library(readr)
datali1 <- read_csv("Lima2022.xlsx - data.csv")
## New names:
## Rows: 60 Columns: 3
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (2): TASA DE DENUNCIAS POR COMISION DE DELITOS,SEGUN DISTRITO, ...2 num (1):
## ...3
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...2`
## • `` -> `...3`
View(datali1)
encabezado <- datali1[4, ]
datos <- datali1[-4, ]
colnames(datos) <- encabezado
print(datos)
## # A tibble: 59 × 3
## Distrito `` `NA`
## <chr> <chr> <dbl>
## 1 (Tasa por cada 10 000 habitantes) <NA> NA
## 2 <NA> <NA> NA
## 3 <NA> Per?o 2022
## 4 150101 LIMA <NA> 6427
## 5 150102 ANCON <NA> 1136
## 6 150103 ATE <NA> 1008
## 7 150104 BARRANCO <NA> 5537
## 8 150105 BREс <NA> 2186
## 9 150106 CARABAYLLO <NA> 1114
## 10 150107 CHACLACAYO <NA> 1559
## # ℹ 49 more rows
dostos_faltantes <- datos[complete.cases(datos), ]
library(readxl)
residuosPeru <- read_excel("residuosPeru.xlsx")
## New names:
## • `` -> `...2`
## • `` -> `...3`
## • `` -> `...4`
## • `` -> `...5`
## • `` -> `...6`
## • `` -> `...7`
## • `` -> `...8`
## • `` -> `...9`
## • `` -> `...10`
## • `` -> `...11`
## • `` -> `...12`
## • `` -> `...13`
## • `` -> `...14`
## • `` -> `...15`
View(residuosPeru)
encabezado <- residuosPeru[1, ]
datos1 <- residuosPeru[-1, ]
colnames(datos1) <- encabezado
print(datos1)
## # A tibble: 14,978 × 15
## FECHA_CORTE N_SEC UBIGEO REG_NAT DEPARTAMENTO PROVINCIA DISTRITO POB_TOTAL
## <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 20230614 1 10101 SELVA AMAZONAS CHACHAPOYAS CHACHAPO… 28423
## 2 20230614 2 10102 SELVA AMAZONAS CHACHAPOYAS ASUNCION 291
## 3 20230614 3 10103 SIERRA AMAZONAS CHACHAPOYAS BALSAS 1615
## 4 20230614 4 10104 SIERRA AMAZONAS CHACHAPOYAS CHETO 597
## 5 20230614 5 10105 SIERRA AMAZONAS CHACHAPOYAS CHILIQUIN 737
## 6 20230614 6 10106 SIERRA AMAZONAS CHACHAPOYAS CHUQUIBA… 2096
## 7 20230614 7 10107 SELVA AMAZONAS CHACHAPOYAS GRANADA 395
## 8 20230614 8 10108 SIERRA AMAZONAS CHACHAPOYAS HUANCAS 1240
## 9 20230614 9 10109 SELVA AMAZONAS CHACHAPOYAS LA JALCA 5551
## 10 20230614 10 10110 SELVA AMAZONAS CHACHAPOYAS LEIMEBAM… 4200
## # ℹ 14,968 more rows
## # ℹ 7 more variables: POB_URBANA <chr>, POB_RURAL <chr>, GPC_DOM <chr>,
## # QRESIDUOS_DOM <chr>, QRESIDUOS_NO_DOM <chr>, QRESIDUOS_MUN <chr>,
## # PERIODO <chr>
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
datos1 <- datos1|>
rename(Distrito = DISTRITO)
#install.packages("rvest")
#install.packages("tidyverse")
library(rvest)
## Warning: package 'rvest' was built under R version 4.3.3
##
## Attaching package: 'rvest'
## The following object is masked from 'package:readr':
##
## guess_encoding
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.3.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.3 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ rvest::guess_encoding() masks readr::guess_encoding()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
url <- "https://es.wikipedia.org/wiki/Elecciones_municipales_de_Lima_de_2022"
webpage <- read_html(url)
tables <- html_table(webpage)
# Por ejemplo, si la tabla que quieres está en la primera posición
df <- tables[[10]]
# Exportar a CSV
write.csv(df, "Resultados_por_distrito.csv", row.names = FALSE)
library(readr)
Resultados_por_distrito <- read_csv("Resultados_por_distrito.csv")
## New names:
## Rows: 46 Columns: 17
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (17): Distrito, RP...2, RP...3, PP...4, PP...5, SP...6, SP...7, FE...8, ...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `RP` -> `RP...2`
## • `RP` -> `RP...3`
## • `PP` -> `PP...4`
## • `PP` -> `PP...5`
## • `SP` -> `SP...6`
## • `SP` -> `SP...7`
## • `FE` -> `FE...8`
## • `FE` -> `FE...9`
## • `APP` -> `APP...10`
## • `APP` -> `APP...11`
## • `JP` -> `JP...12`
## • `JP` -> `JP...13`
## • `AvP` -> `AvP...14`
## • `AvP` -> `AvP...15`
## • `PL` -> `PL...16`
## • `PL` -> `PL...17`
View(Resultados_por_distrito)
datosRD <- datos[complete.cases(datos), ]
merged_df <- merge(Resultados_por_distrito,datos, by = "Distrito")
merged_df2 <- merge(merged_df,datos1, by = "Distrito")