antibiotics…


Response scale (likert):

0 times (1), 1 time (2), 2 times (3), 3 times (4), 4 times (5), 5 or more times (6).


D_AbxUse n percent D_AbxUseFct n percent
1 318 63.1% 0 times 318 63.1%
2 119 23.6% 1 time 119 23.6%
3 46 9.1% 2 times 46 9.1%
4 8 1.6% 3 times 8 1.6%
5 3 0.6% 4 times 3 0.6%
6 10 2.0% 5 or more times 10 2.0%
Total 504
Total 504
Antibiotic use in the past 12 months
n mean sd median trimmed mad min max range skew kurtosis se
504 1.59 0.99 1 1.38 0 1 6 5 2.34 6.48 0.04


7.2.3 D_PreExist:

Do you have a pre-existing health condition–respiratory illness, cancer, heart disease, high blood pressure, diabetes, immunocompromised etc.–that may make you more vulnerable to infections (e.g., COVID-19)?


Response scale (categorical):

No (1), Yes (2), Unsure (3).

D_PreExist n percent valid_percent
1 206 40.9% 41.0%
2 279 55.4% 55.5%
3 18 3.6% 3.6%
NA 1 0.2%
Total 504
D_PreExistFct n percent valid_percent
No 206 40.9% 41.0%
Yes 279 55.4% 55.5%
Unsure 18 3.6% 3.6%
NA 1 0.2%
Total 504


7.2.4 D_Comorbidities:

As far as you know, do you have any of the following health conditions at the present time?


  • Asthma, emphysema, or chronic bronchitis, COPD (other lung disease)
  • Arthritis or rheumatism
  • Cancer, diagnosed in the past 3 years
  • Diabetes
  • Digestive problems (such as ulcer, colitis, or gallbladder disease)
  • Heart trouble (such as angina, congestive heart failure, or coronary artery disease, having a past heart attack)
  • HIV illness or AIDS
  • Kidney disease
  • Liver problems (such as cirrhosis)
  • Stroke
  • High blood pressure (hypertension)
  • Very overweight or obese

Response scale (categorical):

No, I do not have this condition (0), Yes, I have this condition (1).

vars n mean sd median trimmed mad min max range skew kurtosis se
Total comorbidities 1 504 1.92 1.72 2 1.71 1.48 0 10 10 1.21 2.1 0.08
label levels 0 1 Total
Total N (%) 7 (1.4) 497 (98.6) 504
Asthma, emphysema, chronic bronchitis, COPD (other lung disease) 0 5 (71.4) 430 (86.5) 435 (86.3)
1 2 (28.6) 67 (13.5) 69 (13.7)
Arthritis or rheumatism 0 3 (42.9) 315 (63.4) 318 (63.1)
1 4 (57.1) 182 (36.6) 186 (36.9)
Cancer, diagnosed in the past 3 years 0 7 (100.0) 469 (94.6) 476 (94.6)
1 0 (0.0) 27 (5.4) 27 (5.4)
Diabetes 0 6 (85.7) 384 (77.3) 390 (77.4)
1 1 (14.3) 113 (22.7) 114 (22.6)
Digestive problems (such as ulcer, colitis, or gallbladder disease) 0 5 (71.4) 458 (92.3) 463 (92.0)
1 2 (28.6) 38 (7.7) 40 (8.0)
Heart trouble (e.g. angina, CHF, CAD, past heart attack) 0 6 (85.7) 408 (82.1) 414 (82.1)
1 1 (14.3) 89 (17.9) 90 (17.9)
HIV illness or AIDS 0 7 (100.0) 488 (98.2) 495 (98.2)
1 0 (0.0) 9 (1.8) 9 (1.8)
Kidney disease 0 6 (85.7) 462 (93.0) 468 (92.9)
1 1 (14.3) 35 (7.0) 36 (7.1)
Liver problems (e.g. cirrhosis) 0 7 (100.0) 485 (97.6) 492 (97.6)
1 0 (0.0) 12 (2.4) 12 (2.4)
Stroke 0 7 (100.0) 470 (94.8) 477 (94.8)
1 0 (0.0) 26 (5.2) 26 (5.2)
High blood pressure (hypertension) 0 3 (42.9) 232 (46.7) 235 (46.6)
1 4 (57.1) 265 (53.3) 269 (53.4)
Very overweight or obese 0 6 (85.7) 409 (82.5) 415 (82.5)
1 1 (14.3) 87 (17.5) 88 (17.5)
CCI_OrNot n percent
None 110 21.8%
At least one 394 78.2%
Total 504


7.2.5 D_VaxStatus:

Which of the following describes your COVID-19 vaccination status?

Use this button to see the raw coding of the vaccinations status questions.

Which of the following describes your COVID-19 vaccination status?

