This file goal is calculating the Intercoder Reliability index Cohen´s K for the sample of Canada
sample <- read_excel("temp random FINAL.xlsx", sheet = "intercoder")
coder1 <- sample$`Coder 1`
coder2 <- sample$`Coder 2`
# Check if coder1 and coder2 are not empty
if (length(coder1) == 0 || length(coder2) == 0) {
stop("Coder vectors are empty.")
}
# Convert the vectors to factors
coder1_factor <- factor(coder1, levels = c("YES", "NO"))
coder2_factor <- factor(coder2, levels = c("YES", "NO"))
# Check if coder1 and coder2 have the same levels
if (!identical(levels(coder1_factor), levels(coder2_factor))) {
stop("Coder vectors have different levels.")
}
b <- cbind(coder1, coder2)
index <- gwet.ac1.raw(b, weights = "unweighted", categ.labels = NULL,
conflev = 0.95, N = Inf)
print(index)
## $est
## coeff.name pa pe coeff.val coeff.se conf.int p.value
## 1 AC1 0.9440559 0.06313811 0.94029 0.01252 (0.916,0.965) 0
## w.name
## 1 unweighted
##
## $weights
## [,1] [,2]
## [1,] 1 0
## [2,] 0 1
##
## $categories
## [1] "NO" "YES"
acuerdo <- agree(b, tolerance = 1)
print(acuerdo)
## Percentage agreement (Tolerance=0)
##
## Subjects = 429
## Raters = 2
## %-agree = 94.4
library(vcd)
## Loading required package: grid
cont_table <- table(coder1_factor, coder2_factor)
kappa_result <- Kappa(cont_table)
print(kappa_result)
## value ASE z Pr(>|z|)
## Unweighted 0.1354 0.08616 1.571 0.1161
## Weighted 0.1354 0.08616 1.571 0.1161