D_CV19Vax n percent valid_percent D_CV19VaxFct n percent valid_percent
1 44 8.7% 8.8% Not received a COVID-19 vaccine 44 8.7% 8.8%
2 385 76.4% 76.8% Received ≥1-dose of a Pfizer or Moderna vaccine 385 76.4% 76.8%
3 72 14.3% 14.4% Received ≥1-dose of a J&J or Novavax vaccine 72 14.3% 14.4%
NA 3 0.6%
NA 3 0.6%
Total 504
Total 504

For those who received ≥1 dose of either Pfizer or Moderna

D_CV19Vax_Ext1 n percent valid_percent D_CV19Vax_Ext1Fct n percent valid_percent
1 58 11.5% 15.1% Not completed a full series 58 11.5% 15.1%
2 75 14.9% 19.5% Completed primary series 75 14.9% 19.5%
3 252 50.0% 65.5% Completed primary series & received a booster 252 50.0% 65.5%
NA 119 23.6%
NA 119 23.6%
Total 504
Total 504

For those who received ≥1 dose of either J&J or Novavax

D_CV19Vax_Ext2 n percent valid_percent D_CV19Vax_Ext2Fct n percent valid_percent
1 6 1.2% 8.3% Not completed a full series 6 1.2% 8.3%
2 10 2.0% 13.9% Completed primary series 10 2.0% 13.9%
3 56 11.1% 77.8% Completed primary series & received a booster 56 11.1% 77.8%
NA 432 85.7%
NA 432 85.7%
Total 504
Total 504

VaxStatus n percent
Not received a COVID-19 vaccine 44 8.7%
Received ≥1-dose of a Pfizer or Moderna vaccine 385 76.4%
Not completed a full series 58 15.1%
Completed primary series 75 19.5%
Completed primary series & received a booster 252 65.5%
Total 385
Not completed a full series 6 8.3%
Received ≥1-dose of a J&J or Novavax vaccine 72 14.3%
Completed primary series 10 13.9%
Completed primary series & received a booster 56 77.8%
Total 72
NA NA NA
NA 3 0.6%
Total 504


7.2.6 D_VaxPride:

I am proud that I [am/not] vaccinated again COVID-19


Response scale (likert):

Do not agree at all (1), — (2), — (3), — (4), — (5), — (6), — (7), Very much agree (8).

Proud to NOT be vaccinated
D_CV19notVaxProud n percent valid_percent
1 7 1.4% 15.9%
2 2 0.4% 4.5%
4 1 0.2% 2.3%
5 3 0.6% 6.8%
6 5 1.0% 11.4%
7 6 1.2% 13.6%
8 20 4.0% 45.5%
NA 460 91.3%
Total 504
Proud to be vaccinated
D_CV19VaxProud n percent valid_percent
1 12 2.4% 2.6%
2 14 2.8% 3.1%
3 13 2.6% 2.8%
4 25 5.0% 5.5%
5 43 8.5% 9.4%
6 40 7.9% 8.8%
7 53 10.5% 11.6%
8 257 51.0% 56.2%
NA 47 9.3%
Total 504
Pride in vaccination status
vars n mean sd median trimmed mad min max range skew kurtosis se
Not vax 1 44 5.95 2.64 7 6.28 1.48 1 8 7 -1.00 -0.63 0.40
Vax 1 457 6.70 1.90 8 7.08 0.00 1 8 7 -1.43 1.10 0.09


7.2.7 D_HadCov:

Have you had COVID-19?


Response scale (categorical):

No, I have not had COVID-19 (1), Yes, but I did not have any symptoms (asymptomatic) (2), Yes, mild symptoms (3), Yes, I was seriously ill and DID NOT require hospitalization (4), Yes, I was seriously ill and DID require hospitalization (5).

D_HadCoV1 n percent D_HadCoV1Fct n percent
1 280 55.6% No, I have not had COVID-19 280 55.6%
2 23 4.6% Yes, but no symptoms 23 4.6%
3 163 32.3% Yes, mild symptoms 163 32.3%
4 29 5.8% Yes, seriously ill but no hospital 29 5.8%
5 9 1.8% Yes, seriously ill and hospitalized 9 1.8%
Total 504
Total 504


You said you had COVID-19, have you now recovered?


Response scale (categorical):

No (1), Yes, somewhat (2), Yes, mostly (3), Yes, fully (4).

D_HadCoV2 n percent valid_percent
1 1 0.2% 0.5%
2 6 1.2% 3.0%
3 17 3.4% 8.5%
4 177 35.1% 88.1%
NA 303 60.1%
Total 504
D_HadCoV2Fct n percent valid_percent
No 1 0.2% 0.5%
Yes, somewhat 6 1.2% 3.0%
Yes, mostly 17 3.4% 8.5%
Yes, fully 177 35.1% 88.1%
NA 303 60.1%
Total 504


D_knwCov2:

Has anyone important to you been seriously ill with COVID-19 (e.g., required some medical care)?

  • 1 ~ “Immediate Family”,
  • 2 ~ “Wider Family”,
  • 3 ~ “Friend”,
  • 4 ~ “Work colleague”,
  • 5 ~ “No”

Response scale (select all that apply):

D_KnwCoV n percent
1 52 10.3%
1,2 3 0.6%
1,2,3 7 1.4%
1,2,3,4 1 0.2%
1,2,4 1 0.2%
1,3 5 1.0%
1,4 1 0.2%
2 40 7.9%
2,3 14 2.8%
2,3,4 4 0.8%
2,4 1 0.2%
3 58 11.5%
3,4 3 0.6%
4 4 0.8%
5 310 61.5%
Total 504



7.3 Demographics

7.3.1

We asked respondents about four additional demographics…

  • Education | Residence | Health literacy | Subjective numeracy

7.3.2 D_Edu:

What is the highest level of schooling you have completed?


Response scale (categorical):

None (1), Elementary school (2), Some high school but no diploma (3), High school (Diploma or GED) (4), Some college, but no degree (5), Trade school (6), Bachelor’s degree (BS BA etc.) (7), Master’s degree (MA MPH etc.) (8), Doctoral/Professional degree (PhD MD etc.) (9)


D_Edu n percent
3 4 0.8%
4 53 10.5%
5 125 24.8%
6 46 9.1%
7 174 34.5%
8 71 14.1%
9 31 6.2%
Total 504
D_EduFct n percent
None 0 0.0%
Elementary school 0 0.0%
Some high school but no diploma 4 0.8%
High school (Diploma or GED) 53 10.5%
Some college, but no degree 125 24.8%
Trade school 46 9.1%
Bachelor’s degree (BS, BA, etc.) 174 34.5%
Master’s degree (MA, MPH, etc.) 71 14.1%
Doctoral/Professional degree (PhD, MD, etc.) 31 6.2%
Total 504


7.3.3 D_Residence:

How would you best describe the place where you live?


Response scale (categorical):

Rural (1), Small (less than 100000) (2), Suburban near large city (3), Mid sized city (100000 to 1 million) (4), large city more than 1million (5), Other (6).


D_Residence n percent
1 75 14.9%
2 73 14.5%
3 237 47.0%
4 52 10.3%
5 66 13.1%
6 1 0.2%
Total 504
D_ResidenceFct n percent
Rural 75 14.9%
Small (less than 100,000) 73 14.5%
Suburban near large city 237 47.0%
Mid sized city (100,000 to 1 million) 52 10.3%
large city more than 1million 66 13.1%
Other 1 0.2%
Total 504


7.3.4 D_HealtLit:

How often do you have someone (like a family member, friend, hospital/clinic worker or caregiver) help you read instructions, pamphlets or other written health materials from your doctor or pharmacy?


Response scale (likert): Never (1), Rarely (2), Sometimes (3), Often (4), Always (5).


D_HealthLit n percent valid_percent D_HealthLitFct n percent valid_percent
1 362 71.8% 72.0% Never 362 71.8% 72.0%
2 74 14.7% 14.7% Rarely 74 14.7% 14.7%
3 33 6.5% 6.6% Sometimes 33 6.5% 6.6%
4 19 3.8% 3.8% Often 19 3.8% 3.8%
5 15 3.0% 3.0% Always 15 3.0% 3.0%
NA 1 0.2%
NA 1 0.2%
Total 504
Total 504
Health Literacy
n mean sd median trimmed mad min max range skew kurtosis se
503 1.51 0.98 1 1.27 0 1 5 4 2.09 3.68 0.04


7.3.5 D_Numeracy:

  • Q1. How good are you at working with fractions?
  • Q2. How good are you at figuring out how much a shirt will cost if it is 25% off?

Response scale (likert): Not at all good (1), — (2), — (3), — (4), — (5) Extremely good (6).


  • Q3. How often do you find numerical information to be useful?

Response scale (likert): Never (1), — (2), — (3), — (4), — (5) Very often (6).


Use button to check reliability statistics for the subjective numeracy scale (Cronbach’s alpha).

## 
## Reliability analysis   
## Call: psych::alpha(x = df[, c(NUMSvars)])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.82      0.82    0.76       0.6 4.6 0.014  4.8 1.1     0.56
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.79  0.82  0.84
## Duhachek  0.79  0.82  0.84
## 
##  Reliability if an item is dropped:
##        raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## D_Num1      0.72      0.72    0.56      0.56 2.6    0.025    NA  0.56
## D_Num2      0.70      0.72    0.56      0.56 2.5    0.025    NA  0.56
## D_Num3      0.81      0.82    0.69      0.69 4.5    0.016    NA  0.69
## 
##  Item statistics 
##          n raw.r std.r r.cor r.drop mean  sd
## D_Num1 504  0.90  0.87  0.79   0.71  4.5 1.5
## D_Num2 504  0.87  0.88  0.79   0.72  5.1 1.2
## D_Num3 504  0.80  0.82  0.66   0.61  5.0 1.1
## 
## Non missing response frequency for each item
##           1    2    3    4    5    6 miss
## D_Num1 0.06 0.06 0.12 0.19 0.27 0.31    0
## D_Num2 0.03 0.03 0.05 0.13 0.27 0.50    0
## D_Num3 0.02 0.01 0.08 0.20 0.30 0.40    0

Variable n mean sd median trimmed mad min max range skew kurtosis se
Overall 504 4.84 1.09 5.0 4.98 0.99 1 6 5 -1.01 0.65 0.05
Fraction 504 4.48 1.48 5.0 4.67 1.48 1 6 5 -0.83 -0.20 0.07
Percent 504 5.09 1.21 5.5 5.34 0.74 1 6 5 -1.57 2.18 0.05
Useful 504 4.95 1.13 5.0 5.12 1.48 1 6 5 -1.11 1.17 0.05


8 Final Comments

  • “Is there anything else you would like to share with us?”

    • Responses of “none”, “None”, “nothing”, “Nothing”, “no”, “No”, “NA”, “N/A”, “na”, “Na”, and ” “, are automatically removed.


9 Exploratory analyses

9.1 Predictors

9.1.1

Exploring how well different individual differences, health behaviors, and demographics predict our dependent variables.

9.1.2 Table 1 (UTI)

  • Aligned with our previous analyses we can clearly see that the tool and surgeon recommendation strongly predict UTI belief, therefore we need to rerun the analyses with only the control group.
  Model 1: Full sample Model 2: Control Group Only
Predictors Odds Ratios CI Statistic p value Odds Ratios CI Statistic p value
(Intercept) 0.35 0.06 – 2.12 -1.13 0.259 1.00 0.02 – 51.86 -0.00 0.999
70-74 yrs. [vs. 65-69 yrs.] 1.08 0.62 – 1.90 0.28 0.778 0.40 0.10 – 1.43 -1.36 0.173
75+ yrs. [vs. 65-69 yrs.] 0.87 0.48 – 1.55 -0.47 0.640 0.71 0.19 – 2.46 -0.53 0.594
Female [vs. Male] 1.24 0.68 – 2.28 0.71 0.477 1.43 0.40 – 5.17 0.56 0.574
NonHispanic Black [vs. NonHispanic White] 0.82 0.38 – 1.72 -0.53 0.599 0.15 0.02 – 0.72 -2.24 0.025
Hispanic [vs. NonHispanic White] 0.97 0.54 – 1.73 -0.09 0.925 0.54 0.13 – 1.99 -0.91 0.364
NonHispanic Any other [vs. NonHispanic White] 0.20 0.04 – 0.64 -2.44 0.015 0.10 0.00 – 0.78 -1.88 0.060
Midwest [vs. NE] 0.69 0.34 – 1.40 -1.04 0.296 0.78 0.14 – 4.43 -0.29 0.769
South [vs. NE] 0.95 0.47 – 1.94 -0.15 0.880 2.96 0.65 – 15.76 1.36 0.175
West [vs. NE] 0.96 0.47 – 2.00 -0.11 0.915 1.06 0.20 – 6.12 0.07 0.944
Had Abxs for UTI 1.67 0.99 – 2.84 1.92 0.055 0.99 0.29 – 3.14 -0.02 0.982
Worry of short-term side effects from abxs 0.88 0.67 – 1.16 -0.89 0.371 0.76 0.45 – 1.25 -1.05 0.295
Worry of long-term side effects from abxs 1.02 0.79 – 1.32 0.19 0.851 1.38 0.84 – 2.41 1.21 0.225
Healthcare Maximizer 0.97 0.82 – 1.13 -0.43 0.668 0.82 0.56 – 1.16 -1.11 0.269
Lack of Belief in Science 0.96 0.80 – 1.14 -0.51 0.609 0.99 0.66 – 1.49 -0.04 0.969
Frequency of abx Use 1.00 0.78 – 1.27 0.04 0.969 1.37 0.83 – 2.33 1.21 0.225
Total comorbidities 1.19 1.03 – 1.36 2.44 0.015 0.98 0.69 – 1.33 -0.11 0.909
Suburban residence [vs. Rural] 0.89 0.52 – 1.52 -0.44 0.658 1.44 0.43 – 5.15 0.58 0.562
Urban residence [vs. Rural] 0.67 0.34 – 1.32 -1.14 0.256 0.57 0.10 – 2.81 -0.68 0.495
Bachelors degree or more [vs. Less than Bachelors] 1.14 0.69 – 1.90 0.51 0.609 1.28 0.41 – 4.08 0.42 0.674
Health Literacy 0.86 0.65 – 1.12 -1.08 0.281 0.77 0.41 – 1.31 -0.89 0.372
Numeracy 1.10 0.87 – 1.41 0.77 0.439 0.96 0.57 – 1.65 -0.13 0.894
Educational tool provision [vs. No Tool] 0.29 0.18 – 0.47 -4.93 <0.001
Surgeon Recommends ABXs. [vs. No recommendation] 2.03 1.27 – 3.29 2.91 0.004
Observations 464 112
R2 Tjur 0.143 0.184

9.1.3 Table 2 (ABXs)

  • Aligned with our previous analyses we can clearly see that the tool and surgeon recommendation strongly predict comfort with NOT taking antibiotics, therefore we need to rerun the analyses with only the control group.
  Model 1: Full sample Model 2: Control Group Only
Predictors Estimates CI Statistic p value Estimates CI Statistic p value
(Intercept) 1.95 1.31 – 2.59 5.97 <0.001 1.11 -0.21 – 2.43 1.64 0.101
70-74 yrs. [vs. 65-69 yrs.] 0.14 -0.07 – 0.35 1.34 0.180 0.18 -0.24 – 0.60 0.83 0.406
75+ yrs. [vs. 65-69 yrs.] 0.18 -0.03 – 0.39 1.72 0.085 0.23 -0.21 – 0.66 1.03 0.305
Female [vs. Male] -0.00 -0.22 – 0.22 -0.01 0.991 0.37 -0.06 – 0.80 1.71 0.088
NonHispanic Black [vs. NonHispanic White] 0.08 -0.19 – 0.36 0.59 0.554 0.45 -0.07 – 0.97 1.70 0.089
Hispanic [vs. NonHispanic White] -0.06 -0.28 – 0.17 -0.50 0.620 -0.00 -0.48 – 0.48 -0.00 0.997
NonHispanic Any other [vs. NonHispanic White] 0.24 -0.10 – 0.57 1.40 0.163 0.33 -0.24 – 0.91 1.13 0.259
Midwest [vs. NE] -0.01 -0.27 – 0.25 -0.07 0.943 0.27 -0.30 – 0.85 0.94 0.348
South [vs. NE] 0.12 -0.15 – 0.39 0.86 0.391 0.06 -0.48 – 0.61 0.23 0.815
West [vs. NE] 0.05 -0.22 – 0.32 0.36 0.717 0.04 -0.55 – 0.63 0.15 0.883
Had Abxs for UTI -0.03 -0.23 – 0.16 -0.35 0.729 -0.44 -0.84 – -0.04 -2.15 0.032
Worry of short-term side effects from abxs -0.03 -0.13 – 0.07 -0.64 0.525 -0.19 -0.35 – -0.02 -2.21 0.027
Worry of long-term side effects from abxs 0.01 -0.08 – 0.10 0.27 0.784 0.16 -0.01 – 0.33 1.85 0.065
Healthcare Maximizer -0.02 -0.07 – 0.04 -0.53 0.595 0.00 -0.11 – 0.12 0.05 0.963
Lack of Belief in Science 0.06 -0.00 – 0.12 1.83 0.068 0.05 -0.09 – 0.19 0.68 0.494
Frequency of abx Use -0.03 -0.12 – 0.06 -0.64 0.522 -0.04 -0.21 – 0.12 -0.53 0.594
Total comorbidities 0.00 -0.05 – 0.05 0.01 0.989 -0.04 -0.15 – 0.06 -0.81 0.419
Suburban residence [vs. Rural] -0.13 -0.33 – 0.07 -1.27 0.205 0.14 -0.28 – 0.57 0.67 0.504
Urban residence [vs. Rural] -0.12 -0.36 – 0.13 -0.94 0.349 -0.03 -0.53 – 0.48 -0.10 0.923
Bachelors degree or more [vs. Less than Bachelors] 0.03 -0.16 – 0.21 0.29 0.769 -0.25 -0.63 – 0.12 -1.32 0.187
Health Literacy -0.01 -0.11 – 0.08 -0.31 0.756 0.21 0.03 – 0.39 2.30 0.021
Numeracy 0.03 -0.06 – 0.11 0.61 0.541 0.13 -0.05 – 0.31 1.40 0.160
Educational tool provision [vs. No Tool] 0.45 0.28 – 0.62 5.13 <0.001
Surgeon Recommends ABXs. [vs. No recommendation] -0.22 -0.39 – -0.05 -2.55 0.011
Observations 464 112
R2 0.093 0.282

9.1.4 Table 3 (Know)

  • Aligned with our previous analyses we can clearly see that the tool and surgeon recommendation strongly predict knowledge scores, therefore we need to rerun the analyses with only the control group.
  Model 1: Full sample Model 2: Control Group Only
Predictors Estimates CI Statistic p value Estimates CI Statistic p value
(Intercept) 1.31 0.48 – 2.14 3.10 0.002 0.28 -1.61 – 2.16 0.29 0.774
70-74 yrs. [vs. 65-69 yrs.] -0.15 -0.42 – 0.12 -1.07 0.285 -0.13 -0.73 – 0.47 -0.44 0.662
75+ yrs. [vs. 65-69 yrs.] -0.03 -0.30 – 0.24 -0.21 0.831 0.10 -0.52 – 0.72 0.31 0.757
Female [vs. Male] 0.08 -0.21 – 0.36 0.53 0.594 0.35 -0.26 – 0.95 1.11 0.266
NonHispanic Black [vs. NonHispanic White] 0.21 -0.15 – 0.56 1.14 0.255 0.55 -0.19 – 1.29 1.46 0.144
Hispanic [vs. NonHispanic White] -0.11 -0.40 – 0.17 -0.78 0.434 0.27 -0.40 – 0.95 0.79 0.428
NonHispanic Any other [vs. NonHispanic White] 0.24 -0.19 – 0.68 1.10 0.273 0.58 -0.25 – 1.40 1.37 0.169
Midwest [vs. NE] -0.25 -0.59 – 0.09 -1.45 0.148 -0.04 -0.85 – 0.78 -0.09 0.932
South [vs. NE] 0.03 -0.32 – 0.37 0.15 0.877 -0.51 -1.28 – 0.27 -1.29 0.198
West [vs. NE] -0.15 -0.50 – 0.20 -0.85 0.397 -0.52 -1.37 – 0.32 -1.22 0.221
Had Abxs for UTI 0.00 -0.25 – 0.26 0.04 0.971 0.09 -0.49 – 0.66 0.30 0.768
Worry of short-term side effects from abxs -0.04 -0.17 – 0.08 -0.65 0.517 0.06 -0.17 – 0.30 0.51 0.608
Worry of long-term side effects from abxs 0.02 -0.10 – 0.14 0.38 0.704 -0.12 -0.36 – 0.13 -0.93 0.351
Healthcare Maximizer -0.03 -0.10 – 0.04 -0.79 0.428 -0.08 -0.24 – 0.09 -0.91 0.364
Lack of Belief in Science 0.02 -0.06 – 0.11 0.57 0.569 0.19 -0.01 – 0.39 1.87 0.062
Frequency of abx Use 0.03 -0.08 – 0.15 0.59 0.556 0.07 -0.16 – 0.30 0.60 0.551
Total comorbidities 0.08 0.01 – 0.15 2.36 0.018 0.06 -0.09 – 0.20 0.74 0.461
Suburban residence [vs. Rural] -0.31 -0.57 – -0.05 -2.37 0.018 -0.36 -0.96 – 0.24 -1.18 0.237
Urban residence [vs. Rural] -0.52 -0.83 – -0.20 -3.20 0.001 -0.55 -1.27 – 0.18 -1.47 0.140
Bachelors degree or more [vs. Less than Bachelors] 0.28 0.04 – 0.52 2.29 0.022 0.04 -0.49 – 0.58 0.16 0.875
Health Literacy -0.04 -0.16 – 0.07 -0.74 0.462 0.13 -0.12 – 0.39 1.03 0.304
Numeracy 0.11 -0.00 – 0.22 1.95 0.051 0.21 -0.05 – 0.46 1.58 0.113
Educational tool provision [vs. No Tool] 1.17 0.95 – 1.39 10.34 <0.001
Surgeon Recommends ABXs. [vs. No recommendation] -0.24 -0.46 – -0.02 -2.15 0.031
Observations 464 112
R2 0.243 0.187
  Model 1: UTI belief Model 2:Comfort Model 3: Knowledge
Predictors Odds Ratios CI p value Estimates CI p value Estimates CI p value
(Intercept) 1.00 0.02 – 51.86 0.999 1.11 -0.21 – 2.43 0.101 0.28 -1.61 – 2.16 0.774
70-74 yrs. [vs. 65-69 yrs.] 0.40 0.10 – 1.43 0.173 0.18 -0.24 – 0.60 0.406 -0.13 -0.73 – 0.47 0.662
75+ yrs. [vs. 65-69 yrs.] 0.71 0.19 – 2.46 0.594 0.23 -0.21 – 0.66 0.305 0.10 -0.52 – 0.72 0.757
Female [vs. Male] 1.43 0.40 – 5.17 0.574 0.37 -0.06 – 0.80 0.088 0.35 -0.26 – 0.95 0.266
NonHispanic Black [vs. NonHispanic White] 0.15 0.02 – 0.72 0.025 0.45 -0.07 – 0.97 0.089 0.55 -0.19 – 1.29 0.144
Hispanic [vs. NonHispanic White] 0.54 0.13 – 1.99 0.364 -0.00 -0.48 – 0.48 0.997 0.27 -0.40 – 0.95 0.428
NonHispanic Any other [vs. NonHispanic White] 0.10 0.00 – 0.78 0.060 0.33 -0.24 – 0.91 0.259 0.58 -0.25 – 1.40 0.169
Midwest [vs. NE] 0.78 0.14 – 4.43 0.769 0.27 -0.30 – 0.85 0.348 -0.04 -0.85 – 0.78 0.932
South [vs. NE] 2.96 0.65 – 15.76 0.175 0.06 -0.48 – 0.61 0.815 -0.51 -1.28 – 0.27 0.198
West [vs. NE] 1.06 0.20 – 6.12 0.944 0.04 -0.55 – 0.63 0.883 -0.52 -1.37 – 0.32 0.221
Had Abxs for UTI 0.99 0.29 – 3.14 0.982 -0.44 -0.84 – -0.04 0.032 0.09 -0.49 – 0.66 0.768
Worry of short-term side effects from abxs 0.76 0.45 – 1.25 0.295 -0.19 -0.35 – -0.02 0.027 0.06 -0.17 – 0.30 0.608
Worry of long-term side effects from abxs 1.38 0.84 – 2.41 0.225 0.16 -0.01 – 0.33 0.065 -0.12 -0.36 – 0.13 0.351
Healthcare Maximizer 0.82 0.56 – 1.16 0.269 0.00 -0.11 – 0.12 0.963 -0.08 -0.24 – 0.09 0.364
Lack of Belief in Science 0.99 0.66 – 1.49 0.969 0.05 -0.09 – 0.19 0.494 0.19 -0.01 – 0.39 0.062
Frequency of abx Use 1.37 0.83 – 2.33 0.225 -0.04 -0.21 – 0.12 0.594 0.07 -0.16 – 0.30 0.551
Total comorbidities 0.98 0.69 – 1.33 0.909 -0.04 -0.15 – 0.06 0.419 0.06 -0.09 – 0.20 0.461
Suburban residence [vs. Rural] 1.44 0.43 – 5.15 0.562 0.14 -0.28 – 0.57 0.504 -0.36 -0.96 – 0.24 0.237
Urban residence [vs. Rural] 0.57 0.10 – 2.81 0.495 -0.03 -0.53 – 0.48 0.923 -0.55 -1.27 – 0.18 0.140
Bachelors degree or more [vs. Less than Bachelors] 1.28 0.41 – 4.08 0.674 -0.25 -0.63 – 0.12 0.187 0.04 -0.49 – 0.58 0.875
Health Literacy 0.77 0.41 – 1.31 0.372 0.21 0.03 – 0.39 0.021 0.13 -0.12 – 0.39 0.304
Numeracy 0.96 0.57 – 1.65 0.894 0.13 -0.05 – 0.31 0.160 0.21 -0.05 – 0.46 0.113
Observations 112 112 112
R2 Tjur 0.184 0.282 0.187

9.1.5 ModelFit

  • model fit and collinearity statistics for the full sample model below
Observations 464 (40 missing obs. deleted)
Dependent variable UTI_Cat
Type Generalized linear model
Family binomial
Link logit
𝛘²(23) 68.13
Pseudo-R² (Cragg-Uhler) 0.20
Pseudo-R² (McFadden) 0.13
AIC 499.51
BIC 598.87
Est. S.E. z val. p VIF
(Intercept) -1.04 0.92 -1.13 0.26 NA
Age_CatModel70 to 74 0.08 0.29 0.28 0.78 1.16
Age_CatModel75 plus -0.14 0.30 -0.47 0.64 1.16
Gender_QuotaChrFemale 0.22 0.31 0.71 0.48 1.63
Race_QuotaChrNHblack -0.20 0.38 -0.53 0.60 1.54
Race_QuotaChrHisp -0.03 0.30 -0.09 0.92 1.54
Race_QuotaChrNHanyother -1.62 0.67 -2.44 0.01 1.54
Region_QuotaFctmidwest -0.37 0.36 -1.04 0.30 1.40
Region_QuotaFctsouth -0.05 0.36 -0.15 0.88 1.40
Region_QuotaFctwest -0.04 0.37 -0.11 0.91 1.40
UTIpriorAbxFctModelYes 0.51 0.27 1.92 0.06 1.32
CL_SideEffectWorryNum -0.12 0.14 -0.89 0.37 2.22
CL_LongEffectWorryNum 0.02 0.13 0.19 0.85 2.31
ID_MinMaxNum -0.03 0.08 -0.43 0.67 1.11
BeliefinScience_Avg -0.04 0.09 -0.51 0.61 1.08
D_AbxUseNum 0.00 0.12 0.04 0.97 1.13
CCI_ttl 0.17 0.07 2.44 0.01 1.12
UrbanRuralFct2Suburban -0.12 0.27 -0.44 0.66 1.20
UrbanRuralFct2Urban -0.40 0.35 -1.14 0.26 1.20
EducationFctBachelors or More 0.13 0.26 0.51 0.61 1.23
D_HealthLitNum -0.15 0.14 -1.08 0.28 1.09
Numeracy_Avg 0.10 0.12 0.77 0.44 1.31
ToolFctYes Tool -1.23 0.25 -4.93 0.00 1.06
RecomFctYes Recom. 0.71 0.24 2.91 0.00 1.05
Standard errors: MLE
  • model fit and collinearity statistics for the full sample model below
Observations 112 (14 missing obs. deleted)
Dependent variable UTI_Cat
Type Generalized linear model
Family binomial
Link logit
𝛘²(21) 21.39
Pseudo-R² (Cragg-Uhler) 0.25
Pseudo-R² (McFadden) 0.16
AIC 152.78
BIC 212.59
Est. S.E. z val. p VIF
(Intercept) -0.00 2.02 -0.00 1.00 NA
Age_CatModel70 to 74 -0.91 0.66 -1.36 0.17 1.60
Age_CatModel75 plus -0.34 0.64 -0.53 0.59 1.60
Gender_QuotaChrFemale 0.36 0.64 0.56 0.57 1.73
Race_QuotaChrNHblack -1.89 0.85 -2.24 0.03 2.55
Race_QuotaChrHisp -0.63 0.69 -0.91 0.36 2.55
Race_QuotaChrNHanyother -2.31 1.23 -1.88 0.06 2.55
Region_QuotaFctmidwest -0.25 0.86 -0.29 0.77 2.70
Region_QuotaFctsouth 1.08 0.80 1.36 0.18 2.70
Region_QuotaFctwest 0.06 0.86 0.07 0.94 2.70
UTIpriorAbxFctModelYes -0.01 0.60 -0.02 0.98 1.53
CL_SideEffectWorryNum -0.27 0.26 -1.05 0.30 2.41
CL_LongEffectWorryNum 0.32 0.27 1.21 0.22 2.80
ID_MinMaxNum -0.20 0.18 -1.11 0.27 1.51
BeliefinScience_Avg -0.01 0.20 -0.04 0.97 1.45
D_AbxUseNum 0.32 0.26 1.21 0.22 1.58
CCI_ttl -0.02 0.16 -0.11 0.91 1.59
UrbanRuralFct2Suburban 0.37 0.63 0.58 0.56 1.73
UrbanRuralFct2Urban -0.57 0.83 -0.68 0.49 1.73
EducationFctBachelors or More 0.24 0.58 0.42 0.67 1.46
D_HealthLitNum -0.26 0.29 -0.89 0.37 1.42
Numeracy_Avg -0.04 0.27 -0.13 0.89 1.73
Standard errors: MLE

9.1.6 Fig1 (UTI)

  • The figure below show the model outcomes and plotted coefficients for the overall sample


  • The figure below shows the model outcomes and plotted coefficients for those in the Control group only

9.1.7 Fig2 (ABXs)

  • The figure below show the model outcomes and plotted coefficients for the overall sample


  • The figure below shows the model outcomes and plotted coefficients for those in the Control group only

9.1.8 Fig3 (Know)

  • The figure below show the model outcomes and plotted coefficients for the overall sample


  • The figure below shows the model outcomes and plotted coefficients for those in the Control group only


9.2 MD1: Moderation by gender

9.2.1 MD1: Finding

No significant main effect of gender or interactions between gender and group on:

  • comfort | knowledge | UTI belief

9.2.2 MD1: Table


Exploratory Omnibus ANOVAs for Comfort and knowledge, with Logistic regression for UTI
Comfort
Knowledge
UTI
SS. F.Value p.Value SS.. F..Value p..Value Z.Value p..Value.
RecomFct 5.49 6.58 0.011 5.35 3.70 0.055 2.66 0.008
ToolFct 19.04 22.83 0.000 175.08 121.14 0.000 -3.87 0.000
Gender_Model 0.08 0.10 0.755 3.43 2.37 0.124 0.27 0.787
RecomFct:Gender_Model 3.14 3.77 0.053 2.51 1.73 0.188 0.29 0.773
ToolFct:Gender_Model 0.75 0.90 0.342 0.66 0.46 0.499 0.38 0.702

9.2.3 Fig 1


UTI belief

9.2.4 Fig 2


Comfort with NOT taking antibiotics

9.2.5 Fig 3


Knowledge


9.3 MD2: Moderation by Prior UTI

9.3.1 MD2: Finding

No significant main effect of gender or interactions between gender and group on:

  • comfort | knowledge | UTI belief

9.3.2 MD2: Table


Exploratory Omnibus ANOVAs for Comfort and knowledge, with Logistic regression for UTI
Comfort
Knowledge
UTI
SS. F.Value p.Value SS.. F..Value p..Value Z.Value p..Value.
RecomFct 5.04 6.12 0.014 6.77 4.62 0.032 1.86 0.063
ToolFct 19.63 23.82 0.000 153.75 104.87 0.000 -3.49 0.000
UTIforAbx_Model 0.31 0.38 0.540 1.74 1.19 0.277 0.99 0.321
RecomFct:UTIforAbx_Model 2.92 3.54 0.060 1.47 1.00 0.318 1.10 0.273
ToolFct:UTIforAbx_Model 1.87 2.27 0.133 0.00 0.00 0.995 -0.20 0.844

9.3.3 Fig 1


Belief in UTI

9.3.4 Fig 2


Comfort with NOT taking antibiotics

9.3.5 Fig 3


Knowledge